~

Volume: 04 Issue: 11 | Nov - 2025

|~

<7

- rafii,, International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05151

D 1903 g
W_}r""""’% An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

A Framework for a High-Performance Remote Sensing Image Real-Time

Processing System

Lajja Dave !, Jigar Dalvadi ?

!Sardar Patel College of Engineering and Technology, Bakrol, Anand
2 Sardar Patel College of Engineering and Technology, Bakrol, Anand

sksksk

Abstract - High-performance real-time processing systems
for remote sensing imaging are critically needed due to the
exponential growth in data volume from satellite constellations
and unmanned aerial vehicles (UAVs). For time-sensitive
applications like disaster response, military surveillance, and
environmental monitoring, traditional post-processing
techniques—which entail downloading, storing, and then
analyzing data—introduce substantial latency. The
architectural elements and computational paradigms necessary
to construct a high-performance real-time processing system
are examined in this study. We provide an extensive review of
the literature that traces the development of stream-based
systems from batch processing. The fundamental techniques
are divided into two categories: software algorithmic
approaches (such as stream processing frameworks and
lightweight deep learning models) and hardware acceleration
strategies (such as GPUs, FPGAs, and specialized Al chips).
For the majority of jobs, a hybrid CPU-GPU architecture that
uses optimized convolutional neural networks (CNNs) and
FPGA-based pre-processing provides the best performance,
flexibility, and energy economy, according to a comparative
analysis. The accuracy-speed trade-off in algorithms, system
integration complexity, and data throughput constraints are
some of the major issues that are discussed. We conclude that
edge-computing paradigms and Al-driven, adaptive processing
pipelines that may independently prioritize jobs based on
operational needs are key to the future of real-time remote
sensing.

Key Words: Real-time processing, GPU computing,
Lightweight deep learning, Environmental monitoring, Time-
sensitive applications, Low-latency systems, Accuracy-speed
trade-off

1.INTRODUCTION

Remote sensing technology has become a cornerstone
of modern geospatial intelligence, enabling unprecedented
monitoring of Earth's surface for applications in urban
planning, agriculture, defense, and disaster management
[1]. The advent of high-resolution satellite constellations
(e.g., Planet Labs, Sentinel) and the proliferation of UAVs
has led to a data deluge, with petabyte-scale datasets
being generated daily. While this data holds immense
potential, its value is often time-critical. For instance, in
wildfire monitoring, flood assessment, or search-and-
rescue operations, actionable intelligence is required
within minutes or hours, not days [2].

Traditional remote sensing data processing pipelines

are fundamentally offline. They involve data

downlinking, archiving in data centers, and subsequent
processing using desktop software or cluster computing.
This paradigm introduces latency that is unacceptable for
emergency response and rapid decision-making.
Consequently, there is a pressing need for high-
performance real-time processing systems capable of
ingesting, analyzing, and disseminating insights from
imagery data streams with minimal delay [3].

The challenge of "real-time" processing in this context
is multifaceted. It involves not only raw computational
speed but also the ability to handle massive data
throughput, manage 1/O bottlenecks, and execute complex
algorithms like semantic segmentation and object
detection reliably. This paper aims to dissect the problem
and synthesize a framework for such a system. It will
survey existing literature, classify the primary
technological methods, provide a comparative analysis,
and discuss the outstanding challenges and future
directions.

2. Literature Survey

The pursuit of real-time remote sensing image
processing has evolved in tandem with advancements in
computing hardware and algorithms.

Initially, research focused on algorithmic
optimization for specific tasks. Early work by [4]
demonstrated that by simplifying classical image
processing algorithms (e.g., using faster edge detectors or
principal component analysis) and implementing them in
efficient C/C++ code, near-real-time performance could
be achieved on high-end CPUs for moderate-sized
images.

The paradigm shifted significantly with the rise of
General-Purpose computing on Graphics Processing
Units (GPGPU). Landmark studies by [5] and [6] showed
that massively parallel algorithms for orthorectification,
pan-sharpening, and change detection could be
accelerated by orders of magnitude on NVIDIA CUDA-
enabled GPUs compared to multi-core CPU
implementations. This established the GPU as a central
component in high-performance geocomputation.

Concurrently, Field-Programmable Gate Arrays
(FPGAs) were explored for their low-latency and high-
energy-efficiency characteristics. Research by [7]
illustrated that fixed-function pipelines for core pre-
processing steps like radiometric correction and geometric
transformation could be hardwired onto FPGAs,
achieving superior performance-per-watt compared to
GPUs for these specific, repetitive tasks.

© 2025, ISJEM (All Rights Reserved) | www.isjem.com

| Page 1

t 153eM Y International Scientific Journal of Engineering and Management (ISJEM)
N Vv

(g {= Volume: 04 Issue: 11 | Nov - 2025

ISSN: 2583-6129
DOI: 10.55041/ISJEM05151

An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

The most recent and impactful evolution is the
integration of Deep Learning (DL). CNNs have set new
benchmarks for accuracy in tasks like scene classification
and object detection [8]. However, their computational
intensity initially made them ill-suited for real-time
applications. This spurred the field of model compression
and lightweight neural architecture design. The
development of efficient networks like SqueezeNet,
MobileNet, and ShuffleNet [9] demonstrated that it was
possible to retain high accuracy with a fraction of the
computational cost, making DL feasible for on-the-fly
analysis.

Finally, the system-level architecture has matured
from batch processing to stream processing frameworks.
The adoption of platforms like Apache Katka for data
ingestion and Apache Flink or NVIDIA DeepStream for
building analytical data pipelines allows for continuous,
low-latency processing of image streams [10].

3. Methods Classification

The methodologies for building a high-performance real-
time system can be broadly classified into two categories:
Hardware Platforms and Software & Algorithmic
Strategies.

3.1. Hardware Acceleration Platforms

1. Graphics Processing Units (GPUs): Characterized by
thousands of smaller cores designed for parallel
processing, GPUs are exceptionally well-suited for the
matrix and vector operations dominant in image
processing and DL. They offer high flexibility and are the
de facto standard for training and running complex neural
networks [5, 6].

2. Field-Programmable Gate Arrays (FPGAs): FPGAs
are integrated circuits that can be reconfigured post-
manufacturing to create custom hardware circuits. They
excel in applications requiring deterministic, low-latency
processing for specific, fixed tasks (e.g., initial image
filtering and calibration). Their key advantage is high
energy efficiency [7].

3. Application-Specific Integrated Circuits (ASICs)
and Al Chips: These are custom-designed chips for a
particular application, such as Google's Tensor
Processing Unit (TPU). They offer the highest possible
performance and efficiency for their target workload
(e.g., neural network inference) but lack flexibility and
have high development costs.

4. Edge Computing Devices: This category includes
miniaturized, power-efficient devices like the NVIDIA
Jetson series or Google Coral Dev Board. They often
incorporate mobile-grade GPUs or ASIC edge TPUs,
enabling real-time Al inference directly on UAVs or
small satellites, reducing the need for data downlinking

[3].

EoEn)

3.2. Software and Algorithmic Strategies

1. Lightweight Deep Learning Models: This involves
using pre-optimized network architectures (e.g.,
MobileNet, EfficientNet) or applying techniques like
pruning, quantization, and knowledge distillation to large
models to reduce their size and computational demands
without a significant drop in accuracy [9].

2. Stream Processing Frameworks: Software platforms
like Apache Flink, Apache Storm, and NVIDIA
DeepStream provide the architectural backbone for real-
time systems. They manage data flow, windowing
operations, and parallel execution of analytical tasks on
continuous data streams [10].

3. Algorithmic Optimizations: This includes leveraging
efficient libraries (e.g., OpenCV, CuPy), using single-
precision or half-precision floating-point arithmetic, and
designing task-specific algorithms that favor speed over
maximal accuracy where permissible.

Pathways to Real-Time Analytics

Lightwaight
Models

2 Stroam Roal-Time N
Processing Analytics]IS
3 Algorithmic

Optimizations

© 2025, ISJEM (All Rights Reserved) | www.isjem.com

| Page 2

g y, International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
X S v_,‘ Volume: 04 Issue: 11 | Nov - 2025 DOI: 10.55041/ISJEM05151
%?“"“4> % AnInternational Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

4. Comparative Analysis of Methods

Processin Flexibilit Poner Developmen Ideal Use
Method Speed Efficienc t C
g Spee ¥ y Complexity ase
System
Multi-core Very cont_rol, o
Low . Low Low handling, non-
CPU High :
parallelizable
tasks.
Parallelizable
tasks, deep
learning
GNI:][iT]:(’eIE)’ Very High High Medium Medium inference,
complex
image analysis
[5, 6].
Low-latency
pre-
High (for Ve processing,
FPGA fixed Medium Hi Y Very High fixed-function
igh L
tasks) pipelines on
satellites/UAV
s [7].
Mass
production
systems
ASIC/TPU Highest Low Highest Highest dedicated to a
single DL task
(e.g., cloud
inference).
Object
Lightweigh High (on detection and
tDL suited High High Medium segmentation
Models hardware) on edge
devices [9].

e GPUs offer the best trade-off for a general-
purpose, high-performance system due to their
immense parallel computing power and strong
software ecosystem (e.g., CUDA, PyTorch,
TensorFlow).

e FPGAs are superior for edge deployment where
power is a primary constraint and the processing
chain is well-defined and unlikely to change.

e While ASICs provide peak performance, their
inflexibility and cost make them unsuitable for
most research and prototyping scenarios.

e Employing Lightweight DL models is a
software-level strategy that is complementary to
hardware acceleration, enabling complex Al
tasks to be executed efficiently on both GPUs
and edge devices.

A synergistic approach, such as using an FPGA for initial
sensor data correction and calibration, followed by a
GPU cluster running quantized MobileNet models for
scene analysis within an Apache Flink streaming
pipeline, often yields the most robust and efficient
system.

5. Discussion

The development of a truly effective real-time processing
system is not merely an exercise in assembling the fastest
hardware. Several interconnected challenges persist:

1. The Accuracy-Speed Trade-off: The most significant
challenge is balancing processing speed with analytical
accuracy. Lightweight models and algorithmic
approximations inevitably lead to a small decrease in
accuracy compared to their larger, slower counterparts
[9]. Determining the acceptable level of accuracy loss for
a given application is a critical system design decision.

2. Data I/0 and Throughput Bottlenecks: The data link
from the sensor to the processor is often the primary
bottleneck. For satellite systems, downlink bandwidth is
limited. For UAVs, wireless transmission can be
unstable. On-board processing (edge computing)
mitigates this by reducing the data volume before
transmission, but it is constrained by Size, Weight, and
Power (SWaP) limitations [3].

3. System Integration and Complexity: A high-
performance system is a complex integration of
heterogeneous hardware (CPU/GPU/FPGA) and software
(drivers, stream processors, DL frameworks). Ensuring
low-latency communication between these components
and managing the entire software stack reliably is a non-
trivial engineering challenge [10].

4. Adaptability and Generalization: A system trained
for ship detection may perform poorly on forest fire
detection. Creating systems that can dynamically adapt or
switch between multiple Al models to handle diverse
real-world scenarios is an ongoing area of research.

Future work should focus on dynamic neural networks
that can adapt their complexity based on the input data,
more sophisticated model compression techniques, and
the development of standardized middleware to simplify
the integration of heterogeneous computing resources.

6. Conclusion

This paper has outlined the critical components and
considerations for designing a high-performance remote
sensing 1image real-time processing system. The
transition from traditional offline paradigms to real-time
analytics is imperative to unlock the full, time-sensitive
value of modern Earth observation data. Our analysis
demonstrates that no single technology provides a silver
bullet. Instead, a hybrid architecture is essential.

The most promising path forward leverages the parallel
processing power of GPUs for complex analytical tasks,
the efficiency of FPGAs for dedicated pre-processing on
the edge, and the agility of streamlined deep learning

© 2025, ISJEM (All Rights Reserved) | www.isjem.com

| Page 3

International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
Volume: 04 Issue: 11 | Nov - 2025 DOI: 10.55041/ISJEM05151
An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

models, all orchestrated within a robust stream-
processing software framework. Overcoming the
challenges of the accuracy-speed trade-off, data
bottlenecks, and system complexity will require
continued collaboration between the remote sensing,
computer architecture, and artificial intelligence research
communities. The ultimate goal is the creation of
intelligent, autonomous systems that can see, understand,
and act upon the changing world in the blink of an eye.

ACKNOWLEDGEMENT

The authors would like to express their sincere gratitude
to the Sardar Patel College of Engineering and
Technology, Bakrol, Anand, for providing the necessary
institutional support and resources to conduct this
research. We also extend our thanks to our colleagues for
their insightful discussions and constructive feedback
during the preparation of this manuscript. Finally, we
acknowledge the developers and maintainers of the open-
source software and computational libraries that form the
foundation of modern remote sensing research.

REFERENCES

1. Weng, Q., Mao, Z., & Lin, J. (2018). Remote Sensing for
Sustainability. CRC Press.

2. Joyce, K. E., Belliss, S. E., Samsonov, S. V., McNeill, S. J., &
Glassey, P. J. (2009). A review of the status of satellite remote
sensing and image processing techniques for mapping natural
hazards and disasters. Progress in Physical Geography: Earth and
Environment, 33(2), 183-207.

3. Wang, P., Zhang, H., & Yang, H. (2021). Edge Computing for
On-Board Real-Time Satellite Image Analysis: A Review. ISPRS
Journal of Photogrammetry and Remote Sensing, 179, 69-82.

4. Leung, A. T. (2009). Efficient Algorithms for Real-Time Image
Processing in Remote Sensing. International Journal of Remote
Sensing, 30(15), 4021-4035.

5. Huang, W., & Zhang, L. (2012). A GPU-based parallel algorithm
for large-scale remote sensing image orthorectification. IEEE
Geoscience and Remote Sensing Letters, 9(4), 767-771.

6. Li, J., Wu, Y., & Zhang, Y. (2017). High-performance computing
for geospatial applications: A perspective. IEEE Geoscience and
Remote Sensing Magazine, 5(3), 35-49.

7. Sun, Y., Liu, J., & Zhao, Y. (2015). An FPGA-based real-time
processing system for remote sensing imagery. In Proceedings of
the IEEE International Conference on Field-Programmable
Technology (FPT) (pp. 240-243).

8. Zhu, X. X., Tuia, D., Mou, L., Xia, G. S., Zhang, L., Xu, F., &
Fraundorfer, F. (2017). Deep learning in remote sensing: A
comprehensive review and list of resources. IEEE Geoscience and
Remote Sensing Magazine, 5(4), 8-36.

9. Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M.,
... & Adam, H. (2019). Searching for mobilenetv3. In Proceedings
of the IEEE/CVF International Conference on Computer Vision
(pp. 1314-1324).

10. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., &
Tzoumas, K. (2015). Apache Flink: Stream and batch processing
in a single engine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 36(4).

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

