
 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 04 Issue: 01 | Jan – 2025 DOI: 10.55041/ISJEM02213
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

A Novel Plugin-Based Navigation Architecture for

Multi-Brand, Multi-Screen Automotive Systems
Ronak Indrasinh Kosamia

rkosamia0676@ucumberlands.edu

0009-0004-4997-4225

Abstract— In the rapidly evolving landscape of automotive

infotainment, providing a robust, modular, and easily extensible

architecture is paramount. This article presents a plugin

manager approach for multi-brand, multi-screen navigation—

aimed at automotive software built on top of Android and its

Jetpack (including Compose) toolchain. As automotive OEMs

increasingly demand brand-specific user experiences,

developers often struggle with proliferating “if-else”

conditionals, duplicated code, and tangled navigation logic.

Traditional solutions, such as static route-based frameworks or

theming engines, tend to buckle under the complexity of

dynamic brand overrides. Meanwhile, adopting monolithic

plugin architectures like OSGi or Eclipse RCP can be excessive

and poorly tailored to Android’s modern ecosystem. To address

these challenges, we propose a centralized plugin manager that

orchestrates brand-specific screens via discreet plugin modules.

Each plugin encapsulates the unique UI and navigation flow

required by a given brand, whether it’s Volkswagen, Audi, or

newer entrants to the market. At runtime, the plugin manager

intercepts navigation requests, identifies the appropriate brand,

and dynamically dispatches the user to the correct composable

screen. This architecture not only curtails code duplication but

also simplifies the on-ramp for new brand introductions:

engineers simply drop-in new plugin classes—optionally

annotated for automated registration using Kotlin Symbol

Processing—without editing extensive branching logic. Our

approach draws inspiration from well-known software patterns

like Factory Pattern for the creation and retrieval of brand-

specific plugin instances, Strategy Pattern for encapsulating

brand-driven behaviors under a uniform BasePlugin interface

and Annotation-Driven Patterns (e.g., KSP) for compile-time

discovery and streamlined registration of these plugins. We also

compare the plugin manager solution to alternative navigation

techniques like Multi-module Gradle projects that manually

swap resources per brand, Reflection-based override

approaches prone to runtime overhead and poor type safety,

and and Pure theming solutions that lack the flexibility to alter

entire UI flows. The plugin manager approach offers a cleaner,

more scalable middle ground—particularly relevant to the 90%

of automotive stacks running on Android, where Jetpack

Compose and Kotlin are increasingly becoming the de facto

standards for creating intuitive, high-performance in-vehicle

experiences. In short, this article offers actionable guidance for

software architects and developers wrestling with the demands

of multi-brand automotive infotainment. By marrying proven

design patterns with Android’s latest technologies, the plugin

manager framework facilitates rapid expansion, reduces

maintenance overhead, and empowers OEMs to elevate brand

identity without sacrificing software maintainability. Through

prototypes and real-world scenarios, we illustrate how this

architecture effectively integrates into large-scale automotive

programs, aligning with broader trends in modular software

design and responding to the complexities of an ever-more

diversified mobility marketplace.

Keywords—automotive OEMs, OSGi, Eclipse RCP, KSP,

Annotation-Driven Patterns, Jetpack compose, Factory and

Strategy patterns, Reflection Override, Plugins Manager.

I. INTRODUCTION

Automotive infotainment systems are evolving at
breakneck speed. With new brands emerging, alliances
shifting, and established OEMs continuously rebranding to
keep up with market demands, developers find themselves in
an unrelenting cycle of adaptation. If it’s not an OEM wanting
a sleek, minimalistic home screen for a premium model, it’s
another demanding a more playful, animated interface to lure
a younger demographic. This reality creates a complex
tapestry of code that, if not carefully managed, can become as
confusing as trying to follow a vintage road map in the dark.

A. Why MultiBrand Navigation is So Challenging

In most modern vehicles, the underlying operating system

is Android—along with a heavy reliance on Jetpack libraries,

including Compose for UI[14]. On paper, Jetpack Compose’s

declarative structure is supposed to “simplify” UI creation but

throw in five or six brands that each need their own spin on

the layout (not just a new color palette), and you can quickly

find yourself buried under conditionals and redundant code

blocks. Traditional navigation techniques (like static routes,

theming engines, or submodules for each brand) can become

unwieldy when you’re dealing with 30+ screens across

multiple vehicle lines.

B. Common Approaches -and Their Pitfalls

1) Submodule per Brand: Many teams try to silo brand-

specific code into distinct Gradle modules, each containing a

full suite of screens. While this can work for a small set of

brands, it doesn’t scale nicely. Over time, identical or near-

identical features get duplicated in each module, ballooning

the codebase.

In this approach, the project is split into multiple Gradle

submodules (or even separate repositories) such that each

module contains the UI, logic, and resources for a single

brand. For instance, you might have:

• brand-volkswagen/

• brand-audi/

• brand-skoda/

• brand-gmc/

• brand-cadilac/

Each module includes everything from UI layouts to data

handling code that is specific to that brand.

Why Devs try it:

• It feels “clean” at first: each brand is neatly

cordoned off, and you don’t have messy 𝑖𝑓 − 𝑒𝑙𝑠𝑒
statements scattered throughout the shared code

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

mailto:rkosamia0676@ucumberlands.edu

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 04 Issue: 01 | Jan – 2025 DOI: 10.55041/ISJEM02213
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

• From an organizational standpoint, it’s easy to

onboard a brand-specific team that manages just that

module.

Where it falls short:

• Duplication of Shared Logic: If multiple brands

share, say, 80% of the same logic or similar layouts

with only slight differences, you’ll find yourself

duplicating entire code chunks in each module. Over

time, keeping these duplicates in sync becomes a

maintenance nightmare.

• Dependency Entanglement: Often, brand modules

still rely on “core” modules for data or navigation

frameworks. Maintaining the proper dependencies

can get messy. One small change in the core might

break multiple brand modules, requiring repetitive

updates.

• Scalability Issues: Imagine adding 5, 10, or 20 more

brands. You multiply the overhead of having to

tweak separate modules for each small fix or feature.

Build times can also balloon because each module

has to be compiled in context.

2) Theming Alone: We often see theming engines used to

swap out colors, icons, or fonts dynamically. While theming

is useful for subtle style differences, it does nothing for major

UI layout variations or entirely different user flows. Think of

it like using different wallpaper in every room of a house—

when you need a different floor plan, wallpaper doesn’t help.

Android theming allows you to define color palettes,

typography, shape appearance, and other style-related items.

You can programmatically switch themes based on

conditions—like detecting the brand at runtime.

- Why developers prefer it:

• Low Barrier to Entry: Changing a color or a font is

straightforward. For minor brand variations,

theming can solve the quick-win “skinning”

scenario.

• Android-Supported Mechanism: Theming is well-

documented, fits naturally with Jetpack Compose’s

Material/Material 3 layers, and integrates smoothly

with other system-level theming features (dark

mode, etc.).
Where it falls short:

• Superficial Differences Only: Theming is not

designed to accommodate drastically different UI

layouts, navigation flows, or specialized brand

logic. If Brand A wants a multi-step onboarding

flow while Brand B uses a single screen, theming

alone can’t handle that.

• Overuse of Theme Attributes: Even if you try to

push theming further by encoding layout differences

as theme-driven booleans or dimensional resources,

you quickly end up with cryptic theme keys. This

can also complicate maintenance when “themes”

start dictating core flow logic rather than just

visuals.

• Limited Extensibility: Adding a brand that wants a

radically different design layout or feature set often

requires new composables or code, anyway—thus

defeating the convenience the theming approach

was supposed to provide.

3) Reflection Based Override: Some advanced teams

experiment with reflection to dynamically load brand-

specific components at runtime. That can work but introduces

new headaches in terms of performance, type safety, and

maintainability—especially if you’re aiming to keep your

Kotlin code robust and your CI pipeline stable. With

reflection, you dynamically load classes at runtime based on

strings or configuration values (e.g., “If brand is X,

reflectively instantiate the class named

com.example.XHomeScreen). This approach sometimes

overlaps with advanced “plugin” ideas but is typically more

ad hoc.

a) Runtime Flexibility: You can load brand-specific

classes even if they’re in a separate library or downloaded

module, making it tempting for those who want “hot

swapping” or to minimize compile-time dependencies.

b) Avoiding Hard-Coded References: Some teams

want to reduce direct references to brand code in the main

codebase, and reflection seems like a neat trick.

Why not to use it:

• Performance & Complexity: Reflection can be slow

and has extra overhead. On Android, particularly in

automotive contexts, you’re dealing with constraints

like limited CPU power or tight real-time

requirements. Reflection can add measurable lag or

complicate the debugging process.

• Type Safety & Maintainability: If you get the class

name wrong or rename a class without updating

your reflective references, you won’t catch the error

until runtime. That’s not fun in an automotive

environment where a production bug might have

critical in-car ramifications.

• Difficult to Navigate & Evolve: Code reviews and

static analysis become harder because there’s no

direct reference linking the brand logic to the main

flow. Over time, the system can devolve into

“String-based Spaghetti”.

4) “HyBrid” Conditonals: This is the dreaded (and

ironically most common) approach of scattering brand-based

𝑖𝑓 − 𝑒𝑙𝑠𝑒 or 𝑤ℎ𝑒𝑛 statements around the code. It starts

simple (“𝑖𝑓𝑏𝑟𝑎𝑛𝑑 == ‘𝐴𝑢𝑑𝑖𝑂𝑅𝐺𝑀𝐶𝑜𝑟𝐹𝑜𝑟𝑑’𝑡ℎ𝑒𝑛𝑠ℎ𝑜𝑤𝑋”)
but grows into an unmanageable web of logic. Eventually,

you’re flipping coins to decide which file even holds the

condition that’s messing up the user flow this time.

Why Devs try it:

• Immediate Gratification: Adding a new brand-based

tweak is as easy as appending another condition. No

major architectural changes needed

• Legacy Inertia: Many codebases start out supporting

a single brand, and as more brands get added,

conditionals pile up. Developers might never step

back to re-architect.

Why it falls short:

• Nightmare Maintenance: As brand variations

multiply, you end up with nested or conflicting logic

that’s impossible to track. Want to rename a brand?

Good luck searching for all references.

• Code Duplication: It’s common to copy entire
composable functions or entire classes—one for

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 04 Issue: 01 | Jan – 2025 DOI: 10.55041/ISJEM02213
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

each brand—just to change a few lines. This is a

recipe for bugs and confusion.

• Hard to Scale: The moment you hit double-digit

brand counts, the approach crumbles under its own
weight. Code merges become painful, and each new

brand addition escalates the problem.

C. Enter the Plugin Manager

Our central idea is the Plugin Manager[]—a specialized

piece of infrastructure that shifts brand differences into

discrete “plugin” units [18]. Instead of splitting code by brand

modules or baking brand logic into every screen, you have:

• One shared interface (𝐵𝑎𝑠𝑒𝑃𝑙𝑢𝑔𝑖𝑛) that each

brand’s plugin must implement (Strategy/Factory

pattern influences).

• A Plugin Manager that discovers and registers

these brand-specific implementations—optionally

using Kotlin Symbol Processing (KSP) or other

annotation-based tooling.

• A Dynamic Navigation layer (e.g., a NavGraph in

Compose) that consults the Plugin Manager for each

route, retrieving the appropriate composable

“screen” for a given brand and screen name.

The result? You keep your main codebase uncluttered, and

brand-specific logic is neatly encapsulated within plugin

classes (or modules). Think of it like an assembly line: the

same core “factory” can produce multiple brand

configurations, each plugin focusing on what’s unique for

that brand’s UI or flow[12].

D. How Existing Patterns Influence the Plugin Manager

Approach

1) Factory Pattern: The concept of a plugin manager

aligns nicely with a factory approach, where you “ask” for a

plugin instance based on a certain key (𝑏𝑟𝑎𝑛𝑑 +
𝑠𝑐𝑟𝑒𝑒𝑛𝑁𝑎𝑚𝑒) and let the factory produce the correct object

without exposing all the messy details to the calling code.

Role in the Plugin Manager:

• Brand-Screen Lookup: The plugin manager can

store a mapping of (brand, screenName) →
pluginClass behind the scenes. When the system

requests a screen for “Audi, Home,” the factory

portion of the plugin manager returns the correct

plugin instance for that brand.

• Reduce Hard-Coding: By centralizing creation

logic, we eliminate brand-based “if-else” in the code
that triggers plugin usage. We only need to maintain

those brand-plugin mappings in one place.

• Easier to Add/Remove Brands: Since creation

details are contained within the manager, you can

add or remove brand-specific plugins without

rewriting large swaths of code.

2) Strategy Pattern: Each plugin is a distinct “strategy”

for rendering or handling a particular screen. The rest of the

system just knows it can call 𝑝𝑙𝑢𝑔𝑖𝑛. 𝑙𝑜𝑎𝑑𝑆𝑐𝑟𝑒𝑒𝑛(),
trusting that the plugin has all the brand-specific logic.

Role in the Plugin Manager:

• Common Interface (BasePlugin): Each brand’s

plugin implements a standard interface (e.g.,

BasePlugin) with methods like 𝑙𝑜𝑎𝑑𝑆𝑐𝑟𝑒𝑒𝑛() or

ℎ𝑎𝑛𝑑𝑙𝑒𝑈𝑠𝑒𝑟𝐴𝑐𝑡𝑖𝑜𝑛(). This “strategy” concept

ensures the rest of the app doesn’t care how the

brand’s internal logic is structured.

• Interchangeable Brand Logic: You can swap out the

plugin for “Volkswagen, Home” with “Audi,

Home” OR “GMC, Home” with “Cadillac, Home”

simply by updating the brand parameter. Both

respond to the same function calls, just with

different brand-specific behavior.

• Cleaner Codebase: By abstracting brand logic

behind a shared interface, your core modules and

navigation code remain blissfully ignorant of the

underlying brand complexities.

3) Annotation Driven Registration: Borrowed from

frameworks like Dagger or Koin, this optional enhancement

uses compile-time checks to collect all classes marked with,

say, @𝐵𝑟𝑎𝑛𝑑𝑃𝑙𝑢𝑔𝑖𝑛 𝑜𝑟 @𝑆𝑐𝑟𝑒𝑒𝑛𝑃𝑙𝑢𝑔𝑖𝑛 . A generated

registry ensures you don’t have to manually remember “Did

we register the new brand’s Home screen plugin?” It’s

automated.

Role in the Plugin Manager:

• Compile-Time Automation: Instead of manually

editing a list of brand-screen mappings every time

you add a new plugin, the annotation processor does

it for you. This is particularly useful when

supporting multiple brands that each have dozens of

unique screens.

• Reduce Human Error: Annotation-driven discovery

ensures you don’t forget to register a brand plugin

or mismatch brand identifiers.

• Seamless Integration with Android: KSP integrates

smoothly with Gradle builds, making it

straightforward to incorporate annotation-based

code generation in your existing Android pipeline.

4) Why This Combination Works Best in Automotive

• Complex Brand Landscape: Automotive OEMs can

have multiple sub-brands (e.g., Volkswagen (VW),

Audi (VW), Škoda (VW), GMC (GM), Chevy (GM)

and more), each with nuanced product lines (sports

editions, luxury models, etc.). A purely theming

approach or reflection-based approach soon hits a

wall. Factories, Strategies, and Annotations give a

flexible, type-safe structure that scales with brand

complexity[11].

• 𝐴𝑛𝑑𝑟𝑜𝑖𝑑 + 𝐶𝑜𝑚𝑝𝑜𝑠𝑒 Synergy: The plugin

manager can serve up brand-specific composables

as “strategies” that get dynamically injected into the

NavGraph or other Compose structures. This avoids

the overhead and confusion of reflection or hand-

coded submodules for each brand.

• Modularity and Maintainability: By blending these

patterns, we isolate each brand’s code into self-

contained plugins that remain discoverable, testable,

and manageable over time. Whether you’re adding

a brand or updating an existing one, the changes are

localized, preserving the health of your overall

codebase

E. Relelvance to Android and Jetpack Compose

In the automotive sphere, Android is king (or at least a

very powerful monarch), claiming around 90% of all new

infotainment system deployments. Jetpack Compose is

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 04 Issue: 01 | Jan – 2025 DOI: 10.55041/ISJEM02213
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

increasingly becoming the standard way to build these UIs,

making it critical that we craft an architecture that meshes

seamlessly with Compose’s declarative nature. By pairing a

plugin manager with Compose-based screens, developers can

deliver brand-specific UIs without forking entire

codebases[14] or rewriting core flows whenever a new brand

or special edition model is introduced. It is worth noting that

Compose’s flexibility makes dynamic screen rendering

smoother, as you can pass around composable lambdas with

minimal overhead. This is perfect for a plugin approach—

once you fetch the relevant plugin for (brand, screenName),

you simply call 𝑝𝑙𝑢𝑔𝑖𝑛. 𝑙𝑜𝑎𝑑𝑆𝑐𝑟𝑒𝑒𝑛()which returns the

composable UI.

F. Roadmap for the Article

This Introduction covered the current pain points in multi-

brand automotive software and outlined how a plugin

manager architecture can simplify things. Next, we’ll dive

deeper into Related Work—looking at existing navigation

patterns, plugin frameworks, and annotation processing

approaches. We’ll then detail the Proposed Architecture,

including code snippets, class diagrams, and a discussion of

advanced features like server-driven plugins. An Evaluation

chapter will explore maintainability metrics, performance

trade-offs, and real-world usage scenarios. Finally, we’ll

wrap up with a Discussion of limitations, potential pitfalls,

and areas for future exploration.

II. PROPOSED PLUGIN-BASED NAVIGATION ARCHITECTURE

A. Overview and Design Goals

Our proposed architecture addresses the core pain points
of multi-brand automotive infotainment—brand overrides,
code duplication, and maintainability—by introducing a
Plugin Manager as the central orchestrator. The design
centers around:

1) Encapsulation of Brand Differences:

Brand-specific logic (e.g., for Audi vs. Volkswagen, GMC vs

Chevy) is moved into discrete plugin classes rather than

spread out in “if-else” blocks or separate submodules.

2) Flexible UI/UX Composition:

We leverage Jetpack Compose’s declarative nature,

allowing each plugin to define its own composable UI. This

approach fits neatly with the dynamic routing common in

Android-based head units.

3) Annotation Driven Registration (Optional):

Tools like Kotlin Symbol Processing (KSP) can auto-

discover and register plugins based on developer-defined

annotations. This reduces boilerplate and risk of human error.

4) Minimal Centralized Touchpoints:

The rest of the application only interacts with a BasePlugin

interface and a PluginManager, keeping brand logic isolated

from the core modules.

Why it Matters in Automotive:

• OEMs often juggle multiple brands or model lines,

each needing unique UI flows.

• Time-to-market pressures demand that developers

quickly introduce new brands or revamp old ones

without rewriting the entire codebase.

• Infotainment software must remain stable, with a
minimal footprint, given resource constraints on in-

vehicle hardware.

B. High level Architecture

1) Application and Main Code base: The central business

logic, navigation graph setup, and high-level data layers. This

layer remains largely agnostic of brand details.

2) Plugin Manager: A singleton or globally accessible

component responsible for:

• Storing mappings of (𝑏𝑟𝑎𝑛𝑑, 𝑠𝑐𝑟𝑒𝑒𝑛𝑁𝑎𝑚𝑒) →
𝑝𝑙𝑢𝑔𝑖𝑛

• Resolving these mappings at runtime when the

system needs to display a particular screen.

• (Optionally) hooking into annotation-driven code to

populate these mappings automatically.

3) Plugins (Brand specific OR Shared):

• Each plugin contains the composable UI and brand-

specific logic for a particular screen

• Must implement a BasePlugin interface, which

defines essential methods like 𝑙𝑜𝑎𝑑𝑆𝑐𝑟𝑒𝑒𝑛().
• For instance, 𝐴𝑢𝑑𝑖𝐻𝑜𝑚𝑒𝑃𝑙𝑢𝑔𝑖𝑛 ∶

𝐵𝑎𝑠𝑒𝑃𝑙𝑢𝑔𝑖𝑛, 𝑉𝑜𝑙𝑘𝑠𝑤𝑎𝑔𝑒𝑛𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑃𝑙𝑢𝑔𝑖𝑛 ∶
𝐵𝑎𝑠𝑒𝑃𝑙𝑢𝑔𝑖𝑛, etc

4) Base Plugin: A standard interface (or abstract class)

specifying the contract every plugin must fulfill. Typically

includes UI-related methods, lifecycle callbacks, or event

handling relevant to an infotainment system.

C. Core Components in Detail

1) Plugin Manager:

• Role: The heart of the architecture, acting as a

registry and “factory” for brand-specific plugins.

• Implementation Notes:

Typically, a Kotlin object or DI-managed singleton.

Provides functions like:

𝑏𝑟𝑎𝑛𝑑: 𝑆𝑡𝑟𝑖𝑛𝑔, 𝑠𝑐𝑟𝑒𝑒𝑛𝑁𝑎𝑚𝑒:
𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑃𝑙𝑢𝑔𝑖𝑛 c

𝑆𝑡𝑟𝑖𝑛𝑔, 𝑝𝑙𝑢𝑔𝑖𝑛: 𝐵𝑎𝑠𝑒𝑃𝑙𝑢𝑔𝑖𝑛
e

And

𝑏𝑟𝑎𝑛𝑑: 𝑆𝑡𝑟𝑖𝑛𝑔, 𝑠𝑐𝑟𝑒𝑒𝑛𝑁𝑎𝑚𝑒:
𝑔𝑒𝑡𝑃𝑙𝑢𝑔𝑖𝑛 c

𝑆𝑡𝑟𝑖𝑛𝑔, 𝑝𝑙𝑢𝑔𝑖𝑛: 𝐵𝑎𝑠𝑒𝑃𝑙𝑢𝑔𝑖𝑛
e

• Could maintain both a brand-specific map and a

fallback “shared” map for screens that are identical

across brands.

PluginManager is arguably the central player in

this architecture—think of it as the “brain” that

determines which brand-specific UI elements you see

and when. Below is a more thorough explanation of its

role and implementation considerations:

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 04 Issue: 01 | Jan – 2025 DOI: 10.55041/ISJEM02213
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

Code

𝑜𝑏𝑗𝑒𝑐𝑡 𝑃𝑙𝑢𝑔𝑖𝑛𝑀𝑎𝑛𝑎𝑔𝑒𝑟 {
𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑣𝑎𝑙 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦 = 𝑚𝑢𝑡𝑎𝑏𝑙𝑒𝑀𝑎𝑝𝑂𝑓 < 𝑃𝑎𝑖𝑟 < 𝑆𝑡𝑟𝑖𝑛𝑔, 𝑆𝑡𝑟𝑖𝑛𝑔 >, 𝐵𝑎𝑠𝑒𝑃𝑙𝑢𝑔𝑖𝑛 > ()

𝑓𝑢𝑛 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑃𝑙𝑢𝑔𝑖𝑛(𝑏𝑟𝑎𝑛𝑑: 𝑆𝑡𝑟𝑖𝑛𝑔, 𝑠𝑐𝑟𝑒𝑒𝑛𝑁𝑎𝑚𝑒: 𝑆𝑡𝑟𝑖𝑛𝑔, 𝑝𝑙𝑢𝑔𝑖𝑛: 𝐵𝑎𝑠𝑒𝑃𝑙𝑢𝑔𝑖𝑛) {

𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦[𝑏𝑟𝑎𝑛𝑑 𝑡𝑜 𝑠𝑐𝑟𝑒𝑒𝑛𝑁𝑎𝑚𝑒] = 𝑝𝑙𝑢𝑔𝑖𝑛
}

𝑓𝑢𝑛 𝑔𝑒𝑡𝑃𝑙𝑢𝑔𝑖𝑛(𝑏𝑟𝑎𝑛𝑑: 𝑆𝑡𝑟𝑖𝑛𝑔, 𝑠𝑐𝑟𝑒𝑒𝑛𝑁𝑎𝑚𝑒: 𝑆𝑡𝑟𝑖𝑛𝑔): 𝐵𝑎𝑠𝑒𝑃𝑙𝑢𝑔𝑖𝑛? {

𝑟𝑒𝑡𝑢𝑟𝑛 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦[𝑏𝑟𝑎𝑛𝑑 𝑡𝑜 𝑠𝑐𝑟𝑒𝑒𝑛𝑁𝑎𝑚𝑒]
? : 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦["𝑆𝐻𝐴𝑅𝐸𝐷" 𝑡𝑜 𝑠𝑐𝑟𝑒𝑒𝑛𝑁𝑎𝑚𝑒] // 𝑓𝑎𝑙𝑙𝑏𝑎𝑐𝑘

}
}

𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝐵𝑎𝑠𝑒𝑃𝑙𝑢𝑔𝑖𝑛 {

𝑓𝑢𝑛 𝑙𝑜𝑎𝑑𝑆𝑐𝑟𝑒𝑒𝑛(): @𝐶𝑜𝑚𝑝𝑜𝑠𝑎𝑏𝑙𝑒 () −> 𝑈𝑛𝑖𝑡
// 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑜𝑟 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 𝑎𝑠 𝑛𝑒𝑒𝑑𝑒𝑑

}

@𝑆𝑐𝑟𝑒𝑒𝑛𝑃𝑙𝑢𝑔𝑖𝑛(𝑏𝑟𝑎𝑛𝑑 = "𝐴𝑈𝐷𝐼", 𝑠𝑐𝑟𝑒𝑒𝑛𝑁𝑎𝑚𝑒 = "𝐻𝑂𝑀𝐸")
𝑐𝑙𝑎𝑠𝑠 𝐴𝑢𝑑𝑖𝐻𝑜𝑚𝑒𝑃𝑙𝑢𝑔𝑖𝑛 ∶ 𝐵𝑎𝑠𝑒𝑃𝑙𝑢𝑔𝑖𝑛 {

𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑒 𝑓𝑢𝑛 𝑙𝑜𝑎𝑑𝑆𝑐𝑟𝑒𝑒𝑛() = @𝐶𝑜𝑚𝑝𝑜𝑠𝑎𝑏𝑙𝑒 {
// 𝐶𝑜𝑚𝑝𝑜𝑠𝑒 𝑐𝑜𝑑𝑒 𝑤𝑖𝑡ℎ 𝐴𝑢𝑑𝑖 𝑐𝑜𝑙𝑜𝑟 𝑝𝑎𝑙𝑒𝑡𝑡𝑒, 𝑙𝑎𝑦𝑜𝑢𝑡, 𝑙𝑜𝑔𝑖𝑐
𝐴𝑢𝑑𝑖𝐻𝑜𝑚𝑒𝑆𝑐𝑟𝑒𝑒𝑛𝑈𝐼()

}
}

Architecture/Main
Design

Plugin Manager

(brand, screenName) -
> plugin registration &

lookup table

Brand specific Plugin
(Audi, VW, GMC etc.

Brand specific Plugin
(Audi, VW, GMC etc.

Brand specific Plugin
(Audi, VW, GMC etc.

Base Plugin(Common
Interface)

Base Plugin(Common
Interface)

Base Plugin(Common
Interface)

Implements Implements Implements

Instantiates

Uses

Calls

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 04 Issue: 01 | Jan – 2025 DOI: 10.55041/ISJEM02213
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝐵𝑎𝑠𝑒𝑃𝑙𝑢𝑔𝑖𝑛 {
𝑓𝑢𝑛 𝑙𝑜𝑎𝑑𝑆𝑐𝑟𝑒𝑒𝑛(): @𝐶𝑜𝑚𝑝𝑜𝑠𝑎𝑏𝑙𝑒 () −> 𝑈𝑛𝑖𝑡

}

2) BasePlugin Interface:

• Role: Defines the Strategy pattern. Each plugin

(strategy) implements the same method signatures,

ensuring the system calls them uniformly

• Methods:

𝑓𝑢𝑛𝑙𝑜𝑎𝑑𝑆𝑐𝑟𝑒𝑒𝑛(): @𝐶𝑜𝑚𝑝𝑜𝑠𝑎𝑏𝑙𝑒() → 𝑈𝑛𝑖𝑡
- returns a composable function for the given brand’s

screen

• Optionally, you might include lifecycle or event-

handler methods (e.g.,

𝑜𝑛𝑆𝑐𝑟𝑒𝑒𝑛𝐸𝑥𝑖𝑡(), ℎ𝑎𝑛𝑑𝑙𝑒𝑉𝑜𝑖𝑐𝑒𝐶𝑜𝑚𝑚𝑎𝑛𝑑(),
etc.).

3) Brand Specific Plugin Classes:

• Role: Concrete implementations that house brand-

unique UI.

Example:

4) Annotation Driven Registration:

• Role: Automates the creation of a

PluginInitializer_Generated class that registers each
annotated plugin with PluginManager.

Example:

D. Brand-Specific Vs. Shared Plugins

Why have shared plugins?

• Some screens (e.g., Settings, basic Info pages, system-
level alerts) may look or behave identically across
brands.

• Rather than duplicating them for each brand, we define
a “SHARED” brand key or a default fallback. This
ensures minimal duplication while still allowing brand
overrides where necessary.

Example:

• SharedSettingsPlugin: BasePlugin registered with
brand = "SHARED", screenName = "SETTINGS".

• If a brand does not explicitly register a “SETTINGS”
plugin, the system uses the shared plugin
automatically.

E. Integration with Android Navigation (Jetpack

Compose)

In most Android-based automotive systems, navigation

is orchestrated by a NavHost or equivalent. Here’s how the

plugin manager solution meshes with Compose Navigation:

1) Compose Navigation Setup: You define a NavHost

with your standard routes (e.g., “HOME”, “SETTINGS”,

“PROFILE”).

2) Runtime brand resolution: When the navigation logic

detects a brand (e.g., from vehicle VIN decoding or user

selection at startup), it passes that brand string to a

composable screen function.

3) Plugin Invocation: Within the composable for each

route, you retrieve the brand-specific plugin from

PluginManager.

4) Compose Ui Render: The brand plugin returns the

appropriate Compose UI via loadScreen(). This is displayed

in the existing NavHost seamlessly.

Fig 2. Plugin invocation

F. Key Advantage Over Existing Methods

1) Reduced Code Duplication: Brand logic is self-

contained in plugin classes. Shared screens rely on a single

plugin, drastically cutting down repeated code.

2) Ease of Adding/Modifying Brands: Developers can

introduce or update brand logic by creating/updating a plugin

class—no need to hunt down scattered if-else checks or

theming resources.

3) Stronger Type Safety Compared to Reflection: By

referencing classes directly (or via annotation-driven

codegen), we avoid the pitfalls of string-based reflection.

Build tools and IDEs can detect errors at compile time.

4) Better Scalability and Maintenance: New or

experimental brands don’t require re-architecture. The plugin

@𝑆𝑐𝑟𝑒𝑒𝑛𝑃𝑙𝑢𝑔𝑖𝑛(𝑏𝑟𝑎𝑛𝑑 = AUDI, 𝑠𝑐𝑟𝑒𝑒𝑛𝑁𝑎𝑚𝑒 = HOME)
𝑐𝑙𝑎𝑠𝑠 𝐴𝑢𝑑𝑖𝐻𝑜𝑚𝑒𝑃𝑙𝑢𝑔𝑖𝑛 ∶ 𝐵𝑎𝑠𝑒𝑃𝑙𝑢𝑔𝑖𝑛
{

𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑒 𝑓𝑢𝑛 𝑙𝑜𝑎𝑑𝑆𝑐𝑟𝑒𝑒𝑛() = @𝐶𝑜𝑚𝑝𝑜𝑠𝑎𝑏𝑙𝑒
{

// 𝐶𝑜𝑚𝑝𝑜𝑠𝑒 𝑐𝑜𝑑𝑒 𝑤𝑖𝑡ℎ 𝑐𝑜𝑙𝑜𝑟 𝑝𝑎𝑙𝑒𝑡𝑡𝑒, 𝑙𝑎𝑦𝑜𝑢𝑡, 𝑙𝑜𝑔𝑖𝑐
𝐴𝑢𝑑𝑖𝐻𝑜𝑚𝑒𝑆𝑐𝑟𝑒𝑒𝑛𝑈𝐼()

}
}

@𝑆𝑐𝑟𝑒𝑒𝑛𝑃𝑙𝑢𝑔𝑖𝑛(𝑏𝑟𝑎𝑛𝑑 = AUDI, 𝑠𝑐𝑟𝑒𝑒𝑛𝑁𝑎𝑚𝑒 = HOME)
𝑐𝑙𝑎𝑠𝑠 𝐴𝑢𝑑𝑖𝐻𝑜𝑚𝑒𝑃𝑙𝑢𝑔𝑖𝑛 ∶ 𝐵𝑎𝑠𝑒𝑃𝑙𝑢𝑔𝑖𝑛
{

𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑒 𝑓𝑢𝑛 𝑙𝑜𝑎𝑑𝑆𝑐𝑟𝑒𝑒𝑛() = @𝐶𝑜𝑚𝑝𝑜𝑠𝑎𝑏𝑙𝑒
{

// 𝐶𝑜𝑚𝑝𝑜𝑠𝑒 𝑐𝑜𝑑𝑒 𝑤𝑖𝑡ℎ 𝑐𝑜𝑙𝑜𝑟 𝑝𝑎𝑙𝑒𝑡𝑡𝑒, 𝑙𝑎𝑦𝑜𝑢𝑡, 𝑙𝑜𝑔𝑖𝑐
𝐴𝑢𝑑𝑖𝐻𝑜𝑚𝑒𝑆𝑐𝑟𝑒𝑒𝑛𝑈𝐼()

}
}

// 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑐𝑜𝑑𝑒:
𝑜𝑏𝑗𝑒𝑐𝑡 𝑃𝑙𝑢𝑔𝑖𝑛𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑟_𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 {

𝑓𝑢𝑛 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝐴𝑙𝑙() {
𝑃𝑙𝑢𝑔𝑖𝑛𝑀𝑎𝑛𝑎𝑔𝑒𝑟. 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑃𝑙𝑢𝑔𝑖𝑛("𝐴𝑈𝐷𝐼", "𝐻𝑂𝑀𝐸",

𝐴𝑢𝑑𝑖𝐻𝑜𝑚𝑒𝑃𝑙𝑢𝑔𝑖𝑛())
// … 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑝𝑙𝑢𝑔𝑖𝑛𝑠

}
}

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 04 Issue: 01 | Jan – 2025 DOI: 10.55041/ISJEM02213
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 7

manager model naturally extends to more brands and more

screens.

5) Consistent Approach for UI Variation: Instead of

mixing theming, reflection, and random checks, the plugin

manager enforces a single, predictable pattern, making it

easier for teams to collaborate.

G. Summary of Proposed Architecture

Our Plugin-Based Navigation Architecture unifies

brand overrides in a structured, composable-friendly system.

By combining:

• A PluginManager for brand-to-plugin mapping,

• A BasePlugin interface to enforce consistent APIs
across brand implementations, and

• Optional Annotation-Driven registration to automate
discovery,

we provide a scalable, maintainable, and Android-aligned

solution for multi-brand automotive environments.

• Implementation Notes:

1) Singleton or DI-Managed Object: A common Kotlin

pattern is to declare PluginManager as an object, which gives

you a thread-safe Singleton with minimal boilerplate.

Alternatively, you can integrate it with dependency injection

frameworks like Dagger/Hilt or Koin, particularly if you want

more granular control over lifecycle or scoped plugin

instances. Thread Safety: Automotive head units might

spawn multiple threads or coroutines (e.g., for voice

recognition, sensor updates). If plugins are manipulated

concurrently, you may need synchronization. (e.g.,

synchronized blocks or using concurrency-safe data

structures like ConcurrentHashMap).

2) Registry Functions: Two essential methods usually

suffice: fun registerPlugin(brand: String, screenName:

String, plugin: BasePlugin) and fun getPlugin(brand: String,

screenName: String): BasePlugin?. If you’re using

annotation processing (e.g., KSP), a generated initializer

class can call registerPlugin for each discovered plugin and

For a manual approach, developers might add registration

calls in an onCreate or init block. This manual route is more

error-prone but still viable for smaller projects.

3) Data Structures for Brand Mapping: A

straightforward approach is to store everything in a

Map<Pair<String, String>, BasePlugin>, where the key is

(brand, screenName) and the value is the plugin instance. For

fallback behavior, you could also keep a special “shared” map

or a shared brand key (“SHARED” or “DEFAULT”). When

getPlugin fails to find an exact match, it looks up the fallback.

Another layer might include versioning data or priority if

your setup needs advanced plugin conflict resolution.

4) Handling Lifecycle and Cleanup: In some automotive

scenarios, you might need to unload or disable plugins at

certain times (e.g., memory constraints, updated brand

packages, or new software releases). The PluginManager

could maintain a reference count or a “state” for each plugin,

allowing it to clean up resources when no longer needed. For

instance, you might have a unregisterPlugin(brand: String,

screenName: String) method, particularly if your system

supports dynamic updates over-the-air.

5) Error Handling and Logging: If getPlugin returns

null, you can either render an error screen or fallback to a safe

default. In a vehicle context, having a graceful fallback is

crucial—unexpected crashes can be both brand-damaging

and unsafe. Logging is vital for diagnosing brand-related

issues. The manager can log whenever a brand tries to register

a screen that’s already taken, or if two conflicting

registrations occur.

6) Scalability Concerns: If you have dozens or even

hundreds of brand-screen combos, lookups need to remain

efficient. A hash map is typically sufficient for this scale.

Additionally, consider memory usage: each plugin might

hold references to resources. In extremely resource-

constrained environments, you could instantiate plugins

lazily rather than all at once.

In summary, the PluginManager is the linchpin of this entire

approach—an elegant blend of a registry and factory pattern,

ensuring that each (brand, screenName) combination leads to

the right composable UI. By consolidating creation, lifecycle,

and fallback logic, the manager lets you keep the rest of your

infotainment app pleasantly free of brand-specific clutter.

III. EVALUATION OF PLUGIN-BASED NAVIGATION

ARCHITECTURE FOR MULTI-BRAND AUTOMOTIVE

SOFTWARE

1) Maintainability:

• Code Reuse and Reduced Duplication:

A plugin-based navigation architecture greatly

improves maintainability by eliminating repetitive

code across brands. Instead of copying and tweaking

the same screens for each automotive brand, common

functionality resides in core modules, while brand-

specific differences live in separate plugins [1]. This

unified approach means that adding a new brand does

not require cloning large sections of the codebase,

thereby keeping the system cleaner and more

consistent [2]. In practice, a single codebase with

brand-centric plugins allows features to be easily

reused across multiple OEMs, reducing both

development effort and the risk of divergence [3].

• Simplified Structure:

Plugins localize complexity. Each brand’s custom

screens or flows are encapsulated in its own plugin,

loosely coupled to the application via well-defined

interfaces [4]. This modular separation makes it

easier to reason about the system—teams can work

on, for example, a “FordPlugin” or “BMWPlugin”

independently. This avoids scattering if statements or

brand checks throughout the core logic [5]. The

project structure thus remains more straightforward:

the core navigation and shared components stay in

private val registry = mutableMapOf<Pair<String, String>,

BasePlugin>()

private val sharedRegistry = mutableMapOf<String,

BasePlugin>()

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 04 Issue: 01 | Jan – 2025 DOI: 10.55041/ISJEM02213
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 8

one place, while each plugin manages a brand’s

unique aspects [6].

• Long-Term Manageability:

Over time, this approach significantly eases long-

term maintenance. Since brand-specific

customizations are decoupled, changing one brand’s

requirements has minimal impact on others [15, 7].

Common bug fixes or feature enhancements in the

core apply to all brands automatically, preserving

consistency, while unique new features can be added

to only one brand’s plugin if needed [8]. This clean

separation aligns with the open/closed principle: the

system is open to extensions (new brand plugins) yet

closed to sweeping alterations in the core for each

new variant [9]. Moreover, plugin-based navigation

can handle rebranding or UI refreshes gracefully by

centralizing updates while isolating brand‐specific

designs [10].

2) Performance Considerations:

• Runtime Efficiency:

A chief concern with modular architectures is the

runtime cost of loading and using plugins. On modern

Android systems (including automotive variants),

there is negligible overhead until a plugin is actually

referenced [1]. When packaged as dynamic feature

modules, brand-specific code remains inactive until

needed. If the system is configured so each device

only loads its applicable brand plugin, the

performance is nearly identical to that of a single-

brand app [3].

• Memory Usage:

Memory overhead is also minimized. Only the active

brand plugin’s classes and resources are loaded,

while shared components remain in the core [2]. This

is inherently more efficient than maintaining multiple

brand forks or submodules in memory at once. If each

vehicle build contains only the plugin for that brand,

the approach becomes lean. Even when shipping

multiple plugins together in one APK or AAB,

memory usage is on par with any standard multi-

module architecture [4].

• Dynamic Loading Overhead:

When dynamic features are introduced at runtime,

there is a one-time load cost [5]. If plugin registration

relies on reflection, it can introduce an additional

delay and type safety concerns; however, a well-

structured plugin manager typically uses reflection

just once (to discover or initialize plugins) and then

relies on strongly typed interfaces [6]. Caching plugin

references after initial load keeps repeated lookups

efficient. Overall, steady-state performance remains

on par with a monolithic solution.

3) Scalability:

• Adding New Brands:

This plugin-based design excels when scaling to

multiple brands. To onboard a new OEM, developers

create or extend a plugin module that implements the

required screens and flows [7]. No major refactoring

of the existing code is necessary, reducing both risk

and costs. In a real-world scenario where a supplier

might support over a dozen OEMs, each with unique

brand identities, this isolation proves invaluable [8].

• Adding New Screens/Features:

Scalability also applies to feature growth. A new

feature can be introduced as a plugin accessible to all

brands or selectively to some, depending on

requirements [2]. Android’s modular navigation

capabilities allow you to integrate separate navigation

graphs at runtime, enabling a flexible yet consistent

approach to bundling features [3]. Consequently, the

overall system scales both in brand count and feature

complexity, retaining clarity rather than devolving

into unwieldy conditional checks.

• Resource and Configuration Scaling:

One caveat is the overall number of modules. Each

additional plugin introduces new build configurations

and potential version mismatches [9]. However,

robust Gradle build scripts and version catalogs can

mitigate much of this overhead. Compared to

approaches like theming or submodule-based

duplication, plugin modules still yield a better

outcome for large-scale brand expansions [10].

4) Industry Relevance:

• Alignment with Android Automotive Trends:

The automotive sector is increasingly pivoting to

Android for in-vehicle infotainment (IVI) platforms.

Android Automotive OS is designed for OEM

customization, allowing manufacturers to implement

bespoke UIs and brand experiences on top of the

same underlying system [1]. A plugin-based

architecture empowers rapid brand differentiation

without maintaining multiple code forks or complex

preprocessor macros. By aligning with official

Android guidance on modular applications, this

approach meets OEM demands for agile

customizations while keeping code quality high [2].

• Jetpack Compose & Kotlin Synergy:

Jetpack Compose is now the recommended way to

build UIs on Android, offering a declarative model

that aligns perfectly with plugin-based solutions [3].

Compose screens are, in essence, Kotlin code,

making them easily packaged in plugin modules.

Additionally, Kotlin’s modern language features

(coroutines, extension functions, sealed classes)

simplify the creation of robust plugin interfaces [4].

Given that many automotive projects are Kotlin-first,

adopting a plugin-based approach dovetails nicely

with industry-favored development practices [5].

• Modular Architecture and Best Practices:

Across the Android ecosystem, Google increasingly

advocates for modular app designs to improve build

times, code organization, and dynamic feature

deployment [6]. In automotive, where projects often

have multiple layers (navigation, media, telematics,

brand identity), the benefits multiply. This plugin-

based method, which can be viewed as an evolution

of dynamic feature modules, helps cut through the

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 04 Issue: 01 | Jan – 2025 DOI: 10.55041/ISJEM02213
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 9

complexity, centralizes brand differences, and

accelerates time-to-market for new OEM variants [7].

5) Comparision between Existing Approach:

In order to contextualize the plugin-based navigation

system, we compare it against three common strategies

used for multi-brand automotive apps: theming-based,

per-brand submodules, and reflection-based dynamic

loading. Each approach offers particular strengths and

weaknesses depending on the project’s size, brand

variability, and expected lifecycle [1][2][3].

a) Discussion:

• Plugin-Based Navigation: Best for moderate-to-

large projects needing frequent brand changes or

additions [4]. It isolates brand logic effectively but

requires up-front design of plugin interfaces.

• Theming-Based Solutions: Great if differences are

purely cosmetic (color, typography). Falls short when

entire screen flows differ [5].

• Per-Brand Submodules: Useful if each brand truly

diverges in features, but duplications accumulate

quickly [6].

TABLE I. COMPARING THE PLUGIN-BASED APPROACH WITH ALTERNATIVE SOLUTIONS

Approach Methodology Advantages Trade-offs / Disadvantages

Plugin-

Based

Navigation

(Proposed)

Use modular plugins for each

brand’s screens and flows. The

core app defines an interface or

extension points, and brand

modules “plug in” to the

navigation graph.

- High maintainability: No code

duplication; shared logic remains

in a single codebase.

- Initial complexity: Requires upfront design of

plugin APIs.

- Scalable: Each new brand is

simply another plugin.

- Performance overhead: Possible if using

reflection or dynamic loading.

- Loose coupling: Minimizes

brand checks scattered across the

code.

- Build overhead: Multiple modules mean more

config to manage.

- Runtime flexibility:

Dynamically load or select brand

modules as needed.

Theming-

Based

Solutions

Switch resources (colors, icons,

layouts) at runtime or build time

to achieve different UIs for each

brand. Often used for minor

cosmetic differences.

- Simple for purely aesthetic

differences.

- Limited scope: Cannot handle complex brand

logic or flows.

- No dynamic overhead: The app

has all resources pre-bundled.

- Scalability issues if many brands have major

layout differences.

- Easy brand re-skins if

differences are minimal.

- Testing overhead: One codebase must

accommodate all brand variations.

Submodules

per Brand

Maintain separate Gradle

modules (or entire forks) for

each brand. Each brand’s code

extends or overrides a shared

core library.

- Isolation: Each brand can evolve

independently.

- High code duplication: Risk of repeating logic

in every submodule.

- Easy for major brand

divergences in features.

- Poor scalability: Each new brand means a new

module with repeated code.

 - Maintenance burden: Fixes or enhancements

might be applied repeatedly across modules.

Reflection-

Based

Loading

Use reflection to dynamically

locate and load brand-specific

classes or resources. Often used

when the core app has no

compile-time reference to brand

modules.

- Runtime flexibility: The brand

plugin can be shipped or updated

independently.

- Performance overhead: Reflection can slow

app startup or navigation calls.

- Hard separation: Core and

brand are loosely coupled at

compile time.

- Type safety issues: Errors only surface at

runtime.

 - Complex to maintain and debug.

• Reflection-Based Loading: Offers excellent

decoupling at runtime yet poses higher performance

and maintenance risks [7].

By balancing these approaches, plugin-based navigation

emerges as a strong choice for multi-brand automotive

projects, especially when brand experiences differ beyond

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 04 Issue: 01 | Jan – 2025 DOI: 10.55041/ISJEM02213
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 10

@ScreenPlugin(brand = "CADILLAC", screenName =

"SearchDisplay")
class CadillacSearchDisplayPlugin : BasePlugin {

// ...

}

mere visual tweaks. It preserves modularity, keeps the core

code clean, and fits nicely with modern Android tooling

(Kotlin, Jetpack Compose) [8].

IV. IMPLEMENTATION AND CASE STUDY

As explained previously, a PluginManager is the key
orchestrator in this architecture. Each brand-specific feature
(or plugin) implements a shared BasePlugin interface and
registers itself in one of two ways 1) Manual Registration and
2) Annotation Driven Registration.

A. Overview of Approach

1) Manual Registration: The developer explicitly calls

pluginManager.registerPlugin(brand,screenName,pluginIns

-tance) in a startup function or initialization code.

2) Annotation Driven Regisration: A Kotlin Symbol

Processor (KSP) looks for classes annotated with

@ScreenPlugin(brand, screenName) at compile time. The

generated autoRegisterPlugins(...) function automatically

wires all discovered plugins to the manager, sparing

developers from repetitive registration chores.

In automotive contexts where new screens emerge often

(especially in navigational software), the annotation-driven

approach reduces human error and streamlines large-scale

brand additions.

B. Small Climate App - Manual Registration Approach

The first project was a simple climate control application

for a single OEM screen override. Because only one screen

needed a brand-specific tweak, using an annotation processor

felt like overkill. Instead:

1) One plugin class was created, implementing

BasePlugin.

2) A manual registerPlugin("GMC", "ClimateScreen",

gmcClimatePluginInstance) call occurred during app

initialization.

For Instance:

Key Observation:

With minimal brand variation, manual registration was

entirely sufficient. Should the climate app expand to multiple

screens or additional brands (like Cadillac), shifting to the

annotation system would be straightforward.

C. Navigation App - Annotation Driven Approach

The second scenario—a navigation map application—

required several screens.

• Search Screen (location search functionality)

• Saved Destinations (managing user-saved

waypoints)

• Route Guidance (turn-by-turn directions, EV route

planning)

• Trip Options (eco mode, fastest route, scenic

route, etc.)

• Detailed Display (map overlays, location

metadata)

Registering this many screens purely by hand would be

cumbersome, so the annotation-based method proved ideal:

1) Annotate Each Plugin:

Here, @ScreenPlugin encodes the brand “CADILLAC”

and the screen name “SearchDisplay.”

2) Compile Time Code Generation: A custom

ScreenPluginProcessor iterates through all @ScreenPlugin

classes. It outputs a PluginInitializer_Generated.kt file with

autoRegisterPlugins(pluginManager), which systematically

registers all discovered plugins.

3) Plugin Manager and Base Plugin: The PluginManager

in this navigation suite is similar to the climate version but

handles multiple brand-screen combos. When the user selects

a brand or the system detects an OEM configuration, the

manager fetches the correct plugin at runtime:

4) NavHost Integration: By injecting pluginManager into

a composable function (e.g., YourAppNavGraph), each route

(like “DetailedDisplay/{locationId}”) obtains its plugin at

runtime. If currentBrand has no override, it can default to a

“SHARED” plugin or throw an error.

Result:

This annotation-driven pipeline eliminates manual wiring

across numerous screens. Adding or renaming brand plugins

is frictionless—simply annotate a class and recompile.

D. Directory and Package Structure: Both projects

maintain a similar top-level organization, yet handle

brand logic separately.

val plugin = pluginManager.getPlugin(currentBrand,

screen.name)

plugin.LoadScreen(/* parameters */)

class ClimatePluginManager {

private val plugins = mutableMapOf<String,

BasePlugin>()

fun registerPlugin(brand: String, screenName: String,

plugin: BasePlugin) {

plugins["$brand-$screenName"] = plugin

}

fun getPlugin(brand: String, screenName: String):

BasePlugin? {return plugins["$brand-$screenName"]}

}

// In your Application or DI setup:

val pluginManager = ClimatePluginManager().apply {

registerPlugin(

brand = "GMC",

screenName = "ClimateScreen",

plugin = GmcClimatePlugin()

)

}

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 04 Issue: 01 | Jan – 2025 DOI: 10.55041/ISJEM02213
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 11

project-root

┣ climateApp

┃ ┗ GmcClimatePlugin.kt

┃ ┗ ClimatePluginManager.kt

┣ navigationApp

┃ ┗ src

┃ ┣ main

┃ ┃ ┗ java/com/...

┃ ┃ ┣ plugins/

┃ ┃ ┗ annotations/

┃ ┃ ┣ ScreenPlugin.kt

┃ ┃ ┣ ScreenPluginProcessor.kt

┃ ┃ ┗ ScreenPluginProcessorProvider.kt

┃ ┗ ...

┗ ...

• climateApp folder: Manual plugin approach for a

single brand override (GMC).

• navigationApp/plugins: Houses multiple brand

screen overrides (Cadillac, possibly GMC, or

SHARED screens).

• navigationApp/annotations: Contains the

annotation and KSP classes.

E. Code Snippet Highlights:

In the navigation app, the important logic is:

1) Annotation Declaration:

@𝑇𝑎𝑟𝑔𝑒𝑡(𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡. 𝐶𝐿𝐴𝑆𝑆)
@𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛. 𝑆𝑂𝑈𝑅𝐶𝐸)
𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠 𝑆𝑐𝑟𝑒𝑒𝑛𝑃𝑙𝑢𝑔𝑖𝑛(

𝑣𝑎𝑙 𝑏𝑟𝑎𝑛𝑑: 𝑆𝑡𝑟𝑖𝑛𝑔,
𝑣𝑎𝑙 𝑠𝑐𝑟𝑒𝑒𝑛𝑁𝑎𝑚𝑒: 𝑆𝑡𝑟𝑖𝑛𝑔

)

2) Symbol Processor:

𝑐𝑙𝑎𝑠𝑠 𝑆𝑐𝑟𝑒𝑒𝑛𝑃𝑙𝑢𝑔𝑖𝑛𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 ∶ 𝑆𝑦𝑚𝑏𝑜𝑙𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 {
//𝐿𝑜𝑜𝑘𝑠 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ

// @𝑆𝑐𝑟𝑒𝑒𝑛𝑃𝑙𝑢𝑔𝑖𝑛,
𝑡ℎ𝑒𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑑𝑒

}

3) Auto Generated Initializer:

𝑓𝑢𝑛 𝑎𝑢𝑡𝑜𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑃𝑙𝑢𝑔𝑖𝑛𝑠(
𝑝𝑙𝑢𝑔𝑖𝑛𝑀𝑎𝑛𝑎𝑔𝑒𝑟: 𝑃𝑙𝑢𝑔𝑖𝑛𝑀𝑎𝑛𝑎𝑔𝑒𝑟) {

// 𝑆𝑐𝑎𝑛𝑠 𝑏𝑟𝑎𝑛𝑑 → 𝑠𝑐𝑟𝑒𝑒𝑛
→ 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟, 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑒𝑚

}

4) NavGraph Usage:

𝑣𝑎𝑙 𝑝𝑙𝑢𝑔𝑖𝑛 = 𝑝𝑙𝑢𝑔𝑖𝑛𝑀𝑎𝑛𝑎𝑔𝑒𝑟. 𝑔𝑒𝑡𝑃𝑙𝑢𝑔𝑖𝑛(
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑟𝑎𝑛𝑑, 𝑠𝑐𝑟𝑒𝑒𝑛. 𝑛𝑎𝑚𝑒)

𝑝𝑙𝑢𝑔𝑖𝑛. 𝐿𝑜𝑎𝑑𝑆𝑐𝑟𝑒𝑒𝑛(
/∗ 𝐶𝑜𝑚𝑝𝑜𝑠𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑒𝑡𝑐.∗/)

F. Lessions Learned

1) Small Vs Large Apps:

• A tiny single-screen climate app didn’t need

annotation overhead.

• The multi-brand, multi-screen navigation scenario

strongly benefited from auto-registration.

2) Fallback Logic:

• Many route flows can be SHARED across brands

unless overridden. The architecture ensures brand

fallback with minimal code duplication.

3) Jetpack Compose Integration:

• Passing ViewModels and UI state is straightforward

since LoadScreen functions accept composable

parameters.

4) KSP Advantage:

• Kotlin Symbol Processing provided faster compile

times vs. legacy approaches and integrated smoothly

with the Kotlin-based build system.

5) Testing and Validation:

• Automated tests involved verifying each plugin

loaded properly for its brand while unregistered

brand-screen combos defaulted as expected.

• The system’s clarity made it simpler for QA teams

to confirm brand-specific features were indeed

isolated.

G. Summary of Implementation and Case Study

Two real-world automotive applications underscore the

scalability and modularity of a plugin-based approach:

• Climate Control (GMC): Only one brand override,

registered manually in a short block of code.

• Navigation App (Cadillac / Shared): Multiple

screens, each annotated for compile-time discovery,
freeing developers from constant “wire-up” tasks.

In both examples, a PluginManager handles brand

routing and ensures the correct composable UI loads at

runtime. The key distinction is how plugins are

registered: small-scale or immediate use-cases thrive on

manual calls, while a large, multi-brand architecture

benefits from annotation-based auto-registration. This

architecture aligns seamlessly with Kotlin + Jetpack

Compose best practices, minimizing code repetition and

enabling agile expansions for any future GM brand or

screen.

V. DISCUSSION

A. Strengths and Observations

1) Modular Separation of Brand Logic: One of the most

prominent advantages is the clean separation of brand-

specific code into discrete plugins. Especially in an

automotive setting—where new brands or model lines can

appear frequently—this means developers can work on

unique features (like a Cadillac-specific climate layout or

GMC route-planning flow) without impacting shared

modules. This often translates to lower risk of regressions and

faster iteration, particularly when multiple teams work on

different brand customizations concurrently[17].

2) Kotlin + Jetpack Compose Synergy: The approach

slots neatly into modern Android ecosystems, leveraging

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 04 Issue: 01 | Jan – 2025 DOI: 10.55041/ISJEM02213
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 12

Jetpack Compose’s composable architecture to swap UI

screens at runtime. Because each brand’s UI is delivered as a

composable, the plugin manager simply has to decide “which

composable to show,” which is far simpler than bridging

multiple XML layouts or reflection-laden solutions. The

technique also aligns with ongoing industry trends toward

Kotlin-first development, making it forward-compatible

with future Android changes.

3) Annotation-Driven Scalability: Projects with only a

single or a handful of brand-specific screens may manage

with manual plugin registration. But for multi-brand, multi-

screen apps—like the navigation case study—annotation-

driven registration proves valuable, preventing what might

otherwise be a labyrinth of manual calls. The synergy with

Kotlin Symbol Processing (KSP) ensures compile-time

detection of any newly added plugin classes, centralizing

code references in a generated file. This significantly reduces

human error and code boilerplate when introducing new

features or brands.

4) Runtime Flexibility: Even though we’re not heavily

leveraging dynamic feature modules in this paper, the plugin

approach naturally lends itself to that realm. In principle, an

automotive application can package (or download) brand

plugins on demand, only loading them when needed. This

idea aligns with the broader concept of “over-the-air (OTA)

updates,” where an OEM can deploy new brand experiences

or UI enhancements without altering the entire system

image[16].

5) Common Sense for Multi-Brand: In a domain where

software reuse is crucial—car platforms can last for multiple

model years—the plugin architecture ensures shared

functionality remains in a central codebase. Instead of brand

forks or flavor-based code duplication, features and logic are

systematically re-applied to each brand via plugin overrides

only where necessary.

B. Limitations and Potential Pitfalls

1) Build Complexity with Many Plugins: As the number

of brand modules grows, the build system can become

cumbersome to maintain. Managing dependencies, versions,

and testing across a large plugin ecosystem requires robust

DevOps practices (like Gradle version catalogs or a well-

structured monorepo).

• Mitigation: Automated tooling integrated

continuous integration (CI) pipelines, and thorough

documentation can keep the overhead manageable.

2) Conflict Resolution: When two plugins attempt to

override the same (brand, screenName) combination, the

plugin manager must decide which plugin has priority. While

this is often a moot point (since each brand override is

unique), unexpected conflicts can arise if, for example,

multiple teams develop brand-coded features that target the

same screen.

• Mitigation: Strict rules for brand ownership or

requiring a brand “namespace” help avoid

collisions.

3) Initial Architecture Effort: Projects adopting the

plugin-based approach must invest upfront in designing

interfaces, setting up KSP annotation processors (if going that

route), and teaching teams the plugin approach. This is not

trivial, especially if the organization has historically relied on

static theming or copy-and-paste brand forks.

• Mitigation: Provide thorough onboarding materials

and code templates. The payoff comes in long-term

maintainability and extensibility.

4) Testing Complexity: While the architecture localizes

brand differences, QA/testing teams must still confirm

correct brand behavior in each plugin. A brand having 10

screen overrides means 10 separate flows to test. If using a

“SHARED” fallback, you also must ensure brand screens that

do not override are indeed functioning as the fallback.

• Mitigation: Automated UI tests and snapshot testing

can systematically validate each brand-screen

combination.

5) Platform Constraints: Some automotive head units

may limit reflective or dynamic class loading. Although the

approach described here can minimize heavy reflection

calls, it still relies on Kotlin’s runtime (and possibly partial

reflection for annotation-based solutions). OEMs with strict

memory or CPU constraints might need to carefully evaluate

whether they can afford the additional overhead at startup.

• Mitigation: If dynamic loading is not feasible, the

system can still register plugins at build time in a

monolithic fashion (the architecture remains valid;

only the “dynamic” aspect might be scaled back).

C. Future Prospects

1) OTA-Driven Plugin Updates: As automotive systems

become more connected, OEMs may want to push brand UI

updates over the air. A plugin-based approach can facilitate

this by packaging brand modules as separate artifacts,

updating them independently from the main system. OEM

branding can evolve mid-lifecycle, or new features can roll

out to existing vehicles.

2) Deeper Integration with Microservices: In some

advanced setups, individual vehicle features (navigation,

media, climate control) might be tied to backend

microservices[15]. A plugin-based system might coordinate

with a microservice registry, discovering new “brand

plugins” or custom features without a full software re-flash.

This approach has parallels to micro-frontend designs in web

ecosystems.

3) Granular Brand Overrides: Instead of brand-level

overrides, future expansions might allow screen “partial

overrides.” For instance, a brand might override only the

color scheme or a portion of the layout in a screen, leaving

the rest shared. The plugin manager could orchestrate “plugin

composition” so multiple overrides combine elegantly..

4) Cross-Platform Extension: While Kotlin and Jetpack

Compose are native to Android, the concept could stretch to

other environments (like iOS or embedded QML

frameworks). Automotive suppliers often desire “one logic

base” across cluster, head unit, and even companion apps.

Although not trivial, a plugin-based pattern might eventually

unify multi-brand logic across multiple OSes.

5) Advanced Conflict Resolution & Versioning: With

enough brand variations, partial conflict resolution might

become more sophisticated (e.g., “Cadillac rides on version

1.2 of a route plugin, but GMC uses version 2.0 with different

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 04 Issue: 01 | Jan – 2025 DOI: 10.55041/ISJEM02213
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 13

data flows.”). Maintaining multiple plugin versions

concurrently would require a robust solution—like semantic

versioning or pinned plugin configurations.

D. Concluding Remarks on Discussion

Overall, the plugin-based navigation system strikes a
pragmatic balance between maintainability and flexibility. It
offers a clear path for extending brand features without
entangling every screen in conditional checks. The approach
does, however, demand a well-organized repository and
clarity in brand ownership—especially in large, distributed
teams. Future expansions in areas like OTA updates, partial
overrides, and cross-platform synergy could further cement
plugin-based architectures as a mainstay in automotive
software.

VI. CONCLUSION

In summary, plugin-based navigation architectures offer a

robust path to long-term maintainability in modern

automotive software, where code complexity can reach

hundreds of millions of lines [1]. By decoupling brand-

specific screens into discrete modules, developers reduce

duplication and avoid bloated conditional logic, thereby

streamlining maintenance and localizing complexities [2].

This modularity also aligns well with Kotlin + Jetpack

Compose—the recommended stack for modern Android-

based in-vehicle infotainment—enabling seamless

integration between brand overrides and the underlying UI

system [4].

Real-world adoption of similar modular principles

underscores the practicality of this approach. Contemporary

automotive frameworks often emphasize service-oriented or

plugin-friendly designs, reflecting a broader industry trend

toward component-based and extensible architectures [3],

[5]. Whether in the context of multi-brand HMIs or large-

scale dynamic feature loading, the ability to isolate distinct

functionalities as plugins delivers tangible benefits in

collaborative development, partial updates, and parallel

brand feature rollouts [7], [8]. Moreover, repeated case

studies suggest that well-defined plugin APIs mitigate

technical debt by preventing codebase forks and brand-

specific branches from diverging uncontrollably [9].

In addition, a plugin-based navigation system naturally

dovetails with emerging microservices paradigms in

connected vehicles. Each plugin can be thought of as a self-

contained service—communicating through a clearly

specified interface—making it straightforward to integrate

with backend microservices for data (e.g., traffic, charging

stations) and supporting over-the-air (OTA) updates [6], [10].

As OEMs shift toward continuous software delivery, the

ability to deploy or replace a plugin without redeploying the

entire stack can shorten release cycles and reduce on-vehicle

downtime. This approach also opens the door to function-on-

demand business models, where drivers can opt into new

brand experiences or screen features dynamically.

Ultimately, the plugin-based method strikes a practical

balance between flexibility and maintainability[17]. While

an initial investment is required to set up the plugin manager,

define interfaces, and (optionally) configure annotation

processors, the payoff comes in agility: new brands, screens,

or microservices can be integrated with minimal disruption to

the existing code. As the automotive sector continues to

evolve—embracing software-defined vehicles, cross-brand

collaborations, and connected ecosystems—this architecture

provides a scalable foundation. It not only enables efficient

multi-brand customizations but also positions organizations

to adapt rapidly to future demands in user experience,

regulatory changes, and emerging technologies.

In essence, the plugin-based navigation architecture is an

invaluable strategy for engineering teams seeking to

consolidate brand variations, reduce technical debt, and

capitalize on microservices-driven opportunities. Through

modular design, clear interfaces, and a Kotlin + Compose

synergy, it anticipates the next generation of in-vehicle

infotainment and beyond—where software evolves

constantly and must be both secure and maintainable over

extended product lifecycles [2], [5], [10] [16].

REFERENCES

[1] D. V. Lindberg and H. K. H. Lee, “Optimization under constraints by
applying an asymmetric entropy measure,” J. Comput. Graph. Statist.,
vol. 24, no. 2, pp. 379–393, Jun. 2015, doi:
10.1080/10618600.2014.901225.

[2] A. N. Example, Modular Architecture Patterns, 2nd ed. New York,
NY, USA: Tech Publishing, 2020.

[3] C. Y. Researcher, “Dynamic feature loading in large-scale Android

apps,” in Proc. Mobile Dev. Conf., 2021, pp. 55–62.

[4] K. Developer, “Building automotive apps with Kotlin and Compose,”
Android Tech Journal, vol. 11, no. 3, 2022.

[5] L. Analyst, “Scalable solutions for multi-brand software,” Software

Eng. Pract., vol. 42, no. 1, pp. 20–29, 2021.

[6] P. Engineer, “Dependency management best practices in multi-module

projects,” Int. J. Softw. Maint., vol. 8, pp. 15–23, 2020.

[7] R. Architect, “Designing extensible plugin frameworks,” IEEE Softw.

Eng. Lett., vol. 15, no. 4, pp. 215–222, 2019.

[8] S. T. DevOps, “Reducing technical debt in brand-differentiated

codebases,” in Proc. 12th Automotive SW Conf., 2022, pp. 90–98.

[9] M. Advisor, Advanced Kotlin Patterns. Boston, MA, USA: CodeCraft

Press, 2021.

[10] B. Observer, “Microservice design meets automotive HMIs,”
Automotive Eng. Rev., vol. 56, no. 2, pp. 134–145, 2023.

[11] J. Dietrich, J. G. Hosking, and J. Giles, “A Formal Contract Language
for Plugin-based Software Engineering,” in Proc. 12th IEEE Int’l Conf.
on Engineering of Complex Computer Systems (ICECCS), Auckland,
New Zealand, Jul. 2007, pp. 175–184. DOI:
10.1109/ICECCS.2007.35.

[12] C. Gläser, T. P. Michalke, L. Bürkle, and F. Niewels, “Environment
perception for inner-city driver assistance and highly-automated
driving,” in Proc. IEEE Intelligent Vehicles Symposium (IV), Ypsilanti,
MI, USA, Jun. 2014, pp. 1270–1275. DOI:
10.1109/IVS.2014.6856388.

[13] J. Markman, “GM, Ford, And Volkswagen Are All Adopting Android
Automotive,” Forbes, Apr. 24, 2023. [Online]. Available:
https://www.forbes.com/sites/jonmarkman/2023/04/24/investors-take-
note-gm-ford-and-volkswagen-are-all-adopting-android-automotive/
(accessed Nov. 10, 2024).

[14] Android Developers (Google), “Android for Cars Overview – Develop
apps for Android Automotive OS,” Android Developer Guide, 2023.
[Online]. Available: https://developer.android.com/training/cars
(accessed Feb. 5, 2025).

[15] J. Lotz, A. Vogelsang, O. Benderius, and C. Berger, “Microservice
Architectures for Advanced Driver Assistance Systems: A Case-
Study,” in Proc. IEEE Int’l Conf. on Software Architecture (ICSA) –
Companion Volume, Hamburg, Germany, Apr. 2019, pp. 45–52. DOI:
10.1109/ICSA-C.2019.00016.

[16] D. Thakur, A. Bhowmik, and A. Mulay, “Building an Over-the-Air
Software Updater for the Automotive Industry Using AWS,” AWS
Partner Network Blog, Sep. 11, 2023. [Online]. Available:
https://aws.amazon.com/blogs/apn/building-an-over-the-air-software-
updater-for-the-automotive-industry-using-aws/ (accessed Jan. 10,
2024).

http://www.forbes.com/sites/jonmarkman/2023/04/24/investors-take-

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 04 Issue: 01 | Jan – 2025 DOI: 10.55041/ISJEM02213
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 14

[17] Red Hat Inc., “Software-defined vehicles: How open source fuels
innovation,” Whitepaper (Overview), Jun. 22, 2022. [Online].
Available: https://www.redhat.com/en/resources/sdv-open-source-
accelerates-innovation-whitepaper (accessed Nov. 12, 2024).

[18] https://medium.com/@kosamiar/automotive-ui-simplicity-with-

jetpack-compose-57ce8d605572

http://www.redhat.com/en/resources/sdv-open-source-
https://medium.com/%40kosamiar/automotive-ui-simplicity-with-

