
 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM03013

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

ADDING RECIPES WEBSITE USING DJANGO

Agashini V Kumar

Computer Science and Engineering Jain Deemed to be

University Bangalore, Karnataka

agashini.v@jainuniversity.ac.in

D. Yaswanth Pavan

Computer Science and Engineering Jain Deemed to be

University Bangalore, Karnataka

21btlcn004@jainuniversity.ac.in

Abhay Gowda

Computer Science and Engineering Jain Deemed to be

 University Bangalore, Karnataka

21btrcs029@jainuniversity.ac.in

Priyansh Sharma

Computer Science and Engineering Jain Deemed to be

University Bangalore, Karnataka

21btlcn006@jainuniversity.ac.in

mailto:agashini.v@jainuniversity.ac.in
mailto:21btlcn004@jainuniversity.ac.in
mailto:21btrcs029@jainuniversity.ac.in
mailto:21btlcn006@jainuniversity.ac.in

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM03013

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

Abstract— This project is a web-based application that was

created with the Django framework and allows users to

effectively maintain their favourite recipes. Key features of the

application include user registration, login, adding new recipes,

changing old ones, removing recipes, and browsing through

them. Django's ORM is used to handle the database that contains

each recipe's name, description, and optional image. Through the

usage of Django's integrated User model, the application

guarantees safe user authentication and offers customised recipe

management by associating recipes with specific users. The

system renders dynamic HTML pages for user login

(login.html), recipe submission (receipes.html), updating

(update_receipes.html), and registration (register.html) using

Django's templating engine. Bootstrap is used to create a

responsive, user-friendly user interface, and media handling is

utilised to save uploaded recipe photos.

Keywords: Python, MVC Architecture, Web Applications, Django,

Recipe Management, and CRUD

I. Introduction

Organising and sharing one's own culinary creations online

has grown in popularity in the era of technological

convenience. This web-based application, "Adding Recipes

Website Using Django," was created to give customers an

easy-to-use platform for managing, storing, and interacting

with their favourite recipes. The program provides an intuitive

user interface for basic recipe administration functions, such as

creating, editing, deleting, and uploading images, and was

developed with the Django web framework. Through the usage

of Django's integrated User model, the platform integrates

secure user authentication to provide customised access Every

user can create an account, log in, and oversee their own recipe

library. The system makes sure that only users who have been

verified can carry out specific tasks. The application makes use

of the robust Model-View-Template (MVT) architecture of

Django. The model specifies how recipe data, such as name,

description, image, and related user, should be stored.

Business logic, such as processing forms, controlling database

queries, and maintaining user sessions, is handled by the

Views. In order to provide a contemporary and responsive

design, Bootstrap is used by the Templates to define the front-

end. A login and registration system, user-friendly forms for

contributing recipes with image support, dynamic content

management with edit and delete capabilities, and a search

engine for rapidly sorting recipes by name are some of the main

features. In addition to being a useful recipe management tool

II. Literature Review

Over time, web-based recipe management systems have

undergone substantial development, moving from static

webpages and basic desktop apps to dynamic, interactive

platforms. Recipe sharing and updating were made more

difficult by earlier systems' lack of essential features like

user identification, dynamic data processing, and scalable

storage. These systems frequently relied on manual

maintenance and file-based storage. MVC structures and

improved tools for managing user interfaces and backend

logic became available to developers with the emergence of

contemporary web frameworks like Laravel (PHP), Ruby on

Rails, and ASP.NET. MVC designs and improved tools for

backend logic and user interface management become

available to developers. Many of these frameworks, however, lacked some

integrated functionality and required a significant amount of setup. The

built-in admin interface, powerful user authentication system, ORM for

database interaction, and solid security features against common web

threats like XSS, CSRF, and SQL injection make Django, a high-level

Python web framework, stand out in this market. Despite offering extensive

features like media integration, user interactions, and personalised feeds,

large- scale platforms like All Recipes, Tasty, and Yummly are frequently

excessively centralised and complicated for users. looking for simplicity and

customisation. This project fills the gap by providing a customised,

minimalist, and user-centric web environment that may be enhanced in the

future. It suggests a lightweight, Django-based recipe management system

that concentrates on essential CRUD operations and user account

management. The development of the recipe management space is

exemplified by a number of commercial programs, including Yummly,

Tasty, and All Recipes. User-generated content, multimedia uploads,

ratings, comments, social sharing, and recommendation systems are all

supported by these feature-rich platforms. Additionally, they are designed

to withstand large traffic loads and are backed by sophisticated backend

systems that allow for community participation and content personalisation.

These systems are powerful and feature-rich, but they are also centralised

and monolithic, meaning that individual users who might want to build and

maintain their own private or specialised recipe collections have little to no

customisation options. By providing a lightweight, Django-based recipe

management system that emphasises user liberty, simplicity, and

extensibility, this project seeks to close that gap. In addition to basic user

management capabilities like registration, login, and user-specific recipe

views, the main focus is on implementing CRUD (Create, Read, Update,

Delete) activities for recipes. Individual users or local communities can

deploy and customise the system's efficient, secure, and maintainable

solution by utilising Django's built-in capabilities. In subsequent revisions,

more sophisticated features—like image uploads, tagging, search, and

sharing—can be added to this basic design to better meet the changing

needs of end users.

III. Methodology

The Agile Development methodology, which stresses iterative development,

continuous testing, and continuous improvement throughout the development

lifecycle, is used in this project. Agile makes guarantee that work is flexible and

responsive to input by dividing it into manageable phases and providing tiny,

functional increments. This method works especially well for web development

projects like this one, where functional modifications and user experience are

crucial. This project's methodology is divided into a number of separate but

related stages. Understanding the system's fundamental requirements is the main

goal of the first step, requirement analysis. This entails figuring out the essential

features, including user registration, login, recipe creation, and editing, as well as

defining the target users, who are people who wish to manage and arrange their

own recipe collections. The minimum viable product (MVP) is established in

light of this research to guarantee that only the most crucial elements are

included in the first iteration, allowing for iterative improvement in response to

user feedback. Scalability and maintainability are taken into consideration when

planning the application's architecture during the System Design process. To

guarantee that each user may safely manage their own recipe data, the database

schema is constructed using Django's Object- Relational Mapping (ORM),

which creates a Recipe model that is directly related to Django's built-in User

model. For responsive and aesthetically pleasing frontend design.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM03013

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

Fig1. Data Flow Diagram

Django's templating engine is used in conjunction with Bootstrap

to create templates like login.html, register.html, and

recipes.html. In order to guarantee that every user action has a

matching backend procedure and user interface element, URL

routing and view logic are also mapped out during this stage. The

actual coding and feature development take place during the

implementation phase. Django's powerful built-in system is used

to set up user authentication, utilising the authenticate() and

login() functions to provide safe access. Users can add new

recipes, view existing ones, update entries, and remove recipes

they no longer need thanks to the implementation of CRUD

(Create, Read, Update, Delete) capability for recipe

management. With MEDIA_URL and MEDIA_ROOT set up in

Django settings to efficiently manage media content, file upload

functionality is incorporated to allow users to attach photographs

to their recipes. Each action is handled by a view, which is

linked to the appropriate HTML template using Django's URL

dispatcher. The testing and debugging stage follows, which

guarantees the application's stability and dependability. To

make sure they operate as intended, unit tests are run on

separate parts and features. Particular attention is paid to user

access rights, picture uploads, and form submissions. Users can

receive real-time feedback on their actions, such as successful

login, invalid input, or errors during form submission, by using

Django's messages framework. Iterative changes are performed

based on test findings and usability evaluations, and bugs found

during testing are swiftly fixed. Finally, the Deployment and

Maintenance phase prepares the project for real-world use.

Static and media files are properly configured to work in

development and production environments. The project structure

is reviewed to ensure clean code and scalability. Although the

initial version is kept simple, the system is designed with future

enhancements in mind. Potential features such as recipe ratings,

user profiles, comment sections, recipe categorization, and

advanced search capabilities are documented as part of the

long-term maintenance and upgrade plan. This modular and

flexible approach ensures that the project can evolve over time

based on user needs and technological advancements.

Fig2. System Design

The goal of the implementation phase is to use the Django framework to

turn the system design into a working web application. To keep data

models, application logic, and user interface rendering distinct, Django's

Model-View-Template (MVT) architecture was used. Throughout the

development process, this architectural strategy encourages modularity,

scalability.

There are two main Django applications that make up the project. Static

pages like the home, about, and contact sections are managed by the home

app, which also offers navigation and basic information. The veggie app,

which manages recipe administration and user identification, is where the

essential functionality is found. Four essential elements make up Django's

structure within each app: frameworks to specify the database structure,

Templates are used to create dynamic HTML content, views are used to

process user requests and apply business logic, and URL settings are used

to direct incoming HTTP requests to the relevant view functions. Django's

Object-Relational Mapper (ORM) is used to manage database operations.

It allows for smooth backend interaction without the need for raw SQL

queries. A foreign key connects the main model, Recipe, to Django's

integrated User model, enabling users to control their own recipes. The

model supports media uploads using Django's Image Field and contains

fields for the recipe name, description, and image. The MEDIA_ROOT and

MEDIA_URL parameters in settings.py

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM03013

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

and uploaded photos are arranged under a certain folder.

Templates are used to create dynamic HTML content, views are

used to process user requests and apply business logic, and URL

settings are used to direct incoming HTTP requests to the relevant

view.

Django's Object-Relational Mapper (ORM) is used to manage

database operations. It allows for smooth backend interaction

without the need for raw SQL queries. A foreign key connects the

main model, Recipe, to Django's integrated User model, enabling

users to control their own recipes. The model supports media

uploads using Django's Image Field and contains fields for the

recipe name, description, and image. The MEDIA_ROOT and

MEDIA_URL parameters in settings.py are used to configure the file

handling system and uploaded photos are arranged under a certain

folder. Templates are used to create dynamic HTML content, views

are used to process user requests and apply business logic, and URL

settings are used to direct incoming HTTP requests to the

relevant view functions.

Django's Object-Relational Mapper (ORM) is used to manage

database operations. It allows for smooth backend interaction

without the need for raw SQL queries. A foreign key connects the

main model, Recipe, to Django's integrated User model, enabling

users to control their own recipes. The model supports media

uploads using Django's Image Field and contains fields for the

recipe name, description, and image. The MEDIA_ROOT and

MEDIA_URL parameters in settings.py are used to configure the file

handling system and uploaded photos are arranged under a certain

folder. Templates are used to create dynamic HTML content, views

are used to process user requests and apply business logic, and

URL settings are used to direct incoming HTTP requests to the

relevant view functions.

Django's Object-Relational Mapper (ORM) is used to manage

database operations. It allows for smooth backend interaction

without the need for raw SQL queries. A foreign key connects the

main model, Recipe, to Django's integrated User model, enabling

users to control their own recipes. The model supports media

uploads using Django's Image Field and contains fields for the

recipe name, description, and image. The MEDIA_ROOT and

MEDIA_URL parameters in settings.py are used to configure the file

handling system and uploaded photos are arranged under a certain

folder.

IV. Results and Discussions

Fig3 . Adding recipe page

The implementation of the Recipe Website using Django successfully

achieved its intended functionality. Templates are used to create dynamic

HTML content, views are used to process user requests and apply business

logic, and URL settings are used to direct incoming HTTP requests.

Django's Object-Relational Mapper (ORM) is used to manage database

operations. It allows for smooth backend interaction without the need for

raw SQL queries. A foreign key connects the main model, Recipe, to

Django's integrated User model, enabling users to control their own recipes.

The model supports media uploads using Django's Image Field and contains

fields for the recipe name, description, and image. The MEDIA_ROOT and

MEDIA_URL parameters in settings.py are used to configure the file

handling system and uploaded photos are arranged under a certain folder.

Fig4 . list of recipes

Templates are used to create dynamic HTML content, views are used to

process user requests and apply business logic, and URL settings are used to

direct incoming HTTP requests to the relevant view functions.

Django's Object-Relational Mapper (ORM) is used to manage database

operations. It allows for smooth backend interaction without the need for

raw SQL queries. A foreign key connects the main model, Recipe, to

Django's integrated User model, enabling users to control their own recipes.

The model supports media uploads using Django's Image Field and contains

fields for the recipe name, description, and image. The MEDIA_ROOT and

MEDIA_URL parameters in settings.py are used to configure the file

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM03013

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

handling system and uploaded photos are arranged under a

certain folder. The development of the Recipe Website project

provided valuable insights into building a full-stack web

application using the Django framework. The implementation

successfully demonstrated how Django's integrated

components—such as its built-in authentication system,

ORM, templating engine, and security features—contribute to

rapid and efficient web development. These tools greatly

simplified the creation of common functionalities like user

login, form handling, file uploads, and CRUD operations.

One of the significant strengths of the project lies in its

adherence to modular design principles. By separating

concerns using Django’s Model- View-Template architecture,

the application ensures clarity and maintainability of code.

The use of Django’s ORM eliminated the need for raw SQL,

simplifying database interactions and reducing the likelihood

of errors such as SQL injection.

V. Conclusion and Future work

Templates are used to create dynamic HTML content, views

are used to process user requests and apply business logic, and

URL settings are used to direct incoming HTTP requests

Django's Object-Relational Mapper (ORM) is used to manage

database operations. It allows for smooth backend interaction

without the need for raw SQL queries. A foreign key connects

the main model, Recipe, to Django's integrated User model,

enabling users to control their own recipes. The model supports

media uploads using Django's Image Field and contains fields

for the recipe name, description, and image. The

MEDIA_ROOT and MEDIA_URL parameters in settings.py

are used to configure the file handling system and uploaded

photos are arranged under a certain folder. Templates are used

to create dynamic HTML content, views are used to process

user requests and apply business logic, and URL settings are

used to direct incoming HTTP requests to the relevant view

functions.

Django's Object-Relational Mapper (ORM) is used to manage

database operations. It allows for smooth backend interaction

without the need for raw SQL queries. A foreign key connects

the main model, Recipe, to Django's integrated User model,

enabling users to control their own recipes. The model supports

media uploads using Django's Image Field and contains fields

for the recipe name, description, and image. The

MEDIA_ROOT and MEDIA_URL parameters in settings.py

are used to configure the file handling system and uploaded

photos are arranged under a certain folder.

Templates are used to create dynamic HTML content, views are

used to process user requests and apply business logic, and URL

settings are used to direct incoming HTTP requests

Django's Object-Relational Mapper (ORM) is used to manage

database operations. It allows for smooth backend interaction

without the need for raw SQL queries. A foreign key connects the

main model, Recipe, to Django's integrated User model, enabling

users to control their own recipes. The model supports media

uploads using Django's Image Field and contains fields for the

recipe name, description, and image. The MEDIA_ROOT and

MEDIA_URL parameters in settings.py are used to configure the

file handling system and uploaded photos are arranged under a

certain folder.

VI. References

[1] The Definitive Guide to Django: Web Development Done Right, by A.

Holovaty and J. Kaplan-Moss, 2nd ed., Berkeley, CA, USA: Apress, 2009.

[2] In February 2013, K. Soni published "A Survey of Web Application

Frameworks" in the International Journal of Computer Applications, volume

64, issue 15, pages 1–5.

[3] HTML and CSS: Design and Build Websites by J. Duckett. Wiley,

Indianapolis, IN, USA, 2011.

[4] M. Grinberg, Flask Web Development: Create Web Apps with Python, 2nd

ed., O'Reilly Media, Sebastopol, CA, USA, 2018.

[5] M. D. Soper, Starting Django: Using Python to Develop and Deploy Web

Applications. Apress, Berkeley, CA, USA, 2021.

[6] "Bootstrap 5 Documentation," [Online], Bootstrap Team.

https://getbootstrap.com/docs/5.0/ is accessible. [retrieved: 15 April 2025].

[7] "Django Documentation," Django Software Foundation, [Online].

https://docs.djangoproject.com/en/stable/ is accessible. [retrieved: 15 April

2025].

[8] Fielding and Taylor, R. "Principled Design of the Modern Web

Architecture," ACM Transactions on Internet Technology, vol. 2, no. 2, May

2002, pp. 115–150.

[9] C. A. Klein, "Comprehending RESTful API Architecture in Contemporary

Web Development," IEEE Internet Computing, no. 2, March–April 2019, pp.

84–89.

[10] A. Sharma and M. R. Chauhan, "A Method for Developing Secure Web

Applications with the Django Framework," International Journal of

Innovative Technology and Exploring Engineering, March 2019, vol. 8, no. 6,

pp. 2456–2460.

