INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129
VOLUME: 03 ISSUE: 03| MAR-2024 DOI: 10.55041/ISJEM01379
s ANINTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

Advanced Authentication Strategies in Oracle Apex: SSO and Social Media
Integration

Ashraf Syed!
Corresponding author: Ashraf Syed (e-mail: maverick.ashraf(@gmail.com).

ABSTRACT This article presents a comprehensive framework for implementing Single Sign-On (SSO) and Social Media Sign-On
in Oracle Application Express (Apex) applications, focusing on secure, user-centric authentication solutions. Oracle Apex, a low-
code platform, supports diverse authentication schemes, including APEX Accounts, Database Accounts, Custom Authentication,
Social Sign-In, and SSO, enabling developers to build scalable, secure applications. The paper details the configuration of Social
Sign-In with providers such as Google, Facebook, Okta, and Oracle Cloud Infrastructure (OCI) Identity and Access Management
(IAM) using OAuth2 and OpenID Connect protocols, streamlining user access through existing accounts. It also covers SSO
implementation via SAML and HTTP Header variables, ideal for enterprise environments requiring centralized identity
management. The article explains secure storage of service account credentials, such as client IDs and secrets, using Apex’s Web
Credentials, ensuring robust protection of sensitive data. A novel contribution is the use of multiple authentication schemes within
a single application, achieved through URL-based switching or application processes, enhancing flexibility. Supported by a detailed
methodology, results, and discussions, this work provides actionable guidance for developers, illustrated by figures and tables, to
create secure, user-friendly Apex applications that meet modern authentication demands.

Keywords: Oracle Apex, authentication, Single Sign-On, Social Media Sign-On, OAuth2, OpenlD Connect, SAML, Web

Credentials, identity providers, application security, low-code development, user authentication, enterprise integration.

I. INTRODUCTION

Authentication is the cornerstone of web application security,
ensuring that only authorized users access protected resources
while safeguarding sensitive data from unauthorized access. In
the evolving landscape of web development, user convenience
has become a critical factor, driving the adoption of advanced
authentication methods such as Single Sign-On (SSO) and
Social Media Sign-On. SSO enables users to authenticate once
and gain seamless access to multiple applications, significantly
reducing login fatigue and enhancing productivity, particularly
in enterprise environments where users interact with numerous
systems daily. Social Media Sign-On allows users to log in
using existing accounts from widely adopted platforms such as
Google, Facebook, Okta, or Oracle Cloud Infrastructure (OCI)
Identity and Access Management (IAM), eliminating the need
to create and manage separate credentials [1]. These methods
not only improve user experience but also leverage robust
security features provided by external identity providers, such
as multi-factor authentication (MFA) and token-based access
control, to enhance application security.

Oracle Application Express (Apex), a low-code development
platform tightly integrated with Oracle Database, empowers
developers to create scalable, secure web applications with
minimal coding effort. Apex’s authentication framework is one
of its standout features, offering a variety of schemes tailored to
diverse application requirements. Built-in options, such as APEX
Accounts and Database Accounts, are well-suited for small-scale
applications or those requiring direct database integration. In
contrast, advanced methods like Social Sign-In and SSO cater to

complex enterprise environments where user experience and
centralized identity management are paramount [2]. Social Sign-
In leverages standardized protocols like OAuth2 and OpenlD
Connect to integrate with external identity providers, allowing
users to authenticate using familiar credentials. SSO,
implemented through protocols like SAML or HTTP Header
variables, supports centralized identity management, enabling
seamless access across integrated systems within an organization
[1].

The growing reliance on cloud-based services and the
increasing sophistication of cyber threats have heightened the
importance of secure and flexible authentication mechanisms.
Research indicates that poor authentication practices are a
leading cause of data breaches, underscoring the need for robust
solutions like those offered by Apex [3]. Social Sign-In, by
outsourcing authentication to trusted providers, reduces the risk
of credential theft, while SSO minimizes the attack surface by
centralizing authentication processes [4]. Furthermore, Apex’s
Web Credentials feature provides a secure mechanism for storing
sensitive service account credentials, such as client IDs and
secrets, ensuring compliance with security best practices [5].

This article provides a comprehensive framework for
implementing SSO and Social Media Sign-On in Apex
applications, addressing both technical implementation and
practical considerations. It details the configuration of various
authentication schemes, secure credential storage using Web
Credentials, and the novel approach of integrating multiple
authentication methods within a single application. This ability
to dynamically switch authentication schemes within a single
application is particularly innovative, addressing the diverse

© 2024, ISJEM (All Rights Reserved) | www.isjem.com

| Page 1

mailto:maverick.ashraf@gmail.com

~ &‘; VOLUME: 03 ISSUE: 03| MAR-2024
S
b - &

INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT

ISSN: 2583-6129
DOI: 10.55041/ISJEM01379

AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

needs of modern users, from individual consumers preferring
social logins to enterprise users requiring SSO integration with
corporate identity providers [6]. By synthesizing insights from
community expertise, academic literature and official Oracle
documentation, this paper offers developers a scholarly yet
practical guide to building secure, user-friendly Apex
applications addressing the evolving demands of modern web
development and author believes that this paper will be
contributing to the growing body of knowledge on low-code
platform security.

II. BACKGROUND AND RELATED WORK

Authentication in web applications has been a focal point of
research, with Oracle Application Express (Apex) emerging as a
robust platform for implementing secure and flexible
authentication solutions. The Oracle Apex documentation
provides a comprehensive overview of its authentication
schemes, including APEX Accounts, Database Accounts, Social
Sign-In, and SAML-based Single Sign-On (SSO), designed to
meet diverse application requirements [1]. These schemes
balance security, usability, and scalability, positioning Apex as a
leading low-code platform for rapid application development in
both academic and industry contexts [7]. This section reviews the
existing literature on authentication mechanisms, focusing on
SSO and Social Media Sign-On, and identifies gaps that this
article addresses through a novel framework for Apex
applications.

Sciore’s seminal work on Apex security delineates the
distinction between authentication (verifying user identity) and
authorization (controlling resource access), emphasizing the role
of built-in schemes like APEX Accounts for user management
and custom schemes for specialized requirements [4]. APEX
Accounts, managed within the Apex workspace, are suitable for
small-scale applications, while Database Accounts leverage
Oracle database credentials for seamless integration with existing
database systems [8]. Custom Authentication, implemented via
PL/SQL, offers flexibility for bespoke solutions, such as
integrating two-factor authentication or proprietary systems [9].
These foundational schemes provide a baseline for understanding
Apex’s authentication capabilities.

The advent of Social Sign-In has transformed user
authentication by leveraging OAuth2 and OpenID Connect
protocols to integrate with external identity providers like
Google, Facebook, Okta, and Oracle Cloud Infrastructure (OCI)
Identity and Access Management (IAM). APEX Community
blogs, such as those by Dimitri Gielis, provide practical insights
into configuring Social Sign-In in Apex, demonstrating real-
world applications with providers like Google and Facebook
[10]. These sources highlight the user-friendly nature of Social
Sign-In, which reduces the need for users to manage multiple
credentials, thereby enhancing adoption and satisfaction [2].
Rittman Mead’s blog further details the configuration of Social
Sign-In, addressing challenges like redirect URI setup and
debugging, which are critical for successful implementation [2].
A presentation by Sewtz and Neumiiller emphasizes the
simplicity of Social Sign-In in Apex since version 18.1, noting

its integration with OAuth2 flows for providers like LinkedIn, in
addition to Google and Facebook [5].

SSO, particularly in enterprise settings, has been extensively
studied for its ability to streamline access across multiple
systems. Oracle’s white paper on integrating Apex with Oracle
E-Business Suite discusses SSO implementations using Oracle
Access Manager, highlighting its suitability for large-scale
enterprise environments [11]. SAML-based SSO, supported in
Apex 21.2 and later, enables integration with enterprise identity
providers like ForgeRock and OCI IAM, requiring Oracle
Database 19¢ or 21c [12]. Academic literature, such as Smith’s
work in IEEE Transactions on Software Engineering, explores
OAuth2 and SAML protocols, providing theoretical foundations
for their security benefits and limitations in web applications [3].
These protocols ensure secure token exchange and identity
federation, reducing the risk of credential theft and simplifying
user management [3].

The integration of social media in authentication extends
beyond technical implementation to broader implications for user
behavior and security. A study by Hossain et al., in Information
Systems Frontiers reviewed 132 papers on social media, noting
its role in facilitating user interactions and decision-making
through user-generated content [3]. This study underscores the
relevance of Social Sign-In in leveraging trusted platforms for
authentication, aligning with Apex’s capabilities. However, it
also highlights risks such as data privacy concerns and potential
service outages, which developers must address when relying on
external providers [3]. A study by van der Walt et al. further
explores cybersecurity risks in social media platforms,
identifying threats like identity theft and unauthorized access,
which are mitigated in Apex through secure credential storage in
Web Credentials [13]. These findings emphasize the importance
of robust security measures in Social Sign-In implementations.

Despite the wealth of resources, there remains a gap in
comprehensive guides that integrate SSO, Social Media Sign-
On, and dynamic authentication switching in Apex. Existing
literature often focuses on individual schemes or basic
configurations, lacking a unified approach to advanced
implementations. For instance, while Oracle’s documentation
provides detailed technical guidance [14], [12], it does not
address the practical challenges of combining multiple
authentication schemes within a single application. Community
blogs, such as those by Oracle-Base, offer practical tutorials for
configuring Social Sign-In with Microsoft Azure AD but lack
theoretical depth [15]. Academic studies provide rigorous
analyses of authentication protocols but rarely focus on low-code
platforms like Apex [3]. This article addresses these gaps by
synthesizing official documentation, community expertise, and
academic insights into a novel framework. It emphasizes
practical implementation of SSO and Social Sign-In, secure
credential management, and the innovative use of dynamic
authentication switching, supported by Apex’s ability to toggle
schemes via URL parameters or application processes [6]. By
addressing real-world challenges and leveraging scholarly and
practical sources, this work provides a scalable, secure, and user-
centric approach to authentication in Apex applications.

© 2024, ISJEM (All Rights Reserved) | www.isjem.com

| Page 2

INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT

VOLUME: 03 ISSUE: 03 |

MAR - 2024
AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

ISSN: 2583-6129

DOI: 10.55041/ISJEM01379

III. TYPES OF AUTHENTICATIONS IN APEX Oracle
Oracle Application Express (Apex) provides a robust set of AS SSO
preconfigured authentication schemes to secure applications and environ
verify user identities, catering to a wide range of application ment.
requirements. These schemes range from simple, built-in options Delegates Enterpri Supports
to advanced integrations with external identity providers, SAML authenticatio | se . taﬂzar 4 SAML
offering flexibility for developers to balance security, usability, Sign-In ntoa SAML | federati assertion
and scalability. These schemes are managed at the application 2.0 Identity | on, B2B exchange
level, with one designated as the "Current" scheme that dictates Provider. SSO.)
how APEX identifies and verifies users. All authentication Authenticate | Consum | Native support
schemes in APEX also support the use of plug-ins, offering s with social | er- for pgpular
extensibility for custom authentication logic. networks facing providers.
. Configurable via
(Google, applicat .
TABLE I. AUTHENTICATION SCHEMES IN ORACLE APEX Social Facebook) ions Discovery URL,
. . ; , client
Scheme Typical | Key Sign-In or enterprise | B2C, ;C)(;IS) :sre(fc ten
Name Description | Use Features/Consi IdPs using modern Extensibl.e via
Case derations OpenID enterpri | bt
Connect/OA | se .
Ifﬁfﬁz& Built-in features uth? identity Authentication
Internal user . for password ' " | procedures.
accounts applicat complexit Highly
Oracle ions prextty, | .
APEX managed . ’1 account locking, specific | Complete
A ¢ within the .Sutnp el login throttling. Allows authenti | control over
ceounts | Apgx :lnS:rrna Full user developers cation logic. Requires
repository. management to require | manual
man?ge out-of-the-box. Custom implement ments, implementation
ment. - Authentic | entirely integrati | of password
. dReqtglres ation custom on with | management,
Migrati ata ase user authenticatio | propriet | account locking,
. ng per apphgatlon n logic using | ary etc. Can be
Authenticate | legacy user. Native PL/SQL. systems, | implemented as
S users Oracle database advance | a plug-in
directly Forms password d 2FA
Database | against applicat | policies (e.g., Authenticate -
Accounts | existing ions, failed login S uSers
database simple attempts) may externall Kerbero | Seamless SSO
schema databas | not be observed HTTP based onya s SSO, | experience (no
accounts. e- by APEX, Header username in | PTOXY- APEX login
centric | requiring Variable | an HTTP based page). Requires
apps. custom authenti | web server
. header set by . .
handling. a web cation. configuration.
Enterpri server
s¢ licat Read-
Authenticate ?pr? 1ca Centralized user only
s against a ons - entralizec use Provides a applicat Minimal
tral requirin | management login page ions inima
een g outside APEX. . security,
LDAP LDAP : . . Open that captures | with S
P p
. integrati | APEX instance primarily for
Directory | server (e.g., h an authenticate Door ausername | non- user
Microsoft on wi N Credenti | without sensitiv | . . .
. existing | workspaces | d identification
Active t | acainst LDAP als actua e data, without
Directory). corpora & : authenticatio | develop . .
e verification.
. . n. ment
directori environ
e __ - - ments.
Oracle Delegates Applica | Requires site Adopts the Applica
Applicati | authenticatio | tions registration as No current tions No explicit
on Server | ntoalegacy | within partner app and Authentic database where authentication
Single Oracle AS an PL/SQL SSO ation user Jatabas within APEX.
Sign-On | SSO Server. | existing | SDK. .
© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT

ISSN: 2583-6129
DOI: 10.55041/ISJEM01379

s ANINTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

v ISJEM
¥ 2o VOLUME: 03 IsSUE: 03| MAR- 2024
Jmﬂ ;&8
&
(using typically set | e user
DAD) by a context
mod_plsql is
Database implicitl
Access y set, or
Descriptor. for
public,
non-
secure
content.

A. Oracle APEX Accounts

This authentication relies on user accounts created and managed
within the Apex workspace repository. Users are assigned a
username and password, stored securely using industry-standard
hashing algorithms. The authentication process involves
validating user-provided credentials against the repository,
creating a session upon successful verification. This scheme
supports features like password complexity requirements,
expiration policies, and account locking after multiple failed
attempts, enhancing security [1]. It is particularly effective for
applications with a limited user base, such as internal tools or
prototypes, due to its straightforward setup through the Apex
Administration interface. However, its scalability is limited for
applications with thousands of users, as manual user
management becomes cumbersome. Additionally, it lacks
integration with external identity systems, making it less suitable
for enterprise environments requiring centralized authentication
[4]. For example, a small business developing an internal
dashboard might use APEX Accounts to manage a dozen users
efficiently, but a large organization would find it impractical due
to administrative overhead.

B. Database Accounts

Database Accounts authentication leverages Oracle database
user credentials, allowing users to log in with their existing
database usernames and passwords. The process involves Apex
attempting to establish a database connection using the provided
credentials; a successful connection authenticates the user. This
scheme is ideal for applications tightly integrated with Oracle
databases, such as those migrated from Oracle Forms, where
users already have database accounts [8]. It benefits from the
database’s robust security features, including role-based
privileges and auditing capabilities. However, it requires careful
management of database user privileges to prevent unauthorized
access, and creating individual database accounts for large user
bases can be complex. For instance, a financial application
requiring direct database access for reporting might use Database
Accounts to align with existing database security policies, but
public-facing applications may find this approach impractical
due to the need for extensive user provisioning.

C. LDAP Directory
LDAP Directory authentication enables Apex to authenticate
users against an LDAP server, such as Microsoft Active
Directory or Open LDAP. Apex binds to the LDAP server using
user-provided credentials, authenticating if the bind succeeds.

Developers configure server details like host, port, and search
filters to locate users [1]. This scheme leverages existing
directory services, centralizing user management. Security
requires LDAPS to protect credentials in transit. It’s ideal for
enterprises with established LDAP directories, such as a
government agency managing employee access, but requires
knowledge of LDAP schemas and server access.

D. Oracle Application Server Single Sign-On

Oracle Application Server Single Sign-On (Oracle AS SSO)
integrates Apex with Oracle’s proprietary SSO solution. The
Apex application is registered as a partner application, and users
are redirected to the SSO server for authentication, which returns
the user’s identity upon success [16]. This scheme is tailored for
Oracle-centric environments, leveraging existing infrastructure.
Security depends on the SSO server’s configuration, requiring
secure communication channels. It’s suitable for organizations
using Oracle E-Business Suite but is limited to Oracle
ecosystems, requiring additional licensing [11].

E. SAML Sign-In
SAML Sign-In, introduced in Apex 21.2, supports enterprise
SSO using the SAML 2.0 protocol. Apex acts as a Service
Provider (SP), redirecting users to an Identity Provider (IdP) like
OCI IAM for authentication. The IdP returns a SAML assertion,
which Apex validates to create a session [12]. SAML supports
both IdP-initiated and SP-initiated flows, offering flexibility. It’s
ideal for large organizations needing federated identity across
applications, but requires complex setup, including trust
relationships and certificate management. Security hinges on
secure assertion handling to prevent replay attacks [3]. For
instance, a multinational corporation might use SAML to unify
access across its Apex applications and other enterprise systems.

F. Social Sign-In

Social Sign-In allows users to authenticate using accounts from
external providers like Google, Facebook, Microsoft Azure,
Okta, or OCI TAM via OAuth2 or OpenID Connect protocols.
OAuth?2 facilitates authorization by granting access tokens, while
OpenlD Connect adds an identity layer for authentication,
providing user attributes like email [3]. The process involves
redirecting users to the provider’s login page, where they
authenticate and consent to share data. The provider returns an
authorization code, which Apex exchanges for access and ID
tokens to create a session [14]. This scheme enhances user
experience by leveraging familiar credentials, reducing signup
friction. Security relies on the provider’s robustness, but
developers must ensure secure token handling to prevent attacks
like token replay. It’s ideal for public-facing applications, such
as e-commerce platforms, where user convenience drives
adoption. Limitations include dependency on external services,
which may introduce latency or availability risks, and potential
privacy concerns in regulated industries [13].

© 2024, ISJEM (All Rights Reserved) | www.isjem.com

| Page 4

VOLUME: 03 ISSUE: 03| MAR- 2024

INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT

ISSN: 2583-6129
DOI: 10.55041/ISJEM01379

AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

Figure 1: Social Sign-In Authentication Flow with OKTA in
Oracle Apex [17]

G. Custom Authentication

Custom Authentication enables developers to define bespoke
authentication logic using PL/SQL, offering unparalleled
flexibility. A PL/SQL function, taking username and password
as inputs, returns a boolean indicating authentication success.
This scheme is ideal for integrating with proprietary systems or
implementing advanced methods like two-factor authentication
[9]. Its flexibility allows for complex validation, such as checking
against external APIs or biometric systems. However, security
depends heavily on the implementation, requiring developers to
follow best practices like secure hashing and error handling to
prevent vulnerabilities. It suits scenarios like a healthcare
application needing to verify credentials against a custom
employee database but demands significant development effort
and ongoing maintenance.

H. HTTP Header Variable

HTTP Header Variable authentication uses headers set by a web
server or proxy to convey user identity, typically in environments
with existing authentication systems. Apex reads a specified
header, such as REMOTE_USER, to authenticate the user and
create a session [18]. This scheme is efficient for organizations
with pre-authenticated users, as it eliminates redundant login
prompts. Security requires HTTPS to protect headers and trusted
server configurations to prevent spoofing. It’s commonly used in
corporate intranets behind reverse proxies, but setup complexity
and reliance on server-side configuration can be limiting. For
example, a university portal integrated with a campus
authentication system might use this method to streamline
access.

1. Open Door Credentials
Open Door Credentials is a development-only scheme allowing
unrestricted access without authentication, useful for testing but
insecure for production [16]. It lacks security features and is not
recommended for deployed applications.

Choosing the appropriate authentication scheme depends on
application requirements. APEX Accounts suit small
applications due to simplicity, while Database Accounts are ideal
for database-integrated systems. Custom Authentication offers
flexibility for unique needs but requires development effort.
Social Sign-In enhances user experience for public applications,
while HTTP Header Variable and SAML cater to enterprises
with existing authentication systems. Oracle AS SSO is specific
to Oracle environments, and LDAP Directory leverages directory
services. Developers must balance security, scalability, and user
experience, considering factors like user base size, infrastructure,
and regulatory requirements [6].

IV. METHODOLOGY

This section provides a comprehensive methodology for
implementing authentication schemes in Oracle Application
Express (Apex), focusing on Social Sign-In, Single Sign-On
(SSO), Custom Authentication, LDAP Directory, APEX
Accounts, and Database Accounts. It offers detailed, practical
steps for configuring each scheme, including registration with
identity providers, secure credential storage, user identity
mapping, session management, security best practices, and
rigorous testing strategies. The approach ensures developers can
implement secure, scalable, and user-friendly authentication
solutions, incorporating advanced configurations and
troubleshooting tips to address real-world challenges.

A. Configuring Social Sign-In
Social Sign-In enables users to authenticate using accounts from
external identity providers leveraging OAuth2 and OpenID
Connect protocols. The implementation involves registering the
application, securely storing credentials, configuring the
authentication scheme, mapping user identities, managing
sessions, implementing security measures, and testing the setup.

1. REGISTERING WITH IDENTITY PROVIDERS

a) Google: Access the Google Developer Console
(https://accounts.google.com/.well-known/openid-
configuration). Create a project, enable the Google Identity
Platform API, and set up an OAuth consent screen with the
application name and logo. Create OAuth 2.0 credentials, select
“Web application,” and specify the redirect URI. Obtain the
client ID and secret [2].

b) Facebook: In the Facebook for Developers portal
(https://graph.facebook.com/v12.0/oauth), create an app, add
the “Facebook Login” product, and configure the redirect URI.
Retrieve the app ID and secret [10].

c) Okta: In the Okta Developer Console (https://your-
okta-domain/.well-known/openid-configuration), create an

© 2024, ISJEM (All Rights Reserved) | www.isjem.com

| Page 5

VOLUME: 03 ISSUE: 03| MAR- 2024

INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT

ISSN: 2583-6129
DOI: 10.55041/ISJEM01379

AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

OIDC application, configure the redirect URI, and note the
client ID and secret [15].

d) Microsoft Azure: In the Azure Portal
(https://login.microsoftonline.com/ {tenant}/v2.0/.well-
known/openid-configuration), register an app under “Azure
Active Directory”>“Appregistrations,” set the redirect URI,
and enable ID token issuance. Obtain the client ID and secret
[15].

e) OCIIAM: In the Oracle Cloud Console (https://idcs-
yourdomain. identity.oraclecloud.com/.well-known/openid-

configuration), create a confidential application under
“Identity&Security”>“Applications,” configure = OAuth2
settings, and note the client ID and secret [12].

Note: Ensure redirect URIs match exactly between the provider
and Apex to prevent authentication failures. Verify provider-
specific requirements, such as enabling APIs or setting consent
screen details.

TABLE II. SOCIAL SIGN-IN CONFIGURATION FOR KEY PROVIDERS

Provider | Discovery URL Scope
https://accounts.google.com/ | openid,
Google .well-known/openid- profile,
configuration email
https://graph.facebook.com/ | public_profi
Facebook v12.0/0auth le, email
Microsoft https://login.microsoftonline profile,
Azure .com/ {tenant.} v2.0/ .well-. email
known/openid-configuration
https://your-okta- openid,
Okta domain/.well- profile,
known/openid-configuration | email
https://idcs-your-
domain.identity.oraclecloud. | openid,
OCTIAM com/.well-known/openid- profile
configuration

II. STORING CREDENTIALS SECURELY

Navigate to Workspace Utilities > Web Credentials in the Apex
workspace. Click “Create,” specify a name (e.g.,
“Google OAuth”), select “OAuth2 Client Credentials” and enter
the client ID and secret. Web Credentials encrypt sensitive data
using Oracle’s Transparent Data Encryption (TDE), preventing
exposure in code or logs. This feature supports reusability across
components like REST Data Sources [5]. Rotate credentials

regularly and audit access to comply with security best practices
[19].

III. SETTING UP THE AUTHENTICATION SCHEME

In Shared Components > Authentication Schemes, create a new
scheme, select “Social Sign-In,” and choose the Web Credential.
For providers supporting OpenID Connect discovery, enter the
discovery URL. Otherwise, manually specify authorization,
token, and user info endpoints from provider documentation. Set

the scope to openid, profile, email’ for essential attributes.
Configure provider-specific parameters:

a) Google: Set “Prompt” to select_account.
b) Okta: Set “Response Type” to code.
c) Facebook: Include email, first name, last name in

“Fields.” Enable the state parameter to prevent CSRF attacks
[14].

IV. UNDERSTANDING OAUTH2 AND OPENID CONNECT
FLows

Apex uses the OAuth2 authorization code flow for Social Sign-
In, which is more secure than the implicit flow due to server-to-
server token exchange, reducing the risk of token interception
[3]. The flow involves redirecting users to the provider’s
authorization endpoint with parameters like client ID, redirect
URI, and scope. After user authentication and consent, the
provider returns an authorization code to Apex, which exchanges
it for access and ID tokens at the token endpoint using the client
secret. OpenID Connect extends OAuth2 by providing an ID
token containing user claims (e.g., sub, email). Developers can
access these claims in Apex using apex authentication.get
attribute('attribute_name') for custom processing [10].

Auhentication Flow
UserBrowse Web Agplcaten QWM Server Idertty Pronder
CER
e " N
»
e
R - -
oot AN 6 o -
+
‘
Uy Browsar Webs Agplcator OuM Servet Vertty Provider

Figure 2: Social Sign-In OIDC Authentication Flow in Oracle Apex
[20]

© 2024, ISJEM (All Rights Reserved) | www.isjem.com

| Page 6

https://login.microsoftonline.com/
https://idcs-yourdomain/
https://idcs-yourdomain/

(£ =3y

~}

M
~i i

\‘j IS JEM ~ INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT
N

VOLUME: 03 ISSUE: 03| MAR- 2024

ISSN: 2583-6129
DOI: 10.55041/ISJEM01379

b AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

v Corver
u m Slorindd) m

— T >
2aToAS mas ——)
-
S o 405 Sevvee
o o
le —1 Ay

B ime | de

DML AR it

ns oo 4B taims 1
- ! {
.
T e] :,?""";:_' ASTE0 A1) S g

Figure 3. Social Sign-In OAUTH?2 Authentication Flow in Oracle
Apex [21]

V. MAPPING USER IDENTITIES

Apex maps external user identities to Apex user accounts,
typically using the email from the ID token as the username.
Customize this in the authentication scheme’s “Post-
Authentication Procedure” with PL/SQL. For example, to
display user profile pic in the application:

DECLARE

1 user VARCHAR2(100);

1 picture url VARCHAR2(4000);
BEGIN

-- Get the authenticated username from APEX
1 user :=:APP_USER;

-- Retrieve profile data from the current OAuth2
session
-- The "picture" attribute is returned by Google in
the user info JSON
SELECT
json_value(apex_authentication.get user_info,
'$.picture")
INTO I _picture url
FROM dual,

-- Optionally, update in your USERS table
UPDATE users

SET profile pic url =1 picture url
WHERE username =1 user;

COMMIT;

-- store in an APEX application item for session
use
:PO_PROFILE PIC :=1 picture url;

EXCEPTION
WHEN NO_DATA_FOUND THEN
NULL,; -- No picture found, handle as needed
WHEN OTHERS THEN
apex_debug.error('Error setting profile pic: ' ||
SQLERRM);

END;
/

VI. MANAGING SESSIONS AND TOKEN REFRESH

Apex creates a session post-authentication, but developers must
manage token expiration. Access tokens typically have short
lifetimes (e.g., 1 hour for Google). Enable “Use Refresh Token”
in the authentication scheme to allow Apex to obtain new access
tokens without user intervention. Align session timeout settings
(in Shared Components > Security Attributes) with token
lifetimes to avoid session interruptions. For example, set
“Maximum Session Length” to 8 hours and “Maximum Session
Idle Time” to 30 minutes to balance security and usability [1].

VII. SECURITY BEST PRACTICES

Use HTTPS for all communications to protect tokens and
credentials. Validate ID tokens to prevent tampering, using the
provider’s public keys. Limit scopes to necessary permissions
(e.g., avoid requesting excessive data like contacts). Implement
the state parameter to mitigate CSRF risks. Regularly audit Web
Credentials for unauthorized changes and monitor provider
security advisories [19].

VIII. TESTING THE CONFIGURATION

Test the setup by running the application, clicking the Social
Sign-In button, and verifying redirection to the provider’s login
page. After login, confirm the callback to Apex creates a session.
Use Apex’s debug mode (available in the developer toolbar) to
trace the authentication flow, checking for errors like invalid
tokens or misconfigured URIs. Test edge cases, such as expired
tokens or denied consents, to ensure robust error handling [22].

B. Configuring Single Sign-On
SSO implementation includes HTTP Header Variable, SAML
Sign-In, and Oracle AS SSO, tailored for enterprise
environments.

I. HTTP HEADER VARIABLE

Configure a web server (e.g., Apache with mod_auth _kerberos)
to set an HTTP header (e.g., REMOTE USER) with the user’s
identity. In Apex, create an authentication scheme, select “HTTP
Header Variable,” and specify the header name. Apex extracts
the username for session creation. Ensure HTTPS and trusted
server configurations to prevent header tampering [18].

II. SAML SIGN-IN

Create a SAML Sign-In scheme in Shared Components. Obtain
the IdP’s metadata XML or URL (e.g., from OCI IAM).
Configure the SP entity ID (typically the application URL) and
map attributes (e.g., NamelID to username). Import the IdP’s
signing certificate and ensure ORDS permits cross-origin
requests. Test IdP-initiated and SP-initiated flows [12].

© 2024, ISJEM (All Rights Reserved) | www.isjem.com

| Page 7

VOLUME: 03 ISSUE: 03| MAR- 2024

INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT

ISSN: 2583-6129
DOI: 10.55041/ISJEM01379

s ANINTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

III. ORACLE AS SSO

Register the Apex application as a partner application in Oracle
AS SSO. Configure the authentication scheme to redirect to the
SSO server, which returns the user’s identity. Ensure secure
communication channels and Oracle licensing [11].

C. Configuring Custom Authentication
Create a PL/SQL function for authentication logic:

FUNCTION custom_auth(p_username IN VARCHAR?2,
p_password IN VARCHAR?2) RETURN BOOLEAN IS
1 valid BOOLEAN;
BEGIN
1 valid := external api_validate(p_username, p_password);
RETURN 1 valid;
EXCEPTION
WHEN OTHERS THEN
RETURN FALSE;
END;

In Shared Components > Authentication Schemes, select
“Custom” and specify the function. Implement secure hashing
(e.g., DBMS CRYPTO.HASH) and error handling to prevent
vulnerabilities [9].

D. Configuring LDAP Directory
Configure LDAP settings in Shared Components >
Authentication Schemes, selecting “LDAP Directory.” Specify
the LDAP host, port (e.g., 389 for LDAP, 636 for LDAPS), and
search base (e.g., dc=example,dc=com). Use LDAPS for secure
communication and test connectivity with a test user [1].

E. Configuring APEX Accounts
In the Apex Administration interface, create users with
usernames, passwords, and roles. Configure password policies
(e.g., complexity, expiration) in Shared Components > Security
Attributes. Test login with a sample user to ensure session
creation [1].

F. Configuring Database Accounts
In Shared Components > Authentication Schemes, select
“Database Accounts” Apex validates credentials against Oracle
database users. Ensure that the database users can login to the
application [8].

G. Security Best Practices
Implementing secure authentication in Oracle Apex is critical to
protect against threats like credential theft, session hijacking, and
unauthorized access. All communications between the
application and identity providers must use HTTPS to encrypt
data in transit, safeguarding against eavesdropping and man-in-
the-middle attacks. This can be enforced by setting the "Security"
attribute in Shared Components > Security Attributes to require

HTTPS, ensuring that all authentication-related traffic is secure
[1]. For Social Sign-In, token validation is essential; Apex
automatically validates ID tokens using the provider’s public
keys, but developers must ensure this process is not bypassed to
prevent tampering. Similarly, for SAML SSO, assertions must be
validated for signature, issuer, and audience to confirm their
authenticity and intended recipient, with clock synchronization
between Apex and the Identity Provider to avoid timestamp-
related issues [12].

Limiting permissions and scopes minimizes exposure; for
Social Sign-In, request only necessary scopes like openid profile
email, and for SAML, restrict attribute mappings to essential data
like username and email [3]. Cross-Site Request Forgery (CSRF)
protection should be enabled for all authentication pages, with
OAuth2 flows using the state parameter to verify request
legitimacy [14]. Regular security audits and penetration testing
are recommended to identify vulnerabilities, leveraging Apex’s
logging capabilities to monitor authentication events and detect
suspicious activity [19]. Compliance with regulations like GDPR
or HIPAA is crucial when handling personal data, requiring user
consent, data access rights, and encryption at rest and in transit
[13]. For sensitive applications, integrating multi-factor
authentication (MFA) through identity providers like Okta or
OCI IAM adds an extra layer of security [12].

Credential management should utilize Apex’s Web
Credentials, which encrypts sensitive data like client IDs and
secrets using Oracle’s Transparent Data Encryption (TDE), with
regular rotation and access audits [5]. Session management
requires configuring appropriate timeouts in Shared Components
> Security Attributes (e.g., 8 hours for maximum session length,
30 minutes for idle time) to prevent prolonged active sessions,
and regenerating session IDs post-authentication mitigates
session fixation attacks [1]. Keeping Apex, Oracle REST Data
Services (ORDS), and the database updated with the latest
security patches is essential to address known vulnerabilities,
ensuring a robust security posture for authentication
implementations [19].

V. MULTIPLE AUTHENTICATION SCHEMES

Oracle Apex’s ability to support multiple authentication schemes
within a single application is a powerful feature that enhances
flexibility and user experience, allowing developers to cater to
diverse user groups with varying authentication needs. For
instance, a university portal might offer Social Sign-In for
students using Google or Facebook accounts, SAML SSO for
faculty integrated with the campus Active Directory, and
Database Accounts for legacy systems accessed by
administrators. This capability ensures that applications can
adapt to different user contexts, such as internal versus external
users, Or varying security requirements across environments.

To implement multiple authentication schemes, developers
must first configure each scheme individually in Shared
Components > Authentication Schemes, ensuring that each is
fully functional. For example, a Social Sign-In scheme for
Google, a SAML Sign-In scheme for enterprise SSO, and a

© 2024, ISJEM (All Rights Reserved) | www.isjem.com

| Page 8

¢ g
,f' ISJEM :\‘; INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129
N 4,‘;” VOLUME: 03 ISSUE: 03| MAR-2024 DOI: 10.55041/ISJEM01379
b AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

Database Accounts scheme for legacy users can be set up with
their respective settings, such as Web Credentials for Social
Sign-In or metadata URLs for SAML. The “Switch in Session”
flag must be enabled for each scheme to allow dynamic
switching during runtime, ensuring that the application can
transition between authentication methods without requiring a
new session [6].

Dynamic switching can be achieved through two primary
methods:

e URL Parameters: Developers can append the
APEX AUTHENTICATION parameter to the
application URL to specify the desired scheme. For
example, a URL like (https://example.com/ords/f?p=
app_id:1:APEX AUTHENTICATION=GOOGLE S
SO) invokes the Social Sign-In scheme, while
(https://apex.example.com/ords/apex_authentication.
saml callback) triggers SAML SSO. This method is
straightforward and allows users to select their
preferred authentication method directly from the
login page. For instance, a login page could include
buttons labeled “Login with Google,” “Login with
Company SSO,” or “Login with Database
Credentials,” each appending the appropriate
parameter to the URL. However, developers must
validate the parameter to prevent unauthorized scheme
changes, ensuring that only predefined schemes are
accessible [6].

e Application Processes: A more sophisticated
approach involves defining an application process in
Shared Components > Application Processes, which
runs on page load or at specific points to determine the
authentication scheme based on conditions like tenant,
IP address, or device type. For example, the following
PL/SQL code checks the user’s IP address to select the
appropriate scheme. This procedure will be called in
the configuration procedure in the security tab:

CREATE OR REPLACE PROCEDURE
cn_set auth scheme
(p_conf in out apex_authentication.t_configuration)
AUTHID DEFINER IS
BEGIN
IF owa util.get cgi env (REMOTE_ADDR') IN
('192.168.1.0/24") THEN
p_conf.authentication name :='SAML_SSO';
ELSIF owa_util.get cgi env('(HTTP_HOST")
LIKE "% TENANT1%' THEN
p_conf.authentication name :='OKTA_SSO';
p_conf.substitutions := apex_t varchar2 (
'CREDENTIAL_STATIC_ID',"OKTA_OAUTH2',
'DISCOVERY URL),
'https://domain.okta.com/.well-known/openid-
configuration'
);
ELSE

p_conf.authentication name :=
'DATABASE ACCOUNTS';
END IF;
END cn_set auth schema;

Appication 201 EdMt Security Antributes

Security

Progressve Web Agg

Application 201

Show AN

Authentication

Configuration Procedure on_set_auth_scheme

Figure 4: Configuration Procedure in Application Security Attributes

This logic directs internal users (within the corporate network)
to SAML SSO, students to Social Sign-In, and others to Database
Accounts, ensuring a tailored authentication experience [6].

A practical example is a corporate application serving both
employees and external vendors. Employees might use SAML
SSO integrated with the company’s Active Directory, while
vendors use Social Sign-In via Google or Okta. The application
could present a login page with options for each method, or
automatically select the scheme based on the user’s domain (e.g.,
@company.com for SSO, others for Social Sign-In). This
flexibility enhances user experience by allowing seamless
transitions between authentication methods without requiring
multiple applications.

Security is a critical consideration when using multiple
schemes. Developers must ensure that the switching logic is
secure to prevent unauthorized manipulation. For URL-based
switching, Apex’s internal handling of the
APEX AUTHENTICATION parameter is secure, but
developers should implement additional validation to restrict
scheme selection to authorized options. For application
processes, PL/SQL logic must be protected against injection
attacks, using bind variables and input sanitization.

Session management across multiple schemes requires careful
handling to avoid disruptions. Apex maintains a single session
ID, but developers must ensure that session attributes (e.g., roles,
preferences) are consistently applied regardless of the
authentication method. Logging authentication events, including
the scheme used, is crucial for monitoring and detecting
anomalies, such as unauthorized scheme switches [19].

Testing multiple schemes involves verifying that switching
occurs correctly, sessions remain stable, and user roles are
applied consistently. Developers should also test fallback

© 2024, ISJEM (All Rights Reserved) | www.isjem.com

| Page 9

https://example.com/ords/f?p=%20app_id:1
https://example.com/ords/f?p=%20app_id:1
https://apex.example.com/ords/apex_authentication.saml_
https://apex.example.com/ords/apex_authentication.saml_

VOLUME: 03 ISSUE: 03| MAR- 2024

INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT

ISSN: 2583-6129
DOI: 10.55041/ISJEM01379

AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

scenarios, such as when a primary scheme is unavailable, to
ensure the application defaults to an appropriate alternative. For
example, if the SAML IdP is down, the application might fall
back to Database Accounts for critical users [22].

This approach allows Apex applications to support diverse
authentication needs, from public-facing portals to enterprise
systems, while maintaining security and usability. By leveraging
URL parameters and application processes, developers can
create a seamless and flexible authentication experience tailored
to specific user groups and contexts.

VI. DISCUSSIONS

The implementation of Single Sign-On (SSO), Social Sign-In,
and multiple authentication schemes in Oracle Application
Express (Apex) applications yields significant benefits in terms
ofuser experience, security, and scalability, while also presenting
unique challenges that require careful management. This section
explores the outcomes of these implementations, focusing on
their practical implications, operational benefits, challenges, best
practices, and emerging trends. By analyzing real-world
applications, security considerations, and the strategic use of
multiple authentication schemes, this discussion provides
actionable insights for developers to optimize Apex applications
for diverse user needs.

A. Operational Benefits of SSO and Social Sign-In

The deployment of SSO and Social Sign-In in Oracle Apex
applications delivers substantial operational advantages,
particularly in enhancing user experience and streamlining
access management. SSO enables users to authenticate once and
access multiple applications seamlessly, significantly reducing
login fatigue and boosting productivity, especially in enterprise
environments where employees interact with numerous systems
daily. For example, a multinational corporation using Apex for
internal dashboards can leverage SSO to provide employees with
unified access to HR, finance, and project management tools,
minimizing disruptions and improving workflow efficiency [11].
This centralized approach reduces the administrative burden of
managing user credentials across disparate systems, allowing IT
teams to focus on higher-value tasks like application
development and optimization.

Social Sign-In, by contrast, enhances user adoption in public-
facing applications by allowing users to log in with familiar
credentials from platforms like Google, Facebook, Okta, or
Microsoft Azure. This approach is particularly effective for
applications targeting broad audiences, such as e-commerce
platforms or educational portals, where reducing signup friction
is critical to user retention. For instance, a university portal using
Social Sign-In can enable students to access course materials
with their Google accounts, simplifying onboarding and
increasing engagement [2]. Additionally, both SSO and Social
Sign-In leverage the robust security features of external identity
providers, such as multi-factor authentication (MFA) and
advanced encryption, which enhance the overall security posture
of Apex applications without requiring developers to implement

these features from scratch [12]. This outsourcing of
authentication to trusted providers reduces the risk of credential
theft, a common vulnerability in traditional username-password
systems [3].

From a scalability perspective, SSO is particularly
advantageous for organizations with large user bases or
complex application ecosystems. By centralizing
authentication, SSO ensures consistent access policies and
simplifies user provisioning, making it easier to scale
applications as organizations grow [11]. Social Sign-In,
meanwhile, supports scalability by eliminating the need for
extensive user account management, as users rely on existing
accounts from identity providers. This is especially beneficial
for applications with rapidly growing user bases, where manual
account creation would be impractical [2].

B. Challenges and Operational Considerations

Despite their benefits, implementing SSO and Social Sign-In in
Oracle Apex introduces several challenges that developers must
address to ensure reliable and secure operations. A primary
concern is the dependency on external identity providers. For
Social Sign-In, reliance on providers like Google or Okta means
that service outages or policy changes can disrupt user access,
potentially impacting business continuity. For example, a
temporary outage in a provider’s authentication service could
prevent users from logging into an Apex application,
necessitating fallback mechanisms like alternative authentication
methods or clear user communication strategies [13]. Similarly,
SSO implementations, particularly those using SAML, require
precise configuration of metadata, certificates, and trust
relationships between Apex (as the Service Provider) and the
Identity Provider. Misconfigurations, such as incorrect redirect
URIs or mismatched entity IDs, can lead to authentication
failures or security vulnerabilities, such as accepting invalid
assertions [12].

Security remains a critical consideration. For Social Sign-In,
handling OAuth2 tokens securely is paramount to prevent attacks
like token interception or replay. Apex’s Web Credentials feature
mitigates this by encrypting sensitive data like client IDs and
secrets, but developers must ensure that access tokens are short-
lived and refresh tokens are stored securely [S]. For SSO,
particularly SAML, validating assertions for signature, issuer,
and audience is essential to prevent tampering or unauthorized
access. Clock synchronization between Apex and the Identity
Provider is also critical to avoid issues with assertion expiration
[3]. Session management poses another challenge, as improperly
configured session timeouts can lead to prolonged active
sessions, increasing the risk of session hijacking. Developers
must configure appropriate timeouts and regenerate session IDs
post-authentication to mitigate session fixation attacks [1].

User identity mapping across different authentication schemes
is a complex but essential task. When users log in via Social Sign-
In (e.g., with a Google email) and later via SSO (e.g., with a
corporate ID), ensuring these identities map to a single Apex user
account prevents duplicate profiles and access inconsistencies.

© 2024, ISJEM (All Rights Reserved) | www.isjem.com

| Page 10

VOLUME: 03 ISSUE: 03| MAR- 2024

INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT

ISSN: 2583-6129
DOI: 10.55041/ISJEM01379

s ANINTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

This requires a robust mapping strategy, such as maintaining a
custom table to link external identifiers to Apex usernames,
which can be challenging to implement and maintain in large-
scale applications [10]. Compliance with data protection
regulations, such as GDPR or HIPAA, adds further complexity,
particularly for Social Sign-In, where user data from external
providers must be handled with explicit consent and secure
storage practices [13].

C. Best Practices for Secure and Effective Implementation
To address these challenges, developers should adhere to a set of
best practices tailored to Oracle Apex’s authentication
framework:

e Encryption and Secure Communication: All
authentication-related communications must use
HTTPS to encrypt data in transit, protecting against
eavesdropping and man-in-the-middle attacks. Apex’s
Security Attributes can enforce HTTPS for the entire
application [1].

o Token and Assertion Validation: For Social Sign-In,
validate ID tokens using the provider’s public keys to
ensure authenticity. For SAML SSO, verify assertions
for signature, issuer, and audience to prevent
tampering [3].

e Minimal Permissions: Request only necessary
OAuth2 scopes (e.g., openid profile email) for Social
Sign-In and limit SAML attribute mappings to
essential data to reduce exposure [14].

e CSRF Protection: Enable Apex’s built-in CSRF
protection and use state parameters in OAuth2 flows
to verify request integrity [14].

o Secure Credential Storage: Utilize Apex’s Web
Credentials to encrypt sensitive data, such as client
IDs and secrets, ensuring compliance with security
standards [5].

o Session Management: Configure session timeouts
(e.g., 8 hours for maximum session length, 30 minutes
for idle time) and regenerate session IDs post-
authentication to prevent session fixation [1].

e Logging and Monitoring: Enable detailed logging of
authentication events in Apex to detect and respond to
security incidents, such as unauthorized login attempts
[19].

e Regular Security Audits: Conduct periodic audits
and penetration testing to identify vulnerabilities,
ensuring the application remains secure against
evolving threats [23].

These practices ensure that SSO and Social Sign-In
implementations are both secure and user-friendly, minimizing
risks while maximizing operational efficiency.

D. Comparison with Other Low-Code Platforms
Compared to other low-code platforms like Microsoft Power
Apps or OutSystems, Oracle Apex offers a robust and flexible
authentication framework. Power Apps supports SSO and social

logins through Azure AD, but its integration is less flexible for
non-Microsoft ecosystems [28]. OutSystems provides similar
capabilities but may lack Apex’s granular control over multiple
authentication schemes within a single application [29]. Apex’s
tight integration with Oracle’s ecosystem, including OCI IAM
and Oracle AS SSO, provides a unique advantage for
organizations invested in Oracle technologies, making it a
preferred choice for enterprise-grade applications [12].

E. Real-world Applications and Community Insights
Real-world implementations of SSO and Social Sign-In in Apex
applications demonstrate their versatility. For example, a global
e-commerce platform might use Social Sign-In to streamline
customer logins, reducing cart abandonment rates, while
employing SSO for internal staff managing inventory systems.
Educational institutions leverage Social Sign-In for student
portals, simplifying access to learning resources [30].
Community resources and blogs by experts like Dimitri Gielis,
provide practical insights into overcoming challenges like
redirect URI mismatches or integrating with less common
providers [31]. These community-driven insights complement
official documentation, offering real-world solutions and best
practices.

In conclusion, SSO, Social Sign-In, and multiple
authentication schemes in Oracle Apex offer a powerful
combination of security, scalability, and user convenience. By
addressing challenges through best practices and leveraging
emerging trends, developers can create robust, user-centric
applications that meet the demands of modern web development.
The ability to support multiple schemes within a single
application ensures flexibility, making Apex a versatile platform
for diverse authentication needs.

VII. FUTURE TRENDS AND RECOMMENDATIONS

The authentication landscape is undergoing rapid transformation,
driven by technological advancements, heightened security
concerns, and evolving user expectations. For Oracle Application
Express (Apex) developers, these trends present opportunities to
enhance application security, usability, and compliance while
addressing future challenges. This section explores emerging
authentication trends and provides actionable recommendations
tailored to Apex, focusing on practical strategies to leverage its
flexible authentication framework.

A. Passwordless Authentication
The shift towards passwordless authentication is a response to the
vulnerabilities of traditional passwords, which are prone to
phishing, brute-force attacks, and user errors. Methods such as
biometrics (e.g., facial recognition, fingerprint scanning) and
magic links sent via email or SMS offer a seamless and secure
alternative, reducing login friction while enhancing protection.
The WebAuthn standard, supported by modern browsers,
enables passwordless login using public key cryptography,
leveraging device-based authenticators like biometric sensors or

© 2024, ISJEM (All Rights Reserved) | www.isjem.com

| Page 11

VOLUME: 03 ISSUE: 03| MAR- 2024

INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT

ISSN: 2583-6129
DOI: 10.55041/ISJEM01379

s ANINTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

hardware tokens [26]. For Apex applications, developers can
implement passwordless authentication through custom
authentication schemes, integrating with WebAuthn-compatible
identity providers or third-party services like AuthO [28]. For
example, a custom scheme could validate a WebAuthn credential
by calling an external API, ensuring compatibility with Apex’s
low-code environment. This approach is particularly valuable for
public-facing applications, such as e-commerce platforms, where
user convenience drives adoption. However, developers must
address challenges like device compatibility and user education
to ensure broad accessibility. Privacy concerns also arise, as
biometric data requires secure storage and compliance with
regulations like GDPR to maintain user trust [13].

B. Decentralized Identity

Decentralized identity, often powered by blockchain technology,
empowers users to control their identity data through self-
sovereign identity (SSI) frameworks. SSI allows users to share
verifiable credentials (e.g., proof of identity or qualifications)
without relying on centralized authorities, enhancing privacy and
reducing data exposure [25]. While still emerging, decentralized
identity could transform authentication in Apex applications,
particularly for industries like finance or healthcare that require
high trust and data sovereignty. Developers can explore
integration with SSI platforms, such as those based on the W3C
Verifiable Credentials standard, using custom authentication
schemes to validate credentials via blockchain APIs [29]. For
instance, an Apex application could verify a user’s digital
identity by querying a blockchain ledger, ensuring secure and
private authentication. Challenges include the complexity of
blockchain integration and the need for user familiarity with
digital wallets. As decentralized identity matures, Apex’s
extensible framework positions it well to adopt these solutions,
offering users greater control over their data.

C. Al-Driven Adaptive Authentication

Artificial intelligence (AI) and machine learning (ML) are
revolutionizing authentication by enabling adaptive security
measures that assess risk based on user behavior, device, and
context. For example, Al can detect anomalies, such as logins
from unfamiliar locations, and trigger additional verification
steps like MFA [24]. While Apex lacks native Al capabilities,
developers can integrate with external Al-driven authentication
services, such as those offered by Okta or Microsoft Azure AD,
to implement adaptive authentication [15]. Alternatively, custom
PL/SQL logic can analyze login patterns (e.g., IP address, time
of access) to flag suspicious activity, though this requires
significant development effort. This approach is ideal for
enterprise applications where security is paramount, such as
corporate dashboards handling sensitive data. Challenges include
the complexity of integrating Al services and ensuring real-time
performance in a low-code environment. Developers must also
balance security with user experience to avoid excessive
authentication prompts.

D. Privacy-Enhancing Technologies

Increasing regulatory scrutiny, exemplified by GDPR and PSD3,
underscores the need for authentication methods that minimize
personal data exposure [13]. Zero-knowledge proofs (ZKPs)
allow users to verify attributes (e.g., age, employment) without
revealing underlying data, while anonymous credentials enable
pseudonymous authentication [29]. For Apex applications,
developers can explore ZKP-based authentication by integrating
with privacy-focused identity providers or developing custom
schemes that validate credentials without storing sensitive data.
This is particularly relevant for healthcare or financial
applications, where data privacy is critical. Challenges include
the computational complexity of ZKPs and the need for user
education on privacy-focused authentication.

E. Cloud-Based Authentication

Cloud-based identity solutions, such as Oracle Identity Cloud
Service (IDCS), offer scalability, advanced security features, and
simplified management [12]. These services support MFA, SSO,
and adaptive authentication, making them ideal for Apex
applications with growing user bases. Developers can integrate
IDCS to offload authentication complexity, ensuring applications
remain secure and scalable. This trend is particularly relevant for
enterprises leveraging Oracle’s cloud ecosystem, though
developers must consider costs and potential vendor lock-in.

The future of authentication in Oracle Apex is shaped by
trends towards passwordless methods, decentralized identity, Al-
driven security, quantum-resistant cryptography, privacy-
enhancing technologies, and cloud-based solutions. By
embracing these trends and following best practices, developers
can build applications that are secure, compliant, and ready for
future challenges, ensuring seamless and trustworthy user
experiences.

VIII. CONCLUSION

The implementation of Single Sign-On (SSO) and Social Media
Sign-On in Oracle Application Express (Apex) applications
marks a significant advancement in the realm of web application
security and usability, offering developers a robust framework to
address the evolving demands of modern digital environments.
This research has demonstrated that Apex’s versatile
authentication architecture, encompassing schemes such as
APEX Accounts, Database Accounts, Custom Authentication,
Social Sign-In, and various SSO methods, provides a powerful
toolkit for creating secure, scalable, and user-centric
applications. By enabling seamless integration with external
identity providers like Google, Office365, Okta, and Oracle
Cloud Infrastructure (OCI) IAM, Apex empowers developers to
deliver authentication solutions that enhance user convenience
while maintaining stringent security standards. The ability to
dynamically switch between multiple authentication schemes
within a single application stands out as a particularly innovative
feature, allowing tailored access experiences for diverse user

© 2024, ISJEM (All Rights Reserved) | www.isjem.com

| Page 12

VOLUME: 03 ISSUE: 03| MAR- 2024

INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT

ISSN: 2583-6129
DOI: 10.55041/ISJEM01379

AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

groups, from public consumers to enterprise employees, without
compromising security or performance.

A key contribution of this study is its comprehensive guidance
on implementing these authentication methods, emphasizing
practical strategies to overcome challenges such as configuration
complexity and external provider dependencies. By adhering to
best practices—such as using HTTPS for secure communication,
validating tokens and assertions, and leveraging Apex’s Web
Credentials for encrypted storage of sensitive data, developers
can mitigate risks like credential theft and session hijacking.
These practices ensure that Apex applications align with industry
standards and regulatory requirements, such as GDPR, which is
critical for industries handling sensitive data, including
healthcare, finance, and education. For instance, a healthcare
application using Social Sign-In can simplify patient access to
portals while ensuring compliance with data protection laws,
while a corporate dashboard employing SSO can streamline
employee workflows across integrated systems, enhancing
operational efficiency.

The implications of this research extend to a wide range of
industries and user scenarios. In educational settings, Social
Sign-In reduces barriers to access for students, enabling quick
and intuitive logins to learning management systems using
familiar credentials from platforms like Google or Microsoft
Azure. In enterprise environments, SSO facilitates centralized
identity management, reducing administrative overhead and
improving productivity by allowing employees to access
multiple systems with a single login. The flexibility to support
multiple authentication schemes within one application is
particularly valuable for hybrid use cases, such as a university
portal serving students, faculty, and external partners, each
requiring different authentication methods. This adaptability
ensures that Apex applications can cater to diverse user needs,
fostering inclusivity and enhancing user adoption across various
contexts.

From a broader perspective, this study contributes to the
growing body of knowledge on low-code platform security,
demonstrating that Apex’s low-code environment does not
compromise on delivering high-security authentication solutions.
Compared to other low-code platforms like Microsoft Power
Apps or OutSystems, Apex’s tight integration with Oracle’s
ecosystem and its support for dynamic authentication switching
provide a unique advantage, particularly for organizations
invested in Oracle technologies. This research underscores the
potential of low-code platforms to democratize advanced
security features, enabling developers with varying levels of
expertise to implement robust authentication without extensive
coding.

Looking ahead, future research could explore several
promising directions to further enhance Apex’s authentication
capabilities. Investigating the integration of biometric
authentication, such as fingerprint or facial recognition, could
align Apex with the growing trend of passwordless
authentication, offering even greater convenience and security.
Performance optimization for large-scale deployments,
particularly under high user loads, is another critical area, as

authentication latency can impact user experience in enterprise
applications. Additionally, exploring the feasibility of
decentralized identity systems, such as those based on
blockchain, could position Apex as a leader in privacy-focused
authentication, addressing increasing user demand for data
sovereignty. These research avenues would build on the
foundation established by this study, ensuring that Apex remains
at the forefront of authentication innovation.

In conclusion, this article provides a comprehensive and
practical guide for implementing SSO and Social Media Sign-On
in Oracle Apex, equipping developers with the tools and insights
needed to build secure, scalable, and user-friendly applications.
By leveraging Apex’s flexible authentication framework and
adhering to best practices, developers can address the diverse
needs of modern users while maintaining robust security. As
authentication technologies continue to evolve, Apex’s
extensible architecture ensures its adaptability to emerging
trends, making it a powerful platform for future-proof web
application development. This research not only advances the
understanding of low-code security but also empowers
developers to create inclusive, efficient, and secure applications
that meet the demands of an increasingly complex digital
landscape.

ACKNOWLEDGMENT

The author would also like to disclose the use of the Grammarly
(AI) tool solely for editing and grammar enhancements.

REFERENCES

[1] Oracle, “Establishing User Identity Through Authentication,” Oracle
Help Center. Accessed: Feb. 06, 2024. [Online]. Available:
https://docs.oracle.com/en/database/oracle/apex/22.1/htmdb/establishing
-user-identity-through-authentication.html.

[2] L. Hirschegger, P. Winfield, and S. Collins, “Oracle APEX - Social
Login,” Rittman Mead. Accessed: Feb. 14, 2024. [Online]. Available:
https://www.rittmanmead.com/blog/2022/1 1/oracle-apex-social-login/

[3] N. Hossain, Md. A. Hossain, Md. Z. Hossain, Md. H. 1. Sohag, and S.
Rahman, “OAuth-SSO: A Framework to Secure the OAuth-Based SSO
Service for Packaged Web Applications,” in 2018 17th IEEE
International Conference On Trust, Security And Privacy In Computing
And Communications/ 12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE), IEEE, Aug. 2018, pp.
1575-1578. Accessed: Jan. 30, 2024. [Online]. Available:
https://doi.org/10.1109 /trustcom/bigdatase.2018.00227.

[4] E. Sciore, “Security,” in Understanding Oracle APEX 5 Application
Development, Berkeley, CA: Apress, 2015, pp. 279-313. Accessed: Jan.
31, 2024. [Online]. Available: https://doi.org/10.1007/978-1-4842-0989-
9_12.

[5] J. Dixon, “Secure your Secrets with Oracle APEX Web Credentials,”
Cloud Nueva Blog (Oracle, APEX&ORDS), Jul. 05, 2022. Accessed:
Feb. 04, 2024. [Online]. Available: https://blog.cloudnueva.com/apex-
web-credentials.

[6] J. Dixon, “Two Methods of Setting an APEX Authentication Scheme at
Run-Time,” Cloud Nueva Blog (Oracle, APEX & ORDS). Accessed:
Feb. 14, 2024. [Online]. Available: https://blog. cloudnueva.com/setting-
an-apex-authentication-scheme-at-run-time.

[71 A. Baggia, R. Leskovar, and B. Rodi¢, “Low Code Programming with
Oracle Apex Offers New Opportunities in Higher Education,” in Third
International Scientific Conference ITEMA Recent Advances in
Information Technology, Tourism, Economics, Management and
Agriculture, Association of Economists and Managers of the Balkans,

© 2024, ISJEM (All Rights Reserved) | www.isjem.com

| Page 13

https://docs.oracle.com/en/database/oracle/apex/22.1/htmdb/establishing-user-identity-through-authentication.html
https://docs.oracle.com/en/database/oracle/apex/22.1/htmdb/establishing-user-identity-through-authentication.html
https://www.rittmanmead.com/blog/2022/11/oracle-apex-social-login/
https://doi.org/10.1109%20/trustcom/bigdatase.2018.00227
https://doi.org/10.1007/978-1-4842-0989-9_12
https://doi.org/10.1007/978-1-4842-0989-9_12
https://blog.cloudnueva.com/apex-web-credentials
https://blog.cloudnueva.com/apex-web-credentials

¢ &,
Y ISJEM ¥
\\ij &1

g 25 A

|
.

.

i

VOLUME: 03 ISSUE: 03| MAR- 2024

INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT

ISSN: 2583-6129
DOI: 10.55041/ISJEM01379

-f@xz ":’4/' AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

Belgrade, Serbia, 2019, pp. 91-97. Accessed: Feb. 07, 2024. [Online].
Available: https://doi.org/10.31410/itema.s.p.2019.91.

M. Smithers, “Implementing a Database Authentication Scheme in
APEX,” The Anti-Kyte. Feb. 07, 2024. [Online]. Available:
https://mikesmithers.wordpress.com/2014/12/14/implementing-a-
database-authentication-scheme-in-apex/.

D. Gielis, “Create a Custom Authentication and Authorization Scheme in
Oracle APEX,” APEX): Create a Custom Authentication and
Authorization Scheme in Oracle APEX. Accessed: Feb. 07, 2024.
[Online]. Available: http://dgielis.blogspot.com/2017/08/create-custom-
authentication-and.html.

D. Gielis, “Facebook, Google and Custom Authentication in the same
Oracle APEX 18.1 app,” Dimitri Gielis Blog (Oracle Application Express
- APEX). Accessed: Feb. 14, 2024. [Online]. Available:
http://dgielis.blogspot.com/2018/06/facebook-google-and-custom.html.
Oracle, “Extending Oracle E-Business Suite Release 12 using Oracle
APEX,” Oracle Tech Network. Accessed: Feb. 06, 2024. [Online].
Available: https://www.oracle.com/technetwork/developer-tools/apex
/learnmore/apex-ebs-extension-white-paper-345780.pdf.

R. Allen, “SAML Sign-In,” Oracle Help Center. Accessed: Feb. 10, 2024.
[Online]. Available: https://docs.oracle.com/en/database/oracle/
apex/23.2/htmdb/saml-sign-in.html.

S. Collins, “Oracle APEX - Implementing Role-Based Access with Social
Login,” Rittman Mead, Nov. 17, 2023. Accessed: Feb. 14, 2024. [Online].
Available: https://www.rittmanmead.com/blog/ 2023/11/oracle-apex-
extending-social-sign-in/.

A. Chatterjee, “Social Sign-In,” Oracle Help Center. Accessed: Feb. 16,
2024. [Online]. Awvailable: https://docs.oracle.com/en/database
/oracle/apex/22.2/htmdb/social-sign-in.html.

T. Hall, “Azure AD Authentication for Oracle APEX Applications :
Social Sign In,” Oracle-base.com. Accessed: Feb. 16, 2024. [Online].
Available: https://oracle-base.com/articles/misc/azure-ad-authentication-
for-oracle-apex-applications.

Oracle, “Understanding Preconfigured Authentication Schemes,”
Oracle® APEX App Builder User’s Guide Release 22.2. Accessed: Feb.
14, 2024. [Online]. Available: https://docs.oracle.com/en
/database/oracle/apex/22.2/ htmdb/preconfigured-authentication-
schemes.html.

J. Dixon, “It’s Time for a New Name for Oracle APEX Social Sign-In,”
JMJ CLOUD. Accessed: Feb. 15, 2024. [Online]. Available:
http://www.jmjcloud.com/blog/its-time-for-a-new-name-for-apex-
social-sign-in.

M. Mulvaney, “APEX Authentication Options.” Accessed: Feb. 16, 2024.
[Online]. Available: https://content.dsp.co.uk/apex/apex-authentication-
options.

W. Ali, “Top Security Best Practices in Oracle APEX Applications,”
MaxAPEX. Accessed: Feb. 14, 2024. [Online]. Available:
https://www.maxapex.com/blogs/security-best-practices-in-oracle-apex.
Oracle, “OIDC Client Integrations with Social Identity Providers,” Oracle
Help Center. Accessed: Feb. 17, 2024. [Online]. Available:
https://docs.oracle.com/en/middleware/idm/access-
manager/11.1.2.3/aiaag/oidc-client-integrations-social-identity-

providers.html#GUID-E9DAFF1A-97FD-4578-92F9-1D9755A838C9.
Oracle, “API Gateway OAuth 2.0 Authentication Flows,” Oracle®

Fusion Middleware. Accessed: Feb. 17, 2024. [Online]. Available:
https://docs.oracle.com/cd/ES0612_01/doc.11122/oauth_guide/content/o
auth_intro.html.

L. Hirschegger, “Oracle APEX - Debugging a Social Login,” Rittman
Mead, Oct. 25, 2023. Accessed: Feb. 14, 2024. [Online]. Available:
https://www.rittmanmead.com/blog/2023/10/oracle-apex-authentication-
debug-tip/.

E. van der Walt, J. H. P. Eloff, and J. Grobler, “Cyber-security: Identity
deception detection on social media platforms,” Computers &
Security, vol. 78, pp. 76—89, Sep. 2018, doi: 10.1016/j.cose.2018.05.015.
M. Sewtz, "Oracle APEX 18.1 - New Features and Enhancements,"
presented at the ODTUG Kscopel9, San Antonio, TX, USA, 2019.
Oracle, "Oracle Application Express User Guide," Oracle
Documentation, 2022. Accessed: Feb. 16, 2024. [Online]. Available:
https://docs.oracle.com/en/database/oracle/apex/22.1/htmdb/index.html.
WebAuthn Working Group, "Web Authentication: An API for accessing
Public Key Credentials,” W3C, 2019. [Online]. Available:
https://www.w3.org/TR/webauthn/.

[27]

(28]

[29]

[30]

(31

L. Chen, S. Jordan, Y. Liu, D. Moody, R. Peralta, R. Perlner, and D.
Smith-Tone, "Report on Post-Quantum Cryptography," NIST, Apr. 2016.
Accessed: Feb. 17, 2024. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf.

Auth0O, "Passwordless Authentication," AuthO Documentation, 2023.
Accessed: Feb. 18, 2024. [Online]. Available:
https://auth0.com/docs/authentication/passwordless.

Sovrin Foundation, "Sovrin: A Protocol and Token for Self-Sovereign
Identity and Decentralized Trust," Sovrin Foundation, 2018. [Online].
Available: https://sovrin.org/wp-content/uploads/Sovrin-Protocol-and-
Token-White-Paper.pdf.

Oracle, “Integrate Oracle APEX with Oracle Cloud Infrastructure Identity
and Access Management Identity Domains,” Oracle Help Center.
Accessed: Feb. 12, 2024. [Online]. Available:
https://docs.oracle.com/en/learn/apex-identitydomains-sso/index.html.
Oracle, "Oracle Cloud Infrastructure Identity and Access Management,"
Oracle Documentation, 2023. Accessed: Feb. 18, 2024. [Online].

Available: https://docs.oracle.com/enus/iaas/Content/ Identity/home.htm.

© 2024, ISJEM (All Rights Reserved)

| www.isjem.com

| Page 14

https://doi.org/10.31410/itema.s.p.2019.91
https://mikesmithers.wordpress.com/2014/12/14/implementing-a-database-authentication-scheme-in-apex/
https://mikesmithers.wordpress.com/2014/12/14/implementing-a-database-authentication-scheme-in-apex/
http://dgielis.blogspot.com/2017/08/create-custom-authentication-and.html
http://dgielis.blogspot.com/2017/08/create-custom-authentication-and.html
http://dgielis.blogspot.com/2018/06/facebook-google-and-custom.html
https://www.oracle.com/technetwork/developer-tools/apex%20/learnmore/apex-ebs-extension-white-paper-345780.pdf
https://www.oracle.com/technetwork/developer-tools/apex%20/learnmore/apex-ebs-extension-white-paper-345780.pdf
https://docs.oracle.com/en/database/oracle/%20apex/23.2/htmdb/saml-sign-in.html
https://docs.oracle.com/en/database/oracle/%20apex/23.2/htmdb/saml-sign-in.html
https://www.rittmanmead.com/blog/%202023/11/oracle-apex-extending-social-sign-in/
https://www.rittmanmead.com/blog/%202023/11/oracle-apex-extending-social-sign-in/
https://docs.oracle.com/en/database%20/oracle/apex/22.2/htmdb/social-sign-in.html
https://docs.oracle.com/en/database%20/oracle/apex/22.2/htmdb/social-sign-in.html
https://oracle-base.com/articles/misc/azure-ad-authentication-for-oracle-apex-applications
https://oracle-base.com/articles/misc/azure-ad-authentication-for-oracle-apex-applications
https://docs.oracle.com/en%20/database/oracle/apex/22.2/
https://docs.oracle.com/en%20/database/oracle/apex/22.2/
http://www.jmjcloud.com/blog/its-time-for-a-new-name-for-apex-social-sign-in
http://www.jmjcloud.com/blog/its-time-for-a-new-name-for-apex-social-sign-in
https://content.dsp.co.uk/apex/apex-authentication-options
https://content.dsp.co.uk/apex/apex-authentication-options
https://www.maxapex.com/blogs/security-best-practices-in-oracle-apex
https://docs.oracle.com/en/middleware/idm/access-manager/11.1.2.3/aiaag/oidc-client-integrations-social-identity-providers.html#GUID-E9DAFF1A-97FD-4578-92F9-1D9755A838C9
https://docs.oracle.com/en/middleware/idm/access-manager/11.1.2.3/aiaag/oidc-client-integrations-social-identity-providers.html#GUID-E9DAFF1A-97FD-4578-92F9-1D9755A838C9
https://docs.oracle.com/en/middleware/idm/access-manager/11.1.2.3/aiaag/oidc-client-integrations-social-identity-providers.html#GUID-E9DAFF1A-97FD-4578-92F9-1D9755A838C9
https://docs.oracle.com/cd/E50612_01/doc.11122/oauth_guide/content/oauth_intro.html
https://docs.oracle.com/cd/E50612_01/doc.11122/oauth_guide/content/oauth_intro.html
https://www.rittmanmead.com/blog/2023/10/oracle-apex-authentication-debug-tip/
https://www.rittmanmead.com/blog/2023/10/oracle-apex-authentication-debug-tip/
https://docs.oracle.com/en/database/oracle/apex/22.1/htmdb/index.html
https://www.w3.org/TR/webauthn/
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf
https://auth0.com/docs/authentication/passwordless
https://sovrin.org/wp-content/uploads/Sovrin-Protocol-and-Token-White-Paper.pdf
https://sovrin.org/wp-content/uploads/Sovrin-Protocol-and-Token-White-Paper.pdf
https://docs.oracle.com/en/learn/apex-identitydomains-sso/index.html
https://docs.oracle.com/enus/iaas/Content/%20Identity/home.htm

