
 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 03 | MAR – 2024 DOI: 10.55041/ISJEM01379

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Advanced Authentication Strategies in Oracle Apex: SSO and Social Media

Integration

Ashraf Syed1

Corresponding author: Ashraf Syed (e-mail: maverick.ashraf@gmail.com).

ABSTRACT This article presents a comprehensive framework for implementing Single Sign-On (SSO) and Social Media Sign-On

in Oracle Application Express (Apex) applications, focusing on secure, user-centric authentication solutions. Oracle Apex, a low-

code platform, supports diverse authentication schemes, including APEX Accounts, Database Accounts, Custom Authentication,

Social Sign-In, and SSO, enabling developers to build scalable, secure applications. The paper details the configuration of Social

Sign-In with providers such as Google, Facebook, Okta, and Oracle Cloud Infrastructure (OCI) Identity and Access Management

(IAM) using OAuth2 and OpenID Connect protocols, streamlining user access through existing accounts. It also covers SSO

implementation via SAML and HTTP Header variables, ideal for enterprise environments requiring centralized identity

management. The article explains secure storage of service account credentials, such as client IDs and secrets, using Apex’s Web

Credentials, ensuring robust protection of sensitive data. A novel contribution is the use of multiple authentication schemes within

a single application, achieved through URL-based switching or application processes, enhancing flexibility. Supported by a detailed

methodology, results, and discussions, this work provides actionable guidance for developers, illustrated by figures and tables, to

create secure, user-friendly Apex applications that meet modern authentication demands.

Keywords: Oracle Apex, authentication, Single Sign-On, Social Media Sign-On, OAuth2, OpenID Connect, SAML, Web

Credentials, identity providers, application security, low-code development, user authentication, enterprise integration.

I. INTRODUCTION

Authentication is the cornerstone of web application security,

ensuring that only authorized users access protected resources

while safeguarding sensitive data from unauthorized access. In

the evolving landscape of web development, user convenience

has become a critical factor, driving the adoption of advanced

authentication methods such as Single Sign-On (SSO) and

Social Media Sign-On. SSO enables users to authenticate once

and gain seamless access to multiple applications, significantly

reducing login fatigue and enhancing productivity, particularly

in enterprise environments where users interact with numerous

systems daily. Social Media Sign-On allows users to log in

using existing accounts from widely adopted platforms such as

Google, Facebook, Okta, or Oracle Cloud Infrastructure (OCI)

Identity and Access Management (IAM), eliminating the need

to create and manage separate credentials [1]. These methods

not only improve user experience but also leverage robust

security features provided by external identity providers, such

as multi-factor authentication (MFA) and token-based access

control, to enhance application security.

Oracle Application Express (Apex), a low-code development

platform tightly integrated with Oracle Database, empowers

developers to create scalable, secure web applications with

minimal coding effort. Apex’s authentication framework is one

of its standout features, offering a variety of schemes tailored to

diverse application requirements. Built-in options, such as APEX

Accounts and Database Accounts, are well-suited for small-scale

applications or those requiring direct database integration. In

contrast, advanced methods like Social Sign-In and SSO cater to

complex enterprise environments where user experience and

centralized identity management are paramount [2]. Social Sign-

In leverages standardized protocols like OAuth2 and OpenID

Connect to integrate with external identity providers, allowing

users to authenticate using familiar credentials. SSO,

implemented through protocols like SAML or HTTP Header

variables, supports centralized identity management, enabling

seamless access across integrated systems within an organization

[1].

The growing reliance on cloud-based services and the

increasing sophistication of cyber threats have heightened the

importance of secure and flexible authentication mechanisms.

Research indicates that poor authentication practices are a

leading cause of data breaches, underscoring the need for robust

solutions like those offered by Apex [3]. Social Sign-In, by

outsourcing authentication to trusted providers, reduces the risk

of credential theft, while SSO minimizes the attack surface by

centralizing authentication processes [4]. Furthermore, Apex’s

Web Credentials feature provides a secure mechanism for storing

sensitive service account credentials, such as client IDs and

secrets, ensuring compliance with security best practices [5].

This article provides a comprehensive framework for

implementing SSO and Social Media Sign-On in Apex

applications, addressing both technical implementation and

practical considerations. It details the configuration of various

authentication schemes, secure credential storage using Web

Credentials, and the novel approach of integrating multiple

authentication methods within a single application. This ability

to dynamically switch authentication schemes within a single

application is particularly innovative, addressing the diverse

mailto:maverick.ashraf@gmail.com

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 03 | MAR – 2024 DOI: 10.55041/ISJEM01379

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

needs of modern users, from individual consumers preferring

social logins to enterprise users requiring SSO integration with

corporate identity providers [6]. By synthesizing insights from

community expertise, academic literature and official Oracle

documentation, this paper offers developers a scholarly yet

practical guide to building secure, user-friendly Apex

applications addressing the evolving demands of modern web

development and author believes that this paper will be

contributing to the growing body of knowledge on low-code

platform security.

II. BACKGROUND AND RELATED WORK

Authentication in web applications has been a focal point of

research, with Oracle Application Express (Apex) emerging as a

robust platform for implementing secure and flexible

authentication solutions. The Oracle Apex documentation

provides a comprehensive overview of its authentication

schemes, including APEX Accounts, Database Accounts, Social

Sign-In, and SAML-based Single Sign-On (SSO), designed to

meet diverse application requirements [1]. These schemes

balance security, usability, and scalability, positioning Apex as a

leading low-code platform for rapid application development in

both academic and industry contexts [7]. This section reviews the

existing literature on authentication mechanisms, focusing on

SSO and Social Media Sign-On, and identifies gaps that this

article addresses through a novel framework for Apex

applications.

Sciore’s seminal work on Apex security delineates the

distinction between authentication (verifying user identity) and

authorization (controlling resource access), emphasizing the role

of built-in schemes like APEX Accounts for user management

and custom schemes for specialized requirements [4]. APEX

Accounts, managed within the Apex workspace, are suitable for

small-scale applications, while Database Accounts leverage

Oracle database credentials for seamless integration with existing

database systems [8]. Custom Authentication, implemented via

PL/SQL, offers flexibility for bespoke solutions, such as

integrating two-factor authentication or proprietary systems [9].

These foundational schemes provide a baseline for understanding

Apex’s authentication capabilities.

The advent of Social Sign-In has transformed user

authentication by leveraging OAuth2 and OpenID Connect

protocols to integrate with external identity providers like

Google, Facebook, Okta, and Oracle Cloud Infrastructure (OCI)

Identity and Access Management (IAM). APEX Community

blogs, such as those by Dimitri Gielis, provide practical insights

into configuring Social Sign-In in Apex, demonstrating real-

world applications with providers like Google and Facebook

[10]. These sources highlight the user-friendly nature of Social

Sign-In, which reduces the need for users to manage multiple

credentials, thereby enhancing adoption and satisfaction [2].

Rittman Mead’s blog further details the configuration of Social

Sign-In, addressing challenges like redirect URI setup and

debugging, which are critical for successful implementation [2].

A presentation by Sewtz and Neumüller emphasizes the

simplicity of Social Sign-In in Apex since version 18.1, noting

its integration with OAuth2 flows for providers like LinkedIn, in

addition to Google and Facebook [5].

SSO, particularly in enterprise settings, has been extensively

studied for its ability to streamline access across multiple

systems. Oracle’s white paper on integrating Apex with Oracle

E-Business Suite discusses SSO implementations using Oracle

Access Manager, highlighting its suitability for large-scale

enterprise environments [11]. SAML-based SSO, supported in

Apex 21.2 and later, enables integration with enterprise identity

providers like ForgeRock and OCI IAM, requiring Oracle

Database 19c or 21c [12]. Academic literature, such as Smith’s

work in IEEE Transactions on Software Engineering, explores

OAuth2 and SAML protocols, providing theoretical foundations

for their security benefits and limitations in web applications [3].

These protocols ensure secure token exchange and identity

federation, reducing the risk of credential theft and simplifying

user management [3].

The integration of social media in authentication extends

beyond technical implementation to broader implications for user

behavior and security. A study by Hossain et al., in Information

Systems Frontiers reviewed 132 papers on social media, noting

its role in facilitating user interactions and decision-making

through user-generated content [3]. This study underscores the

relevance of Social Sign-In in leveraging trusted platforms for

authentication, aligning with Apex’s capabilities. However, it

also highlights risks such as data privacy concerns and potential

service outages, which developers must address when relying on

external providers [3]. A study by van der Walt et al. further

explores cybersecurity risks in social media platforms,

identifying threats like identity theft and unauthorized access,

which are mitigated in Apex through secure credential storage in

Web Credentials [13]. These findings emphasize the importance

of robust security measures in Social Sign-In implementations.

Despite the wealth of resources, there remains a gap in

comprehensive guides that integrate SSO, Social Media Sign-

On, and dynamic authentication switching in Apex. Existing

literature often focuses on individual schemes or basic

configurations, lacking a unified approach to advanced

implementations. For instance, while Oracle’s documentation

provides detailed technical guidance [14], [12], it does not

address the practical challenges of combining multiple

authentication schemes within a single application. Community

blogs, such as those by Oracle-Base, offer practical tutorials for

configuring Social Sign-In with Microsoft Azure AD but lack

theoretical depth [15]. Academic studies provide rigorous

analyses of authentication protocols but rarely focus on low-code

platforms like Apex [3]. This article addresses these gaps by

synthesizing official documentation, community expertise, and

academic insights into a novel framework. It emphasizes

practical implementation of SSO and Social Sign-In, secure

credential management, and the innovative use of dynamic

authentication switching, supported by Apex’s ability to toggle

schemes via URL parameters or application processes [6]. By

addressing real-world challenges and leveraging scholarly and

practical sources, this work provides a scalable, secure, and user-

centric approach to authentication in Apex applications.

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 03 | MAR – 2024 DOI: 10.55041/ISJEM01379

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

III. TYPES OF AUTHENTICATIONS IN APEX

Oracle Application Express (Apex) provides a robust set of

preconfigured authentication schemes to secure applications and

verify user identities, catering to a wide range of application

requirements. These schemes range from simple, built-in options

to advanced integrations with external identity providers,

offering flexibility for developers to balance security, usability,

and scalability. These schemes are managed at the application

level, with one designated as the "Current" scheme that dictates

how APEX identifies and verifies users. All authentication

schemes in APEX also support the use of plug-ins, offering

extensibility for custom authentication logic.

TABLE I. AUTHENTICATION SCHEMES IN ORACLE APEX

Scheme

Name
Description

Typical

Use

Case

Key

Features/Consi

derations

Oracle

APEX

Accounts

Internal user

accounts

managed

within the

APEX

repository.

Default

for new

applicat

ions,

simple

internal

user

manage

ment.

Built-in features

for password

complexity,

account locking,

login throttling.

Full user

management

out-of-the-box.

Database

Accounts

Authenticate

s users

directly

against

existing

database

schema

accounts.

Migrati

ng

legacy

Oracle

Forms

applicat

ions,

simple

databas

e-

centric

apps.

Requires

database user

per application

user. Native

database

password

policies (e.g.,

failed login

attempts) may

not be observed

by APEX,

requiring

custom

handling.

LDAP

Directory

Authenticate

s against a

central

LDAP

server (e.g.,

Microsoft

Active

Directory).

Enterpri

se

applicat

ions

requirin

g

integrati

on with

existing

corporat

e

directori

es.

Centralized user

management

outside APEX.

APEX instance

can authenticate

workspaces

against LDAP.

Oracle

Applicati

on Server

Single

Sign-On

Delegates

authenticatio

n to a legacy

Oracle AS

SSO Server.

Applica

tions

within

an

existing

Requires site

registration as

partner app and

PL/SQL SSO

SDK.

Oracle

AS SSO

environ

ment.

SAML

Sign-In

Delegates

authenticatio

n to a SAML

2.0 Identity

Provider.

Enterpri

se

federati

on, B2B

SSO.

Supports

standard SAML

assertion

exchange.

Social

Sign-In

Authenticate

s with social

networks

(Google,

Facebook)

or enterprise

IdPs using

OpenID

Connect/OA

uth2.

Consum

er-

facing

applicat

ions,

B2C,

modern

enterpri

se

identity.

Native support

for popular

providers.

Configurable via

Discovery URL,

scopes, client

ID/secret.

Extensible via

Post-

Authentication

procedures.

Custom

Authentic

ation

Allows

developers

to

implement

entirely

custom

authenticatio

n logic using

PL/SQL.

Highly

specific

authenti

cation

require

ments,

integrati

on with

propriet

ary

systems,

advance

d 2FA.

Complete

control over

logic. Requires

manual

implementation

of password

management,

account locking,

etc. Can be

implemented as

a plug-in.

HTTP

Header

Variable

Authenticate

s users

externally

based on a

username in

an HTTP

header set by

a web

server.

Kerbero

s SSO,

proxy-

based

authenti

cation.

Seamless SSO

experience (no

APEX login

page). Requires

web server

configuration.

Open

Door

Credenti

als

Provides a

login page

that captures

a username

without

actual

authenticatio

n.

Read-

only

applicat

ions

with

non-

sensitiv

e data,

develop

ment

environ

ments.

Minimal

security,

primarily for

user

identification

without

verification.

No

Authentic

ation

Adopts the

current

database

user,

Applica

tions

where

databas

No explicit

authentication

within APEX.

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 03 | MAR – 2024 DOI: 10.55041/ISJEM01379

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

(using

DAD)

typically set

by a

mod_plsql

Database

Access

Descriptor.

e user

context

is

implicitl

y set, or

for

public,

non-

secure

content.

A. Oracle APEX Accounts

This authentication relies on user accounts created and managed

within the Apex workspace repository. Users are assigned a

username and password, stored securely using industry-standard

hashing algorithms. The authentication process involves

validating user-provided credentials against the repository,

creating a session upon successful verification. This scheme

supports features like password complexity requirements,

expiration policies, and account locking after multiple failed

attempts, enhancing security [1]. It is particularly effective for

applications with a limited user base, such as internal tools or

prototypes, due to its straightforward setup through the Apex

Administration interface. However, its scalability is limited for

applications with thousands of users, as manual user

management becomes cumbersome. Additionally, it lacks

integration with external identity systems, making it less suitable

for enterprise environments requiring centralized authentication

[4]. For example, a small business developing an internal

dashboard might use APEX Accounts to manage a dozen users

efficiently, but a large organization would find it impractical due

to administrative overhead.

B. Database Accounts

Database Accounts authentication leverages Oracle database

user credentials, allowing users to log in with their existing

database usernames and passwords. The process involves Apex

attempting to establish a database connection using the provided

credentials; a successful connection authenticates the user. This

scheme is ideal for applications tightly integrated with Oracle

databases, such as those migrated from Oracle Forms, where

users already have database accounts [8]. It benefits from the

database’s robust security features, including role-based

privileges and auditing capabilities. However, it requires careful

management of database user privileges to prevent unauthorized

access, and creating individual database accounts for large user

bases can be complex. For instance, a financial application

requiring direct database access for reporting might use Database

Accounts to align with existing database security policies, but

public-facing applications may find this approach impractical

due to the need for extensive user provisioning.

C. LDAP Directory

LDAP Directory authentication enables Apex to authenticate

users against an LDAP server, such as Microsoft Active

Directory or Open LDAP. Apex binds to the LDAP server using

user-provided credentials, authenticating if the bind succeeds.

Developers configure server details like host, port, and search

filters to locate users [1]. This scheme leverages existing

directory services, centralizing user management. Security

requires LDAPS to protect credentials in transit. It’s ideal for

enterprises with established LDAP directories, such as a

government agency managing employee access, but requires

knowledge of LDAP schemas and server access.

D. Oracle Application Server Single Sign-On

Oracle Application Server Single Sign-On (Oracle AS SSO)

integrates Apex with Oracle’s proprietary SSO solution. The

Apex application is registered as a partner application, and users

are redirected to the SSO server for authentication, which returns

the user’s identity upon success [16]. This scheme is tailored for

Oracle-centric environments, leveraging existing infrastructure.

Security depends on the SSO server’s configuration, requiring

secure communication channels. It’s suitable for organizations

using Oracle E-Business Suite but is limited to Oracle

ecosystems, requiring additional licensing [11].

E. SAML Sign-In

SAML Sign-In, introduced in Apex 21.2, supports enterprise

SSO using the SAML 2.0 protocol. Apex acts as a Service

Provider (SP), redirecting users to an Identity Provider (IdP) like

OCI IAM for authentication. The IdP returns a SAML assertion,

which Apex validates to create a session [12]. SAML supports

both IdP-initiated and SP-initiated flows, offering flexibility. It’s

ideal for large organizations needing federated identity across

applications, but requires complex setup, including trust

relationships and certificate management. Security hinges on

secure assertion handling to prevent replay attacks [3]. For

instance, a multinational corporation might use SAML to unify

access across its Apex applications and other enterprise systems.

F. Social Sign-In

Social Sign-In allows users to authenticate using accounts from

external providers like Google, Facebook, Microsoft Azure,

Okta, or OCI IAM via OAuth2 or OpenID Connect protocols.

OAuth2 facilitates authorization by granting access tokens, while

OpenID Connect adds an identity layer for authentication,

providing user attributes like email [3]. The process involves

redirecting users to the provider’s login page, where they

authenticate and consent to share data. The provider returns an

authorization code, which Apex exchanges for access and ID

tokens to create a session [14]. This scheme enhances user

experience by leveraging familiar credentials, reducing signup

friction. Security relies on the provider’s robustness, but

developers must ensure secure token handling to prevent attacks

like token replay. It’s ideal for public-facing applications, such

as e-commerce platforms, where user convenience drives

adoption. Limitations include dependency on external services,

which may introduce latency or availability risks, and potential

privacy concerns in regulated industries [13].

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 03 | MAR – 2024 DOI: 10.55041/ISJEM01379

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

Figure 1: Social Sign-In Authentication Flow with OKTA in

Oracle Apex [17]

G. Custom Authentication

Custom Authentication enables developers to define bespoke

authentication logic using PL/SQL, offering unparalleled

flexibility. A PL/SQL function, taking username and password

as inputs, returns a boolean indicating authentication success.

This scheme is ideal for integrating with proprietary systems or

implementing advanced methods like two-factor authentication

[9]. Its flexibility allows for complex validation, such as checking

against external APIs or biometric systems. However, security

depends heavily on the implementation, requiring developers to

follow best practices like secure hashing and error handling to

prevent vulnerabilities. It suits scenarios like a healthcare

application needing to verify credentials against a custom

employee database but demands significant development effort

and ongoing maintenance.

H. HTTP Header Variable

HTTP Header Variable authentication uses headers set by a web

server or proxy to convey user identity, typically in environments

with existing authentication systems. Apex reads a specified

header, such as REMOTE_USER, to authenticate the user and

create a session [18]. This scheme is efficient for organizations

with pre-authenticated users, as it eliminates redundant login

prompts. Security requires HTTPS to protect headers and trusted

server configurations to prevent spoofing. It’s commonly used in

corporate intranets behind reverse proxies, but setup complexity

and reliance on server-side configuration can be limiting. For

example, a university portal integrated with a campus

authentication system might use this method to streamline

access.

I. Open Door Credentials

Open Door Credentials is a development-only scheme allowing

unrestricted access without authentication, useful for testing but

insecure for production [16]. It lacks security features and is not

recommended for deployed applications.

Choosing the appropriate authentication scheme depends on

application requirements. APEX Accounts suit small

applications due to simplicity, while Database Accounts are ideal

for database-integrated systems. Custom Authentication offers

flexibility for unique needs but requires development effort.

Social Sign-In enhances user experience for public applications,

while HTTP Header Variable and SAML cater to enterprises

with existing authentication systems. Oracle AS SSO is specific

to Oracle environments, and LDAP Directory leverages directory

services. Developers must balance security, scalability, and user

experience, considering factors like user base size, infrastructure,

and regulatory requirements [6].

IV. METHODOLOGY

This section provides a comprehensive methodology for

implementing authentication schemes in Oracle Application

Express (Apex), focusing on Social Sign-In, Single Sign-On

(SSO), Custom Authentication, LDAP Directory, APEX

Accounts, and Database Accounts. It offers detailed, practical

steps for configuring each scheme, including registration with

identity providers, secure credential storage, user identity

mapping, session management, security best practices, and

rigorous testing strategies. The approach ensures developers can

implement secure, scalable, and user-friendly authentication

solutions, incorporating advanced configurations and

troubleshooting tips to address real-world challenges.

A. Configuring Social Sign-In

Social Sign-In enables users to authenticate using accounts from

external identity providers leveraging OAuth2 and OpenID

Connect protocols. The implementation involves registering the

application, securely storing credentials, configuring the

authentication scheme, mapping user identities, managing

sessions, implementing security measures, and testing the setup.

I. REGISTERING WITH IDENTITY PROVIDERS

a) Google: Access the Google Developer Console

(https://accounts.google.com/.well-known/openid-

configuration). Create a project, enable the Google Identity

Platform API, and set up an OAuth consent screen with the

application name and logo. Create OAuth 2.0 credentials, select

“Web application,” and specify the redirect URI. Obtain the

client ID and secret [2].

b) Facebook: In the Facebook for Developers portal

(https://graph.facebook.com/v12.0/oauth), create an app, add

the “Facebook Login” product, and configure the redirect URI.

Retrieve the app ID and secret [10].

c) Okta: In the Okta Developer Console (https://your-

okta-domain/.well-known/openid-configuration), create an

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 03 | MAR – 2024 DOI: 10.55041/ISJEM01379

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

OIDC application, configure the redirect URI, and note the

client ID and secret [15].

d) Microsoft Azure: In the Azure Portal

(https://login.microsoftonline.com/{tenant}/v2.0/.well-

known/openid-configuration), register an app under “Azure

Active Directory”>“Appregistrations,” set the redirect URI,

and enable ID token issuance. Obtain the client ID and secret

[15].

e) OCI IAM: In the Oracle Cloud Console (https://idcs-

yourdomain. identity.oraclecloud.com/.well-known/openid-

configuration), create a confidential application under

“Identity&Security”>“Applications,” configure OAuth2

settings, and note the client ID and secret [12].

Note: Ensure redirect URIs match exactly between the provider

and Apex to prevent authentication failures. Verify provider-

specific requirements, such as enabling APIs or setting consent

screen details.

TABLE II. SOCIAL SIGN-IN CONFIGURATION FOR KEY PROVIDERS

Provider Discovery URL Scope

Google
https://accounts.google.com/

.well-known/openid-

configuration

openid,

profile,

email

Facebook
https://graph.facebook.com/

v12.0/oauth
public_profi

le, email

Microsoft

Azure

https://login.microsoftonline

.com/{tenant}/v2.0/.well-

known/openid-configuration

profile,

email

Okta
https://your-okta-

domain/.well-

known/openid-configuration

openid,

profile,

email

OCI IAM

https://idcs-your-

domain.identity.oraclecloud.

com/.well-known/openid-

configuration

openid,

profile

II. STORING CREDENTIALS SECURELY

Navigate to Workspace Utilities > Web Credentials in the Apex

workspace. Click “Create,” specify a name (e.g.,

“Google_OAuth”), select “OAuth2 Client Credentials” and enter

the client ID and secret. Web Credentials encrypt sensitive data

using Oracle’s Transparent Data Encryption (TDE), preventing

exposure in code or logs. This feature supports reusability across

components like REST Data Sources [5]. Rotate credentials

regularly and audit access to comply with security best practices

[19].

III. SETTING UP THE AUTHENTICATION SCHEME

In Shared Components > Authentication Schemes, create a new

scheme, select “Social Sign-In,” and choose the Web Credential.

For providers supporting OpenID Connect discovery, enter the

discovery URL. Otherwise, manually specify authorization,

token, and user info endpoints from provider documentation. Set

the scope to openid, profile, email` for essential attributes.

Configure provider-specific parameters:

a) Google: Set “Prompt” to select_account.

b) Okta: Set “Response Type” to code.

c) Facebook: Include email, first_name, last_name in

“Fields.” Enable the state parameter to prevent CSRF attacks

[14].

IV. UNDERSTANDING OAUTH2 AND OPENID CONNECT

FLOWS

Apex uses the OAuth2 authorization code flow for Social Sign-

In, which is more secure than the implicit flow due to server-to-

server token exchange, reducing the risk of token interception

[3]. The flow involves redirecting users to the provider’s

authorization endpoint with parameters like client ID, redirect

URI, and scope. After user authentication and consent, the

provider returns an authorization code to Apex, which exchanges

it for access and ID tokens at the token endpoint using the client

secret. OpenID Connect extends OAuth2 by providing an ID

token containing user claims (e.g., sub, email). Developers can

access these claims in Apex using apex_authentication.get_

attribute('attribute_name') for custom processing [10].

Figure 2: Social Sign-In OIDC Authentication Flow in Oracle Apex

[20]

https://login.microsoftonline.com/
https://idcs-yourdomain/
https://idcs-yourdomain/

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 03 | MAR – 2024 DOI: 10.55041/ISJEM01379

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 7

Figure 3: Social Sign-In OAUTH2 Authentication Flow in Oracle

Apex [21]

V. MAPPING USER IDENTITIES

Apex maps external user identities to Apex user accounts,

typically using the email from the ID token as the username.

Customize this in the authentication scheme’s “Post-

Authentication Procedure” with PL/SQL. For example, to

display user profile pic in the application:

DECLARE

 l_user VARCHAR2(100);

 l_picture_url VARCHAR2(4000);

BEGIN

 -- Get the authenticated username from APEX

 l_user := :APP_USER;

 -- Retrieve profile data from the current OAuth2

session

 -- The "picture" attribute is returned by Google in

the user info JSON

 SELECT

json_value(apex_authentication.get_user_info,

'$.picture')

 INTO l_picture_url

 FROM dual;

 -- Optionally, update in your USERS table

 UPDATE users

 SET profile_pic_url = l_picture_url

 WHERE username = l_user;

 COMMIT;

 -- store in an APEX application item for session

use

 :P0_PROFILE_PIC := l_picture_url;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 NULL; -- No picture found, handle as needed

 WHEN OTHERS THEN

 apex_debug.error('Error setting profile pic: ' ||

SQLERRM);

END;

/

VI. MANAGING SESSIONS AND TOKEN REFRESH

Apex creates a session post-authentication, but developers must

manage token expiration. Access tokens typically have short

lifetimes (e.g., 1 hour for Google). Enable “Use Refresh Token”

in the authentication scheme to allow Apex to obtain new access

tokens without user intervention. Align session timeout settings

(in Shared Components > Security Attributes) with token

lifetimes to avoid session interruptions. For example, set

“Maximum Session Length” to 8 hours and “Maximum Session

Idle Time” to 30 minutes to balance security and usability [1].

VII. SECURITY BEST PRACTICES

Use HTTPS for all communications to protect tokens and

credentials. Validate ID tokens to prevent tampering, using the

provider’s public keys. Limit scopes to necessary permissions

(e.g., avoid requesting excessive data like contacts). Implement

the state parameter to mitigate CSRF risks. Regularly audit Web

Credentials for unauthorized changes and monitor provider

security advisories [19].

VIII. TESTING THE CONFIGURATION

Test the setup by running the application, clicking the Social

Sign-In button, and verifying redirection to the provider’s login

page. After login, confirm the callback to Apex creates a session.

Use Apex’s debug mode (available in the developer toolbar) to

trace the authentication flow, checking for errors like invalid

tokens or misconfigured URIs. Test edge cases, such as expired

tokens or denied consents, to ensure robust error handling [22].

B. Configuring Single Sign-On

SSO implementation includes HTTP Header Variable, SAML

Sign-In, and Oracle AS SSO, tailored for enterprise

environments.

I. HTTP HEADER VARIABLE

Configure a web server (e.g., Apache with mod_auth_kerberos)

to set an HTTP header (e.g., REMOTE_USER) with the user’s

identity. In Apex, create an authentication scheme, select “HTTP

Header Variable,” and specify the header name. Apex extracts

the username for session creation. Ensure HTTPS and trusted

server configurations to prevent header tampering [18].

II. SAML SIGN-IN

Create a SAML Sign-In scheme in Shared Components. Obtain

the IdP’s metadata XML or URL (e.g., from OCI IAM).

Configure the SP entity ID (typically the application URL) and

map attributes (e.g., NameID to username). Import the IdP’s

signing certificate and ensure ORDS permits cross-origin

requests. Test IdP-initiated and SP-initiated flows [12].

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 03 | MAR – 2024 DOI: 10.55041/ISJEM01379

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 8

III. ORACLE AS SSO

Register the Apex application as a partner application in Oracle

AS SSO. Configure the authentication scheme to redirect to the

SSO server, which returns the user’s identity. Ensure secure

communication channels and Oracle licensing [11].

C. Configuring Custom Authentication

Create a PL/SQL function for authentication logic:

FUNCTION custom_auth(p_username IN VARCHAR2,

p_password IN VARCHAR2) RETURN BOOLEAN IS

 l_valid BOOLEAN;

BEGIN

 l_valid := external_api_validate(p_username, p_password);

 RETURN l_valid;

EXCEPTION

 WHEN OTHERS THEN

 RETURN FALSE;

END;

In Shared Components > Authentication Schemes, select
“Custom” and specify the function. Implement secure hashing

(e.g., DBMS_CRYPTO.HASH) and error handling to prevent

vulnerabilities [9].

D. Configuring LDAP Directory

Configure LDAP settings in Shared Components >

Authentication Schemes, selecting “LDAP Directory.” Specify

the LDAP host, port (e.g., 389 for LDAP, 636 for LDAPS), and

search base (e.g., dc=example,dc=com). Use LDAPS for secure

communication and test connectivity with a test user [1].

E. Configuring APEX Accounts

In the Apex Administration interface, create users with

usernames, passwords, and roles. Configure password policies

(e.g., complexity, expiration) in Shared Components > Security

Attributes. Test login with a sample user to ensure session

creation [1].

F. Configuring Database Accounts

In Shared Components > Authentication Schemes, select

“Database Accounts” Apex validates credentials against Oracle

database users. Ensure that the database users can login to the

application [8].

G. Security Best Practices

Implementing secure authentication in Oracle Apex is critical to

protect against threats like credential theft, session hijacking, and

unauthorized access. All communications between the

application and identity providers must use HTTPS to encrypt

data in transit, safeguarding against eavesdropping and man-in-

the-middle attacks. This can be enforced by setting the "Security"

attribute in Shared Components > Security Attributes to require

HTTPS, ensuring that all authentication-related traffic is secure

[1]. For Social Sign-In, token validation is essential; Apex

automatically validates ID tokens using the provider’s public

keys, but developers must ensure this process is not bypassed to

prevent tampering. Similarly, for SAML SSO, assertions must be

validated for signature, issuer, and audience to confirm their

authenticity and intended recipient, with clock synchronization

between Apex and the Identity Provider to avoid timestamp-

related issues [12].

Limiting permissions and scopes minimizes exposure; for

Social Sign-In, request only necessary scopes like openid profile

email, and for SAML, restrict attribute mappings to essential data

like username and email [3]. Cross-Site Request Forgery (CSRF)

protection should be enabled for all authentication pages, with

OAuth2 flows using the state parameter to verify request

legitimacy [14]. Regular security audits and penetration testing

are recommended to identify vulnerabilities, leveraging Apex’s

logging capabilities to monitor authentication events and detect

suspicious activity [19]. Compliance with regulations like GDPR

or HIPAA is crucial when handling personal data, requiring user

consent, data access rights, and encryption at rest and in transit

[13]. For sensitive applications, integrating multi-factor

authentication (MFA) through identity providers like Okta or

OCI IAM adds an extra layer of security [12].

Credential management should utilize Apex’s Web

Credentials, which encrypts sensitive data like client IDs and

secrets using Oracle’s Transparent Data Encryption (TDE), with

regular rotation and access audits [5]. Session management

requires configuring appropriate timeouts in Shared Components

> Security Attributes (e.g., 8 hours for maximum session length,

30 minutes for idle time) to prevent prolonged active sessions,

and regenerating session IDs post-authentication mitigates

session fixation attacks [1]. Keeping Apex, Oracle REST Data

Services (ORDS), and the database updated with the latest

security patches is essential to address known vulnerabilities,

ensuring a robust security posture for authentication

implementations [19].

V. MULTIPLE AUTHENTICATION SCHEMES

Oracle Apex’s ability to support multiple authentication schemes

within a single application is a powerful feature that enhances

flexibility and user experience, allowing developers to cater to

diverse user groups with varying authentication needs. For

instance, a university portal might offer Social Sign-In for

students using Google or Facebook accounts, SAML SSO for

faculty integrated with the campus Active Directory, and

Database Accounts for legacy systems accessed by

administrators. This capability ensures that applications can

adapt to different user contexts, such as internal versus external

users, or varying security requirements across environments.

To implement multiple authentication schemes, developers

must first configure each scheme individually in Shared

Components > Authentication Schemes, ensuring that each is

fully functional. For example, a Social Sign-In scheme for

Google, a SAML Sign-In scheme for enterprise SSO, and a

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 03 | MAR – 2024 DOI: 10.55041/ISJEM01379

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 9

Database Accounts scheme for legacy users can be set up with

their respective settings, such as Web Credentials for Social

Sign-In or metadata URLs for SAML. The “Switch in Session”

flag must be enabled for each scheme to allow dynamic

switching during runtime, ensuring that the application can

transition between authentication methods without requiring a

new session [6].

Dynamic switching can be achieved through two primary

methods:

• URL Parameters: Developers can append the

APEX_AUTHENTICATION parameter to the

application URL to specify the desired scheme. For

example, a URL like (https://example.com/ords/f?p=

app_id:1:APEX_AUTHENTICATION=GOOGLE_S

SO) invokes the Social Sign-In scheme, while

(https://apex.example.com/ords/apex_authentication.

saml_callback) triggers SAML SSO. This method is

straightforward and allows users to select their

preferred authentication method directly from the

login page. For instance, a login page could include

buttons labeled “Login with Google,” “Login with

Company SSO,” or “Login with Database

Credentials,” each appending the appropriate

parameter to the URL. However, developers must

validate the parameter to prevent unauthorized scheme

changes, ensuring that only predefined schemes are

accessible [6].

• Application Processes: A more sophisticated

approach involves defining an application process in
Shared Components > Application Processes, which

runs on page load or at specific points to determine the

authentication scheme based on conditions like tenant,

IP address, or device type. For example, the following

PL/SQL code checks the user’s IP address to select the

appropriate scheme. This procedure will be called in

the configuration procedure in the security tab:

CREATE OR REPLACE PROCEDURE

cn_set_auth_scheme

 (p_conf in out apex_authentication.t_configuration)

AUTHID DEFINER IS

BEGIN

 IF owa_util.get_cgi_env ('REMOTE_ADDR') IN

('192.168.1.0/24') THEN

 p_conf.authentication_name := 'SAML_SSO';

 ELSIF owa_util.get_cgi_env('HTTP_HOST')

LIKE '%TENANT1%' THEN

 p_conf.authentication_name := 'OKTA_SSO';

 p_conf.substitutions := apex_t_varchar2 (

 'CREDENTIAL_STATIC_ID', 'OKTA_OAUTH2',

'DISCOVERY_URL',

'https://domain.okta.com/.well-known/openid-

configuration'

);

 ELSE

 p_conf.authentication_name :=

'DATABASE_ACCOUNTS';

 END IF;

 END cn_set_auth_schema;

Figure 4: Configuration Procedure in Application Security Attributes

This logic directs internal users (within the corporate network)

to SAML SSO, students to Social Sign-In, and others to Database

Accounts, ensuring a tailored authentication experience [6].

A practical example is a corporate application serving both

employees and external vendors. Employees might use SAML

SSO integrated with the company’s Active Directory, while

vendors use Social Sign-In via Google or Okta. The application

could present a login page with options for each method, or

automatically select the scheme based on the user’s domain (e.g.,

@company.com for SSO, others for Social Sign-In). This

flexibility enhances user experience by allowing seamless

transitions between authentication methods without requiring

multiple applications.

Security is a critical consideration when using multiple

schemes. Developers must ensure that the switching logic is

secure to prevent unauthorized manipulation. For URL-based

switching, Apex’s internal handling of the

APEX_AUTHENTICATION parameter is secure, but

developers should implement additional validation to restrict

scheme selection to authorized options. For application

processes, PL/SQL logic must be protected against injection

attacks, using bind variables and input sanitization.

Session management across multiple schemes requires careful

handling to avoid disruptions. Apex maintains a single session

ID, but developers must ensure that session attributes (e.g., roles,

preferences) are consistently applied regardless of the

authentication method. Logging authentication events, including

the scheme used, is crucial for monitoring and detecting

anomalies, such as unauthorized scheme switches [19].

Testing multiple schemes involves verifying that switching

occurs correctly, sessions remain stable, and user roles are

applied consistently. Developers should also test fallback

https://example.com/ords/f?p=%20app_id:1
https://example.com/ords/f?p=%20app_id:1
https://apex.example.com/ords/apex_authentication.saml_
https://apex.example.com/ords/apex_authentication.saml_

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 03 | MAR – 2024 DOI: 10.55041/ISJEM01379

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 10

scenarios, such as when a primary scheme is unavailable, to

ensure the application defaults to an appropriate alternative. For

example, if the SAML IdP is down, the application might fall

back to Database Accounts for critical users [22].

This approach allows Apex applications to support diverse

authentication needs, from public-facing portals to enterprise

systems, while maintaining security and usability. By leveraging

URL parameters and application processes, developers can

create a seamless and flexible authentication experience tailored

to specific user groups and contexts.

VI. DISCUSSIONS

The implementation of Single Sign-On (SSO), Social Sign-In,

and multiple authentication schemes in Oracle Application

Express (Apex) applications yields significant benefits in terms

of user experience, security, and scalability, while also presenting

unique challenges that require careful management. This section

explores the outcomes of these implementations, focusing on

their practical implications, operational benefits, challenges, best

practices, and emerging trends. By analyzing real-world

applications, security considerations, and the strategic use of

multiple authentication schemes, this discussion provides

actionable insights for developers to optimize Apex applications

for diverse user needs.

A. Operational Benefits of SSO and Social Sign-In

The deployment of SSO and Social Sign-In in Oracle Apex

applications delivers substantial operational advantages,

particularly in enhancing user experience and streamlining

access management. SSO enables users to authenticate once and

access multiple applications seamlessly, significantly reducing

login fatigue and boosting productivity, especially in enterprise

environments where employees interact with numerous systems

daily. For example, a multinational corporation using Apex for

internal dashboards can leverage SSO to provide employees with

unified access to HR, finance, and project management tools,

minimizing disruptions and improving workflow efficiency [11].

This centralized approach reduces the administrative burden of

managing user credentials across disparate systems, allowing IT

teams to focus on higher-value tasks like application

development and optimization.

Social Sign-In, by contrast, enhances user adoption in public-

facing applications by allowing users to log in with familiar

credentials from platforms like Google, Facebook, Okta, or

Microsoft Azure. This approach is particularly effective for

applications targeting broad audiences, such as e-commerce

platforms or educational portals, where reducing signup friction

is critical to user retention. For instance, a university portal using

Social Sign-In can enable students to access course materials

with their Google accounts, simplifying onboarding and

increasing engagement [2]. Additionally, both SSO and Social

Sign-In leverage the robust security features of external identity

providers, such as multi-factor authentication (MFA) and

advanced encryption, which enhance the overall security posture

of Apex applications without requiring developers to implement

these features from scratch [12]. This outsourcing of

authentication to trusted providers reduces the risk of credential

theft, a common vulnerability in traditional username-password

systems [3].

From a scalability perspective, SSO is particularly

advantageous for organizations with large user bases or

complex application ecosystems. By centralizing

authentication, SSO ensures consistent access policies and

simplifies user provisioning, making it easier to scale

applications as organizations grow [11]. Social Sign-In,

meanwhile, supports scalability by eliminating the need for

extensive user account management, as users rely on existing

accounts from identity providers. This is especially beneficial

for applications with rapidly growing user bases, where manual

account creation would be impractical [2].

B. Challenges and Operational Considerations

Despite their benefits, implementing SSO and Social Sign-In in

Oracle Apex introduces several challenges that developers must

address to ensure reliable and secure operations. A primary

concern is the dependency on external identity providers. For

Social Sign-In, reliance on providers like Google or Okta means

that service outages or policy changes can disrupt user access,

potentially impacting business continuity. For example, a

temporary outage in a provider’s authentication service could

prevent users from logging into an Apex application,

necessitating fallback mechanisms like alternative authentication

methods or clear user communication strategies [13]. Similarly,

SSO implementations, particularly those using SAML, require

precise configuration of metadata, certificates, and trust

relationships between Apex (as the Service Provider) and the

Identity Provider. Misconfigurations, such as incorrect redirect

URIs or mismatched entity IDs, can lead to authentication

failures or security vulnerabilities, such as accepting invalid

assertions [12].

Security remains a critical consideration. For Social Sign-In,

handling OAuth2 tokens securely is paramount to prevent attacks

like token interception or replay. Apex’s Web Credentials feature

mitigates this by encrypting sensitive data like client IDs and

secrets, but developers must ensure that access tokens are short-

lived and refresh tokens are stored securely [5]. For SSO,

particularly SAML, validating assertions for signature, issuer,

and audience is essential to prevent tampering or unauthorized

access. Clock synchronization between Apex and the Identity

Provider is also critical to avoid issues with assertion expiration

[3]. Session management poses another challenge, as improperly

configured session timeouts can lead to prolonged active

sessions, increasing the risk of session hijacking. Developers

must configure appropriate timeouts and regenerate session IDs

post-authentication to mitigate session fixation attacks [1].

User identity mapping across different authentication schemes

is a complex but essential task. When users log in via Social Sign-

In (e.g., with a Google email) and later via SSO (e.g., with a

corporate ID), ensuring these identities map to a single Apex user

account prevents duplicate profiles and access inconsistencies.

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 03 | MAR – 2024 DOI: 10.55041/ISJEM01379

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 11

This requires a robust mapping strategy, such as maintaining a

custom table to link external identifiers to Apex usernames,

which can be challenging to implement and maintain in large-

scale applications [10]. Compliance with data protection

regulations, such as GDPR or HIPAA, adds further complexity,

particularly for Social Sign-In, where user data from external

providers must be handled with explicit consent and secure

storage practices [13].

C. Best Practices for Secure and Effective Implementation

To address these challenges, developers should adhere to a set of

best practices tailored to Oracle Apex’s authentication

framework:

• Encryption and Secure Communication: All

authentication-related communications must use

HTTPS to encrypt data in transit, protecting against

eavesdropping and man-in-the-middle attacks. Apex’s

Security Attributes can enforce HTTPS for the entire

application [1].

• Token and Assertion Validation: For Social Sign-In,

validate ID tokens using the provider’s public keys to

ensure authenticity. For SAML SSO, verify assertions

for signature, issuer, and audience to prevent

tampering [3].

• Minimal Permissions: Request only necessary

OAuth2 scopes (e.g., openid profile email) for Social

Sign-In and limit SAML attribute mappings to

essential data to reduce exposure [14].

• CSRF Protection: Enable Apex’s built-in CSRF

protection and use state parameters in OAuth2 flows

to verify request integrity [14].

• Secure Credential Storage: Utilize Apex’s Web

Credentials to encrypt sensitive data, such as client

IDs and secrets, ensuring compliance with security

standards [5].

• Session Management: Configure session timeouts

(e.g., 8 hours for maximum session length, 30 minutes

for idle time) and regenerate session IDs post-

authentication to prevent session fixation [1].

• Logging and Monitoring: Enable detailed logging of

authentication events in Apex to detect and respond to

security incidents, such as unauthorized login attempts

[19].

• Regular Security Audits: Conduct periodic audits

and penetration testing to identify vulnerabilities,

ensuring the application remains secure against

evolving threats [23].

These practices ensure that SSO and Social Sign-In

implementations are both secure and user-friendly, minimizing

risks while maximizing operational efficiency.

D. Comparison with Other Low-Code Platforms

Compared to other low-code platforms like Microsoft Power

Apps or OutSystems, Oracle Apex offers a robust and flexible

authentication framework. Power Apps supports SSO and social

logins through Azure AD, but its integration is less flexible for

non-Microsoft ecosystems [28]. OutSystems provides similar

capabilities but may lack Apex’s granular control over multiple

authentication schemes within a single application [29]. Apex’s

tight integration with Oracle’s ecosystem, including OCI IAM

and Oracle AS SSO, provides a unique advantage for

organizations invested in Oracle technologies, making it a

preferred choice for enterprise-grade applications [12].

E. Real-world Applications and Community Insights

Real-world implementations of SSO and Social Sign-In in Apex

applications demonstrate their versatility. For example, a global

e-commerce platform might use Social Sign-In to streamline

customer logins, reducing cart abandonment rates, while

employing SSO for internal staff managing inventory systems.

Educational institutions leverage Social Sign-In for student

portals, simplifying access to learning resources [30].

Community resources and blogs by experts like Dimitri Gielis,

provide practical insights into overcoming challenges like

redirect URI mismatches or integrating with less common

providers [31]. These community-driven insights complement

official documentation, offering real-world solutions and best

practices.

In conclusion, SSO, Social Sign-In, and multiple

authentication schemes in Oracle Apex offer a powerful

combination of security, scalability, and user convenience. By

addressing challenges through best practices and leveraging

emerging trends, developers can create robust, user-centric

applications that meet the demands of modern web development.

The ability to support multiple schemes within a single

application ensures flexibility, making Apex a versatile platform

for diverse authentication needs.

VII. FUTURE TRENDS AND RECOMMENDATIONS

The authentication landscape is undergoing rapid transformation,

driven by technological advancements, heightened security

concerns, and evolving user expectations. For Oracle Application

Express (Apex) developers, these trends present opportunities to

enhance application security, usability, and compliance while

addressing future challenges. This section explores emerging

authentication trends and provides actionable recommendations

tailored to Apex, focusing on practical strategies to leverage its

flexible authentication framework.

A. Passwordless Authentication

The shift towards passwordless authentication is a response to the

vulnerabilities of traditional passwords, which are prone to

phishing, brute-force attacks, and user errors. Methods such as

biometrics (e.g., facial recognition, fingerprint scanning) and

magic links sent via email or SMS offer a seamless and secure

alternative, reducing login friction while enhancing protection.

The WebAuthn standard, supported by modern browsers,

enables passwordless login using public key cryptography,

leveraging device-based authenticators like biometric sensors or

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 03 | MAR – 2024 DOI: 10.55041/ISJEM01379

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 12

hardware tokens [26]. For Apex applications, developers can

implement passwordless authentication through custom

authentication schemes, integrating with WebAuthn-compatible

identity providers or third-party services like Auth0 [28]. For

example, a custom scheme could validate a WebAuthn credential

by calling an external API, ensuring compatibility with Apex’s

low-code environment. This approach is particularly valuable for

public-facing applications, such as e-commerce platforms, where

user convenience drives adoption. However, developers must

address challenges like device compatibility and user education

to ensure broad accessibility. Privacy concerns also arise, as

biometric data requires secure storage and compliance with

regulations like GDPR to maintain user trust [13].

B. Decentralized Identity

Decentralized identity, often powered by blockchain technology,

empowers users to control their identity data through self-

sovereign identity (SSI) frameworks. SSI allows users to share

verifiable credentials (e.g., proof of identity or qualifications)

without relying on centralized authorities, enhancing privacy and

reducing data exposure [25]. While still emerging, decentralized

identity could transform authentication in Apex applications,

particularly for industries like finance or healthcare that require

high trust and data sovereignty. Developers can explore

integration with SSI platforms, such as those based on the W3C

Verifiable Credentials standard, using custom authentication

schemes to validate credentials via blockchain APIs [29]. For

instance, an Apex application could verify a user’s digital

identity by querying a blockchain ledger, ensuring secure and

private authentication. Challenges include the complexity of

blockchain integration and the need for user familiarity with

digital wallets. As decentralized identity matures, Apex’s

extensible framework positions it well to adopt these solutions,

offering users greater control over their data.

C. AI-Driven Adaptive Authentication

Artificial intelligence (AI) and machine learning (ML) are

revolutionizing authentication by enabling adaptive security

measures that assess risk based on user behavior, device, and

context. For example, AI can detect anomalies, such as logins

from unfamiliar locations, and trigger additional verification

steps like MFA [24]. While Apex lacks native AI capabilities,

developers can integrate with external AI-driven authentication

services, such as those offered by Okta or Microsoft Azure AD,

to implement adaptive authentication [15]. Alternatively, custom

PL/SQL logic can analyze login patterns (e.g., IP address, time

of access) to flag suspicious activity, though this requires

significant development effort. This approach is ideal for

enterprise applications where security is paramount, such as

corporate dashboards handling sensitive data. Challenges include

the complexity of integrating AI services and ensuring real-time

performance in a low-code environment. Developers must also

balance security with user experience to avoid excessive

authentication prompts.

D. Privacy-Enhancing Technologies

Increasing regulatory scrutiny, exemplified by GDPR and PSD3,

underscores the need for authentication methods that minimize

personal data exposure [13]. Zero-knowledge proofs (ZKPs)

allow users to verify attributes (e.g., age, employment) without

revealing underlying data, while anonymous credentials enable

pseudonymous authentication [29]. For Apex applications,

developers can explore ZKP-based authentication by integrating

with privacy-focused identity providers or developing custom

schemes that validate credentials without storing sensitive data.

This is particularly relevant for healthcare or financial

applications, where data privacy is critical. Challenges include

the computational complexity of ZKPs and the need for user

education on privacy-focused authentication.

E. Cloud-Based Authentication

Cloud-based identity solutions, such as Oracle Identity Cloud

Service (IDCS), offer scalability, advanced security features, and

simplified management [12]. These services support MFA, SSO,

and adaptive authentication, making them ideal for Apex

applications with growing user bases. Developers can integrate

IDCS to offload authentication complexity, ensuring applications

remain secure and scalable. This trend is particularly relevant for

enterprises leveraging Oracle’s cloud ecosystem, though

developers must consider costs and potential vendor lock-in.

The future of authentication in Oracle Apex is shaped by

trends towards passwordless methods, decentralized identity, AI-

driven security, quantum-resistant cryptography, privacy-

enhancing technologies, and cloud-based solutions. By

embracing these trends and following best practices, developers

can build applications that are secure, compliant, and ready for

future challenges, ensuring seamless and trustworthy user

experiences.

VIII. CONCLUSION

The implementation of Single Sign-On (SSO) and Social Media

Sign-On in Oracle Application Express (Apex) applications

marks a significant advancement in the realm of web application

security and usability, offering developers a robust framework to

address the evolving demands of modern digital environments.

This research has demonstrated that Apex’s versatile

authentication architecture, encompassing schemes such as

APEX Accounts, Database Accounts, Custom Authentication,

Social Sign-In, and various SSO methods, provides a powerful

toolkit for creating secure, scalable, and user-centric

applications. By enabling seamless integration with external

identity providers like Google, Office365, Okta, and Oracle

Cloud Infrastructure (OCI) IAM, Apex empowers developers to

deliver authentication solutions that enhance user convenience

while maintaining stringent security standards. The ability to

dynamically switch between multiple authentication schemes

within a single application stands out as a particularly innovative

feature, allowing tailored access experiences for diverse user

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 03 | MAR – 2024 DOI: 10.55041/ISJEM01379

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 13

groups, from public consumers to enterprise employees, without

compromising security or performance.

A key contribution of this study is its comprehensive guidance

on implementing these authentication methods, emphasizing

practical strategies to overcome challenges such as configuration

complexity and external provider dependencies. By adhering to

best practices—such as using HTTPS for secure communication,

validating tokens and assertions, and leveraging Apex’s Web

Credentials for encrypted storage of sensitive data, developers

can mitigate risks like credential theft and session hijacking.

These practices ensure that Apex applications align with industry

standards and regulatory requirements, such as GDPR, which is

critical for industries handling sensitive data, including

healthcare, finance, and education. For instance, a healthcare

application using Social Sign-In can simplify patient access to

portals while ensuring compliance with data protection laws,

while a corporate dashboard employing SSO can streamline

employee workflows across integrated systems, enhancing

operational efficiency.

The implications of this research extend to a wide range of

industries and user scenarios. In educational settings, Social

Sign-In reduces barriers to access for students, enabling quick

and intuitive logins to learning management systems using

familiar credentials from platforms like Google or Microsoft

Azure. In enterprise environments, SSO facilitates centralized

identity management, reducing administrative overhead and

improving productivity by allowing employees to access

multiple systems with a single login. The flexibility to support

multiple authentication schemes within one application is

particularly valuable for hybrid use cases, such as a university

portal serving students, faculty, and external partners, each

requiring different authentication methods. This adaptability

ensures that Apex applications can cater to diverse user needs,

fostering inclusivity and enhancing user adoption across various

contexts.

From a broader perspective, this study contributes to the

growing body of knowledge on low-code platform security,

demonstrating that Apex’s low-code environment does not

compromise on delivering high-security authentication solutions.

Compared to other low-code platforms like Microsoft Power

Apps or OutSystems, Apex’s tight integration with Oracle’s

ecosystem and its support for dynamic authentication switching

provide a unique advantage, particularly for organizations

invested in Oracle technologies. This research underscores the

potential of low-code platforms to democratize advanced

security features, enabling developers with varying levels of

expertise to implement robust authentication without extensive

coding.

Looking ahead, future research could explore several

promising directions to further enhance Apex’s authentication

capabilities. Investigating the integration of biometric

authentication, such as fingerprint or facial recognition, could

align Apex with the growing trend of passwordless

authentication, offering even greater convenience and security.

Performance optimization for large-scale deployments,

particularly under high user loads, is another critical area, as

authentication latency can impact user experience in enterprise

applications. Additionally, exploring the feasibility of

decentralized identity systems, such as those based on

blockchain, could position Apex as a leader in privacy-focused

authentication, addressing increasing user demand for data

sovereignty. These research avenues would build on the

foundation established by this study, ensuring that Apex remains

at the forefront of authentication innovation.

In conclusion, this article provides a comprehensive and

practical guide for implementing SSO and Social Media Sign-On

in Oracle Apex, equipping developers with the tools and insights

needed to build secure, scalable, and user-friendly applications.

By leveraging Apex’s flexible authentication framework and

adhering to best practices, developers can address the diverse

needs of modern users while maintaining robust security. As

authentication technologies continue to evolve, Apex’s

extensible architecture ensures its adaptability to emerging

trends, making it a powerful platform for future-proof web

application development. This research not only advances the

understanding of low-code security but also empowers

developers to create inclusive, efficient, and secure applications

that meet the demands of an increasingly complex digital

landscape.

ACKNOWLEDGMENT

The author would also like to disclose the use of the Grammarly

(AI) tool solely for editing and grammar enhancements.

REFERENCES

[1] Oracle, “Establishing User Identity Through Authentication,” Oracle

Help Center. Accessed: Feb. 06, 2024. [Online]. Available:
https://docs.oracle.com/en/database/oracle/apex/22.1/htmdb/establishing

-user-identity-through-authentication.html.

[2] L. Hirschegger, P. Winfield, and S. Collins, “Oracle APEX - Social
Login,” Rittman Mead. Accessed: Feb. 14, 2024. [Online]. Available:

https://www.rittmanmead.com/blog/2022/11/oracle-apex-social-login/

[3] N. Hossain, Md. A. Hossain, Md. Z. Hossain, Md. H. I. Sohag, and S.
Rahman, “OAuth-SSO: A Framework to Secure the OAuth-Based SSO

Service for Packaged Web Applications,” in 2018 17th IEEE

International Conference On Trust, Security And Privacy In Computing
And Communications/ 12th IEEE International Conference On Big Data

Science And Engineering (TrustCom/BigDataSE), IEEE, Aug. 2018, pp.

1575–1578. Accessed: Jan. 30, 2024. [Online]. Available:
https://doi.org/10.1109 /trustcom/bigdatase.2018.00227.

[4] E. Sciore, “Security,” in Understanding Oracle APEX 5 Application

Development, Berkeley, CA: Apress, 2015, pp. 279–313. Accessed: Jan.
31, 2024. [Online]. Available: https://doi.org/10.1007/978-1-4842-0989-

9_12.

[5] J. Dixon, “Secure your Secrets with Oracle APEX Web Credentials,”
Cloud Nueva Blog (Oracle, APEX&ORDS), Jul. 05, 2022. Accessed:

Feb. 04, 2024. [Online]. Available: https://blog.cloudnueva.com/apex-

web-credentials.
[6] J. Dixon, “Two Methods of Setting an APEX Authentication Scheme at

Run-Time,” Cloud Nueva Blog (Oracle, APEX & ORDS). Accessed:

Feb. 14, 2024. [Online]. Available: https://blog. cloudnueva.com/setting-
an-apex-authentication-scheme-at-run-time.

[7] A. Baggia, R. Leskovar, and B. Rodič, “Low Code Programming with

Oracle Apex Offers New Opportunities in Higher Education,” in Third
International Scientific Conference ITEMA Recent Advances in

Information Technology, Tourism, Economics, Management and

Agriculture, Association of Economists and Managers of the Balkans,

https://docs.oracle.com/en/database/oracle/apex/22.1/htmdb/establishing-user-identity-through-authentication.html
https://docs.oracle.com/en/database/oracle/apex/22.1/htmdb/establishing-user-identity-through-authentication.html
https://www.rittmanmead.com/blog/2022/11/oracle-apex-social-login/
https://doi.org/10.1109%20/trustcom/bigdatase.2018.00227
https://doi.org/10.1007/978-1-4842-0989-9_12
https://doi.org/10.1007/978-1-4842-0989-9_12
https://blog.cloudnueva.com/apex-web-credentials
https://blog.cloudnueva.com/apex-web-credentials

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 03 | MAR – 2024 DOI: 10.55041/ISJEM01379

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 14

Belgrade, Serbia, 2019, pp. 91–97. Accessed: Feb. 07, 2024. [Online].
Available: https://doi.org/10.31410/itema.s.p.2019.91.

[8] M. Smithers, “Implementing a Database Authentication Scheme in

APEX,” The Anti-Kyte. Feb. 07, 2024. [Online]. Available:
https://mikesmithers.wordpress.com/2014/12/14/implementing-a-

database-authentication-scheme-in-apex/.

[9] D. Gielis, “Create a Custom Authentication and Authorization Scheme in
Oracle APEX,” APEX): Create a Custom Authentication and

Authorization Scheme in Oracle APEX. Accessed: Feb. 07, 2024.

[Online]. Available: http://dgielis.blogspot.com/2017/08/create-custom-
authentication-and.html.

[10] D. Gielis, “Facebook, Google and Custom Authentication in the same

Oracle APEX 18.1 app,” Dimitri Gielis Blog (Oracle Application Express
- APEX). Accessed: Feb. 14, 2024. [Online]. Available:

http://dgielis.blogspot.com/2018/06/facebook-google-and-custom.html.

[11] Oracle, “Extending Oracle E-Business Suite Release 12 using Oracle
APEX,” Oracle Tech Network. Accessed: Feb. 06, 2024. [Online].

Available: https://www.oracle.com/technetwork/developer-tools/apex

/learnmore/apex-ebs-extension-white-paper-345780.pdf.
[12] R. Allen, “SAML Sign-In,” Oracle Help Center. Accessed: Feb. 10, 2024.

[Online]. Available: https://docs.oracle.com/en/database/oracle/

apex/23.2/htmdb/saml-sign-in.html.
[13] S. Collins, “Oracle APEX - Implementing Role-Based Access with Social

Login,” Rittman Mead, Nov. 17, 2023. Accessed: Feb. 14, 2024. [Online].

Available: https://www.rittmanmead.com/blog/ 2023/11/oracle-apex-
extending-social-sign-in/.

[14] A. Chatterjee, “Social Sign-In,” Oracle Help Center. Accessed: Feb. 16,
2024. [Online]. Available: https://docs.oracle.com/en/database

/oracle/apex/22.2/htmdb/social-sign-in.html.

[15] T. Hall, “Azure AD Authentication for Oracle APEX Applications :
Social Sign In,” Oracle-base.com. Accessed: Feb. 16, 2024. [Online].

Available: https://oracle-base.com/articles/misc/azure-ad-authentication-

for-oracle-apex-applications.
[16] Oracle, “Understanding Preconfigured Authentication Schemes,”

Oracle® APEX App Builder User’s Guide Release 22.2. Accessed: Feb.

14, 2024. [Online]. Available: https://docs.oracle.com/en

/database/oracle/apex/22.2/ htmdb/preconfigured-authentication-

schemes.html.

[17] J. Dixon, “It’s Time for a New Name for Oracle APEX Social Sign-In,”
JMJ CLOUD. Accessed: Feb. 15, 2024. [Online]. Available:

http://www.jmjcloud.com/blog/its-time-for-a-new-name-for-apex-

social-sign-in.
[18] M. Mulvaney, “APEX Authentication Options.” Accessed: Feb. 16, 2024.

[Online]. Available: https://content.dsp.co.uk/apex/apex-authentication-

options.
[19] W. Ali, “Top Security Best Practices in Oracle APEX Applications,”

MaxAPEX. Accessed: Feb. 14, 2024. [Online]. Available:

https://www.maxapex.com/blogs/security-best-practices-in-oracle-apex.
[20] Oracle, “OIDC Client Integrations with Social Identity Providers,” Oracle

Help Center. Accessed: Feb. 17, 2024. [Online]. Available:

https://docs.oracle.com/en/middleware/idm/access-
manager/11.1.2.3/aiaag/oidc-client-integrations-social-identity-

providers.html#GUID-E9DAFF1A-97FD-4578-92F9-1D9755A838C9.

[21] Oracle, “API Gateway OAuth 2.0 Authentication Flows,” Oracle®

Fusion Middleware. Accessed: Feb. 17, 2024. [Online]. Available:

https://docs.oracle.com/cd/E50612_01/doc.11122/oauth_guide/content/o

auth_intro.html.
[22] L. Hirschegger, “Oracle APEX - Debugging a Social Login,” Rittman

Mead, Oct. 25, 2023. Accessed: Feb. 14, 2024. [Online]. Available:

https://www.rittmanmead.com/blog/2023/10/oracle-apex-authentication-
debug-tip/.

[23] E. van der Walt, J. H. P. Eloff, and J. Grobler, “Cyber-security: Identity

deception detection on social media platforms,” Computers &
Security, vol. 78, pp. 76–89, Sep. 2018, doi: 10.1016/j.cose.2018.05.015.

[24] M. Sewtz, "Oracle APEX 18.1 - New Features and Enhancements,"

presented at the ODTUG Kscope19, San Antonio, TX, USA, 2019.
[25] Oracle, "Oracle Application Express User Guide," Oracle

Documentation, 2022. Accessed: Feb. 16, 2024. [Online]. Available:

https://docs.oracle.com/en/database/oracle/apex/22.1/htmdb/index.html.
[26] WebAuthn Working Group, "Web Authentication: An API for accessing

Public Key Credentials," W3C, 2019. [Online]. Available:

https://www.w3.org/TR/webauthn/.

[27] L. Chen, S. Jordan, Y. Liu, D. Moody, R. Peralta, R. Perlner, and D.
Smith-Tone, "Report on Post-Quantum Cryptography," NIST, Apr. 2016.

Accessed: Feb. 17, 2024. [Online]. Available:

https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf.
[28] Auth0, "Passwordless Authentication," Auth0 Documentation, 2023.

Accessed: Feb. 18, 2024. [Online]. Available:

https://auth0.com/docs/authentication/passwordless.
[29] Sovrin Foundation, "Sovrin: A Protocol and Token for Self-Sovereign

Identity and Decentralized Trust," Sovrin Foundation, 2018. [Online].

Available: https://sovrin.org/wp-content/uploads/Sovrin-Protocol-and-
Token-White-Paper.pdf.

[30] Oracle, “Integrate Oracle APEX with Oracle Cloud Infrastructure Identity

and Access Management Identity Domains,” Oracle Help Center.
Accessed: Feb. 12, 2024. [Online]. Available:

https://docs.oracle.com/en/learn/apex-identitydomains-sso/index.html.

[31] Oracle, "Oracle Cloud Infrastructure Identity and Access Management,"
Oracle Documentation, 2023. Accessed: Feb. 18, 2024. [Online].

Available: https://docs.oracle.com/enus/iaas/Content/ Identity/home.htm.

https://doi.org/10.31410/itema.s.p.2019.91
https://mikesmithers.wordpress.com/2014/12/14/implementing-a-database-authentication-scheme-in-apex/
https://mikesmithers.wordpress.com/2014/12/14/implementing-a-database-authentication-scheme-in-apex/
http://dgielis.blogspot.com/2017/08/create-custom-authentication-and.html
http://dgielis.blogspot.com/2017/08/create-custom-authentication-and.html
http://dgielis.blogspot.com/2018/06/facebook-google-and-custom.html
https://www.oracle.com/technetwork/developer-tools/apex%20/learnmore/apex-ebs-extension-white-paper-345780.pdf
https://www.oracle.com/technetwork/developer-tools/apex%20/learnmore/apex-ebs-extension-white-paper-345780.pdf
https://docs.oracle.com/en/database/oracle/%20apex/23.2/htmdb/saml-sign-in.html
https://docs.oracle.com/en/database/oracle/%20apex/23.2/htmdb/saml-sign-in.html
https://www.rittmanmead.com/blog/%202023/11/oracle-apex-extending-social-sign-in/
https://www.rittmanmead.com/blog/%202023/11/oracle-apex-extending-social-sign-in/
https://docs.oracle.com/en/database%20/oracle/apex/22.2/htmdb/social-sign-in.html
https://docs.oracle.com/en/database%20/oracle/apex/22.2/htmdb/social-sign-in.html
https://oracle-base.com/articles/misc/azure-ad-authentication-for-oracle-apex-applications
https://oracle-base.com/articles/misc/azure-ad-authentication-for-oracle-apex-applications
https://docs.oracle.com/en%20/database/oracle/apex/22.2/
https://docs.oracle.com/en%20/database/oracle/apex/22.2/
http://www.jmjcloud.com/blog/its-time-for-a-new-name-for-apex-social-sign-in
http://www.jmjcloud.com/blog/its-time-for-a-new-name-for-apex-social-sign-in
https://content.dsp.co.uk/apex/apex-authentication-options
https://content.dsp.co.uk/apex/apex-authentication-options
https://www.maxapex.com/blogs/security-best-practices-in-oracle-apex
https://docs.oracle.com/en/middleware/idm/access-manager/11.1.2.3/aiaag/oidc-client-integrations-social-identity-providers.html#GUID-E9DAFF1A-97FD-4578-92F9-1D9755A838C9
https://docs.oracle.com/en/middleware/idm/access-manager/11.1.2.3/aiaag/oidc-client-integrations-social-identity-providers.html#GUID-E9DAFF1A-97FD-4578-92F9-1D9755A838C9
https://docs.oracle.com/en/middleware/idm/access-manager/11.1.2.3/aiaag/oidc-client-integrations-social-identity-providers.html#GUID-E9DAFF1A-97FD-4578-92F9-1D9755A838C9
https://docs.oracle.com/cd/E50612_01/doc.11122/oauth_guide/content/oauth_intro.html
https://docs.oracle.com/cd/E50612_01/doc.11122/oauth_guide/content/oauth_intro.html
https://www.rittmanmead.com/blog/2023/10/oracle-apex-authentication-debug-tip/
https://www.rittmanmead.com/blog/2023/10/oracle-apex-authentication-debug-tip/
https://docs.oracle.com/en/database/oracle/apex/22.1/htmdb/index.html
https://www.w3.org/TR/webauthn/
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf
https://auth0.com/docs/authentication/passwordless
https://sovrin.org/wp-content/uploads/Sovrin-Protocol-and-Token-White-Paper.pdf
https://sovrin.org/wp-content/uploads/Sovrin-Protocol-and-Token-White-Paper.pdf
https://docs.oracle.com/en/learn/apex-identitydomains-sso/index.html
https://docs.oracle.com/enus/iaas/Content/%20Identity/home.htm

