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Abstract - Some of the current challenges in modern 

agriculture include unsustainable pesticide use along with the 

untimely rainfall, increasing temperatures, and climate change 

which directly impact the productivity of crops and food 

security. In light of these challenges, we have developed a 

solution that predicts a country's crop yields with 

unprecedented accuracy and reliability called AgroYield, this 

solution employs machine learning technology and leverages 

features such as crop type, country, year, average rainfall, 

temperature, and pesticide usage to make yield predictions in 

kg/hectare. The dataset was preprocessed with 

OneHotEncoding for categorical variables and StandardScaler 

for numerical inputs. After trialing multiple regression 

models, the Decision Tree Regressor was found to perform 

best. Alongside yield forecasting, AgroYield enables 

decision-making towards sustainable farming, fostering long-

term ecological balance. By helping farmers, agronomists, and 

policymakers adapt to resource and environmental constraints, 

this solution aids in building a resilient agricultural ecosystem. 
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1.INTRODUCTION 

 
Global food security, economic growth, and social stability 

are all based on agriculture, especially in developing nations 

where it continues to be the main source of income for a 

sizable section of the populace. The demand for food is 

predicted to increase sharply as the world's population grows, 

putting agricultural systems under previously unheard-of 

pressure to boost output without sacrificing environmental 

sustainability. 

However, there are many difficulties facing modern 

agriculture. Unpredictable weather patterns brought on by 

climate change, such as irregular rainfall and extremely high 

temperatures, have a direct effect on crop yield and health. 

The strain on agricultural productivity is further increased by 

soil degradation, excessive use of chemical pesticides, water 

scarcity, and a lack of arable land. These problems highlight 

the pressing need for data-driven, adaptable, and intelligent 

solutions that can support stakeholders in making prompt, 

well-informed decisions. 

 

Crop yield, or the amount of crop produced per unit area, is 

one of the most important agricultural metrics. From 

individual farm-level strategies to national food security 

policies and international trade planning, precise yield 

forecasting is essential to many decision-making processes. 

Conventional statistical and empirical approaches frequently 

fail to capture 

less accurate forecasts due to the dynamic interactions 

between various agro-environmental factors.  

 

To overcome these issues, this research proposes 

AgroYield—a machine learning-based country-wise crop 

yield forecasting system. By combining past crop data with 

important environmental factors like rainfall, mean 

temperature, pesticide application, year, crop type, and 

country, AgroYield gives yield predictions in kg/hectare. The 

project uses preprocessing methods such as OneHotEncoding 

for categorical data and StandardScaler for numeric features 

to keep the data clean and improve model accuracy. 

 

Different machine learning techniques were tested in terms of 

performance, such as Linear Regression, Lasso, Ridge, K-

Nearest Neighbors, and Decision Tree Regressor. Of all these, 

the Decision Tree Regressor yielded the most precise and 

understandable outputs. The model and its pipeline for 

preprocessing are saved for the deployment in the real world 

such that users may provide environmental factors and get an 

instant yield prediction. 

 

By offering a powerful, scalable, and interpretable framework 

for crop yield prediction, AgroYield enables farmers, 

agronomists, and policymakers to make anticipatory 

decisions, distribute resources effectively, and develop 

resilience to climate variability and agricultural threats. This 

project is an advance in leveraging artificial intelligence for 

sustainable farming and secure food supply in the long term. 

 

2.SURVEY ON RECENT INVESTIGATIONS 

 

I. Background 

The growing demand for food security in the face of climate 

variability and a rising global population has positioned crop 

yield prediction as a priority in agricultural research. Machine 

Learning (ML) has emerged as a transformative tool, offering 

data-driven insights to improve farming strategies and 

maximize productivity. Multiple recent studies have 

investigated ML’s potential in addressing challenges related to 

yield forecasting, resource optimization, and sustainable 

agricultural practices. 

II. Methodology 
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Various methodologies have been employed across 

investigations, primarily involving supervised ML algorithms. 

Chlingaryan et al. (2018) integrated sensor data with ML 

models to estimate nitrogen status, while Elavarasan et al. 

(2018) examined climate-based features—such as rainfall and 

temperature—to model yield predictions. Techniques like 

regression analysis, decision trees, K-nearest neighbors, and 

ensemble learning models have been widely applied. 

Preprocessing steps typically include OneHotEncoding for 

categorical data and feature scaling for numerical values, 

similar to the methodology adopted in the AgroYield project. 

III. Results 

These studies report promising outcomes in yield prediction 

accuracy and feature importance analysis. Liakos et al. (2018) 

showed consistent results across domains such as crop health, 

soil monitoring, and water usage. Li et al. (2018) 

demonstrated the efficiency of ML in estimating fruit 

ripeness, helping optimize harvest timing. The use of Decision 

Tree Regressors and ensemble models, as noted in Beulah 

(2019), yielded superior performance due to their ability to 

handle non-linear relationships and feature interactions. 

IV. Discussion and Implications 

The research community has highlighted the critical role of 

multi-dimensional data—combining meteorological, 

geographical, and biological parameters—for improving 

model performance. The reviewed studies emphasize that 

yield prediction systems should not only focus on accuracy 

but also interpretability and adaptability to local conditions. 

The findings support the approach taken in AgroYield, where 

features like rainfall, pesticides, temperature, crop type, and 

country contribute to more granular predictions. 

The real-world uses of machine learning-crop yield estimation 

models such as AgroYield are widespread and revolutionary, 

especially in responding to the complex issues of the 

agricultural industry. They have the capability to greatly 

improve planning and decision-making at several different 

levels, ranging from small-holder farmers to national 

governments and international agribusinesses. Some 

important civil uses are: 

3. CIVIL APPLICATIONS 

Empowering Farmers with Data-Driven Crop Selection 

Through the analysis of historical and climatic data, ML 

models can suggest the best crops for a location and time of 

year. This enables farmers to make decisions based on data 

that optimizes yield potential, minimizes financial risk, and 

enhances profitability. It also facilitates more effective 

planning of sowing dates on the basis of forecasted weather 

and soil conditions. 

Supporting Policymakers in Resource Planning and Food 

Security Strategies 

Governments and agricultural ministries may employ yield 

forecasts to distribute subsidies, fertilizers and seeds in an 

efficient manner, and make contingency plans for anticipated 

low yields. The information also assists national food security 

policy by predicting shortages or surpluses and informing 

import/export policies accordingly. 

Optimizing Agribusiness Supply Chains 

Precise yield estimation enables agribusinesses to more 

accurately predict production quantities, organize logistics, 

operate storage facilities, and stabilize prices. This reduces 

post-harvest losses, optimizes inventory management, and 

improves coordination along the agricultural value chain. 

Improving Climate-Resilient Agriculture 

Machine learning techniques may assist farmers and 

stakeholders to foresee the effects of climate variability, for 

instance, heatwaves or droughts, and execute adaptation 

measures prior. These entail the realignment of planting times, 

selecting stress-resistant crop types, and taking up efficient 

irrigation practices. 

Supporting Financial Institutions in Agricultural Credit 

Risk Assessment 

Banks and microfinance institutions can employ yield 

forecasts to evaluate the risk profile of farm loans. Accurate 

forecasts assist in the formulation of insurance products and 

credit products that are suited to farmers' requirements, 

ensuring financial stability and inclusion. 

Enabling Smart Farming and Precision Agriculture 

Yield forecasts can be combined with IoT sensors, satellite 

imagery, and drone data to facilitate precision agriculture. 

This involves precision irrigation, fertilization, and pest 

control that enhance efficiency and reduce environmental 

footprint. 

Helping NGOs and Relief Agencies in Crisis Response 

In famine-prone, drought-stricken, or crop failure-prone areas, 

yield forecasting models can be used as early warning 

systems. Humanitarian organizations are thus able to mobilize 

food aid and resources ahead of time, minimizing human 

suffering and avoiding socio-economic dislocation. 

Impelling Research and Innovation in Agricultural 

Sciences 

Scientists can utilize the information and data from yield 

forecasting models to research crop behaviour, discover new 
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methods of cultivation, and determine the long-term effects of 

climate change on agriculture. 

4. MATERIAL AND METHODS 
 

I. Flask 

 

Flask is a micro web framework written in Python. It is 

designed to be lightweight, modular, and easy to use, making 

it ideal for both beginners and professionals who want to build 

web applications quickly and with flexibility. 

Unlike larger frameworks (like Django), Flask does not come 

bundled with form validation, database abstraction layer, or 

other pre-built tools—though you can add them as needed. 

This makes Flask especially suitable for small to medium-

sized projects and for integrating with external libraries like 

machine learning models. 

 

II. Numpy 

 

NumPy is a robust Python library employed for numerical 

computing, and within this project, it was mainly used to 

organize and manage the input data in numerical form prior to 

sending it to the machine learning model. NumPy arrays offer 

an optimal and organized way of dealing with input features, 

and they guarantee smooth compatibility with the 

preprocessing pipe and the model. Its optimized array 

operations provide substantial performance advantages over 

native Python lists, accelerating computations and reducing 

memory usage. Additionally, because Scikit-learn models 

need input data as NumPy arrays, NumPy was instrumental in 

facilitating seamless integration during preprocessing and 

prediction stages of the project. 

 

III. Pickle 
 

Pickle is a Python package employed for serializing and 

deserializing Python objects, which makes it crucial for saving 

trained machine learning models and data preprocessing 

pipelines. In this project, Pickle was utilized to load the pre-

trained machine learning model and the data preprocessing 

pipeline, such that the same transformations that were applied 

at training time are applied uniformly at prediction time. It 

facilitates model deployment by providing a way of saving the 

trained model to a .pkl file that can be reused later in 

production without needing to retrain it. Pickle also facilitates 

saving the entire transformation logic as part of the pipeline, 

which ensures consistency and reliability between various 

stages of the ML workflow. Its lightweight and efficient 

profile makes it a perfect choice for object persistence, 

particularly when incorporating machine learning 

functionality within web applications such as the one in this 

project. 

 

IV. Scikit-Learn 

 
Scikit-learn (sklearn) is a powerful and popular Python 

machine learning and data preprocessing library, and in this 

project it played more than one key role. First, it offered the 

Decision Tree Regressor (DTR) model, which was used to 

train on past agriculture data to forecast crop yield. Secondly, 

Scikit-learn was employed to build the pipeline for 

preprocessing, which comprised operations like feature 

scaling, encoding, and data transformation to preprocess user 

inputs for precise prediction. Finally, it provided superior 

compatibility with NumPy arrays, helping seamlessly 

integrate during both the training phase and prediction phase 

of the machine learning process. In summary, Scikit-learn was 

a key component in facilitating effective model building, 

transformation, and deployment in this project. 

 

V. Matplotlib 

Matplotlib is a robust Python library employed for the 

generation of static, animated, and interactive visualizations, 

and in this project, it was used to graphically depict the 

numerical relationships and trends in user inputs and model 

outputs. It provides fine-grained control over different plotting 

components like axes, labels, titles, colours, and grids, 

enabling precise and personalized data visualizations. Such 

visualizations enable people to better perceive the impact of 

variables such as rainfall, temperature, or use of pesticides on 

crop yield forecast, and make the output easier to interpret and 

understand. 

VI. Seaborn 

Seaborn is a Python library for data visualization that is based 

on  Matplotlib, and in this project, it was utilized to produce 

informative and aesthetically appealing statistical plots that 

made the data more interpretable. Seaborn makes it easier to 

generate complex visualizations like  heatmaps, bar charts, 

and scatter plots with less code, which makes it simpler to 

investigate and communicate insights from the data. It 

integrates very well with structured data formats such as 

pandas DataFrames, enabling easy integration with the dataset 

employed in the project. In general, Seaborn assisted in better 

presenting relationships and patterns in the agricultural data, 

enabling better understanding and analysis. 

VII. Pandas 

Pandas is a flexible and robust Python library for handling and 

analyzing data, and here, it has been utilized to process, 

manage, and analyze user-entered data prior to feeding the 

data to the machine learning model. Incorporating Pandas has 

provided the project with the functionality to easily handle 

data organization through DataFrames and Series to improve 

the structuring of features as well as providing consistency in 

formatting input. Pandas were also used to clean and validate 

user inputs, making sure that they were compatible with what 

the model required. It also allowed faster feature 

summarization and analysis, including the computation of 

averages, detecting minimum or maximum values, and 

analyzing correlations in the data. This enhanced 

interpretability and debugging while developing. Pandas also 

offers scalability, as the project can easily be extended to take 

CSV files for bulk predictions, where Pandas loads and 

transforms the data efficiently. Additionally, its easy 
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integration with NumPy and Scikit-learn facilitated easy 

transfer between data preparation and model training or 

prediction and thus became an integral part of the project's 

machine learning pipeline. 

VIII. Kaggle  

Kaggle  is a top data science and machine learning platform 

that provides high-quality datasets, collaboration tools, and 

community resources. In this project, Kaggle was the major 

source of the dataset for training and testing the crop yield 

prediction model. We particularly employed the yield_df.csv 

data from a publicly shared Kaggle dataset, which contains 

prominent agricultural attributes like rainfall, average 

temperature, pesticide use, year, and crop type. These 

attributes were crucial in developing and cross-validating the 

machine learning pipeline. Kaggle's simplicity of access, 

high-quality data, and friendly community made it a great 

platform for obtaining and testing real-world agricultural data. 

The model for the prediction of crop yield was framed based 

on historic agricultural and weather data obtained from 

Kaggle (refer to Table 1 for input features). Predictors 

covered agro-climatic as well as biochemical characteristics 

like temperature, pesticide consumption, rainfall averages, 

crop kind, and nation-wise data. These were considered to 

train the Decision Tree Regressor (DTR) due to their 

interpretability coupled with the accuracy in dealing with 

nonlinear relationships amongst input features as well as 

target variable yield. 

To maintain uniformity and decrease variance in the 

prediction pipeline, a preprocessing phase was carried out 

utilizing Scikit-learn's native utilities. OneHotEncoding was 

utilized for categorical variables like Country, Crop, and 

StandardScaler was utilized for numerical variables like 

Rainfall, Temperature, Pesticides. The trained model and the 

preprocessing pipeline were serialized with the help of Pickle 

to ensure effortless deployment using a web-based interface 

developed based on Flask. 

For transparency and enabling reproducibility, the data set 

was divided equally into two groups: the training data set for 

one half and the other half as a test data set to evaluate 

models. This ensured all model comparison and evaluation 

would be based on previously unseen data points. Though the 

Decision Tree model was the focus of prediction, it was 

benchmarked by evaluating the performance of its test set 

against a baseline simple Multiple Linear Regression (MLR) 

model that was trained with the same training dataset. The 

performance of models was evaluated in terms of R² score and 

mean squared error (MSE) measures to reflect accuracy and 

variance in the predictions. 

Visualization of input-output relationships and feature effects 

was done through Matplotlib and Seaborn, both supporting 

static plots and trend visualizations over variables. The entire 

pipeline from preprocessing to prediction was implemented 

through a Flask-based interface, supporting real-time user 

input and yield estimation on chosen features. 

5. DATA COLLECTION 

The data set utilized in this project was obtained from Kaggle, 

which is a commonly used data science and machine learning 

platform. In particular, we used the "Crop Yield Prediction 

Dataset," which was downloaded in CSV format with the file 

name yield_df.csv. The data set comprises around 5,000 entries 

with extensive information regarding the agricultural 

parameters influencing crop yield in different countries and 

years. The dataset contained records from 101 countries out of 

a possible 195, offering diverse geographic and climatic 

representation for improved generalization of the model.  

 

Fig1: Country-wise Distribution of Dataset Samples 

 

Fig2: Dataset Distribution by Crop Type 

The data set comprises the following features (input variables): 

Country: The country name where the crop was grown. 

Crop: Crop type grown (e.g., Wheat, Maize, Rice, Paddy, 

Sorghum, Soybeans). 

Year: The year that data was taken. 
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Average_Rainfall: The average annual rainfall total (in 

millimeters). 

Pesticides: Amount of pesticide used in cultivation (in 

kilograms per hectare). 

Average_Temperature: Average growing season temperature 

for the crop (in degrees Celsius). 

The target variable in the dataset is 

Yield: This is the real yield of the crops, in terms of tons per 

hectare, which is taken as the machine learning model 

prediction output. 

 

Fig3: Country-wise Aggregate Crop Yield 

This dataset was selected because it covers a wide geography, 

has a variety of available agricultural factors, and is optimal for 

creating a strong regression-based prediction model. This data 

provided the basis for preprocessing, training, and model 

evaluation in the crop yield prediction pipeline. 

6. DATA PREPROCESSING AND MODEL PIPELINE 

I. Handling missing values 

In this research, we are developing a machine learning model 

that predicts crop yield on the basis of a number of features like 

area, average rainfall, use of pesticide, temperature, and crop 

type (e.g., Maize, Rice). But, as with most real datasets, the data 

that we have to work with may include missing or incomplete 

values. These missing values may be caused by a range of 

factors, including data collection errors, reporting gaps in the 

data for some periods of time, or inconsistency in the manner 

in which the data is reported. 

Why Missing Value Handling Is Significant in 

Crop Yield Prediction 

Incomplete Data: Missing values in essential features like 

temperature, rainfall or pesticide usage can interfere with the 

learning process of the model. When any of these essential 

features are missing for a sample, the model would not be able 

to comprehend the relationships between these features and the 

target variable (crop yield). Consequently, the model's 

generalization capability to new, unseen data might be affected, 

making the predictions inaccurate. 

Model Performance: Most machine learning models, such as 

decision trees, demand that all input data be present and 

absence-free. If the data set has missing data and the model 

can't process them directly, either the training will fail or the 

model will perform badly. That's why missing data handling 

before inserting data into the model is very important to obtain 

smooth model training and accurate predictions. 

Approach to Handling Missing Values 

To address missing values in our project, we employed the 

dropna() function of the pandas library. This is a 

straightforward but efficient way of deleting rows that have any 

missing (NaN) data. In this manner, only rows containing 

complete data—i.e., no missing data in any feature—are fed 

into the model for training and testing. 

In mathematical terms, this operation can be described as 

follows: 

X = X \ {Xᵢ | ∃j, Xᵢⱼ = NaN} 

This operation removes any rows Xi where any feature value 

Xij is missing. The dataset is then reduced to only include 

complete rows, which ensures that the machine learning model 

is trained and tested on a full set of data points without any 

missing values. 

While removing rows with missing values is a straightforward 

approach, it's not always the most suitable solution. If a large 

portion of the dataset contains missing values, dropping these 

rows could result in a significant reduction in the data size. This 

would lead to a smaller training set, which could negatively 

impact the model's ability to generalize effectively. In such 

cases, alternative strategies like imputation—where missing 

values are filled with values like the mean, median, or mode of 

the respective feature—could be considered. However, for our 

project, we opted for row deletion, assuming the missing values 

were few enough that removing them would not significantly 

affect the dataset. 

Impact on the Project 

In the context of our crop yield prediction model, the dataset 

contains crucial features such as area, rainfall, and temperature. 

Dropping rows with missing values ensures that the model only 

learns from complete and accurate data. This reduces the risk 

of the model making biased or unreliable predictions due to 

incomplete information. By performing this step, we help 

ensure that our machine learning model will make predictions 
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based on a consistent and complete understanding of the 

relationships between the features and the target variable (crop 

yield). 

In summary, handling missing values by removing rows with 

NaN values is a critical step in ensuring that the machine 

learning model performs well. This preprocessing step prevents 

errors during model training and ensures that the model is 

trained on high-quality data. By handling missing values 

effectively, we improve the model's ability to generalize to 

new, unseen data, which is essential for making accurate crop 

yield predictions. 

II. Feature Selection  

In the process of building a robust crop yield prediction model, 

preprocessing of input features is essential to ensure the model 

performs optimally. One critical preprocessing step is feature 

scaling, particularly when dealing with real-world datasets that 

include features of different units and ranges, such as climatic 

and agricultural parameters. 

Importance of Feature Scaling in Crop Yield Prediction 

The dataset used in this study contains continuous variables 

such as: 

• Average Rainfall (in mm per year), 

• Pesticides Used (in tonnes), 

• Average Temperature (in degrees Celsius), and 

• Year (numerical, representing time). 

These features vary significantly in scale. For example, the 

values for average_rain_fall_mm_per_year can range from a 

few hundred to several thousand, while avg_temp typically 

ranges between 10°C to 40°C. pesticides_tonnes may span a 

wide distribution, including zero values and very large numbers 

depending on the country and crop. This variation in scale can 

pose a challenge for many machine learning algorithms, where 

large-magnitude features might unduly influence the model's 

learning process. 

Although Decision Tree Regressors, which were used in our 

final model, are generally robust to unscaled data (as they split 

nodes based on feature thresholds rather than distances), 

scaling still plays a crucial role during the training of alternative 

models (such as linear regression, SVMs, or neural networks). 

Moreover, it ensures consistency and interoperability when 

experimenting with ensemble techniques or pipelines that 

combine different algorithms. 

Scaling Method Used 

To standardize the numerical features, we applied 

Standardization using the StandardScaler class from the 

scikit-learn library. This transformation adjusts each feature so 

that it has: 

• A mean of 0, and 

• A standard deviation of 1. 

This is mathematically defined as: 

𝒙′ =
𝒙𝒋 − 𝝁𝒋

𝝈𝒋
 

Where: 

• xj = original value of feature j 

• μj = mean of feature j 

• σj = standard deviation of feature j 

• x′j = standardized value 

 

Categorical variables like Area and Item were 

excluded from scaling and were handled 

separately via OneHotEncoding, as they are not 

continuous numeric features. 

Scaling the data helped provide an even and 

stabilized learning environment to the model. 

Although our finalized pipeline utilizes a Decision 

Tree Regressor that is inherently impervious to 

scaling, uniform format facilitated suitable 

experimentation with different regression models 

as well as stackable models down the line. More 

importantly, by promoting commonality across 

the distributions of the features, we mitigated 

overpowership that could occur amongst features 

such as rainfall in the rainy nations that have 

higher numbers. 

Therefore, feature scaling played a critical role in 

boosting model generalizability, enhancing cross-

model compatibility, and facilitating a more 

interpretable and reproducible training pipeline 

for country-wise crop yield prediction. 

III. Splitting the Dataset 

After the dataset is cleaned, encoded, and scaled, the second 

most critical operation in the machine learning pipeline is 

splitting the data into training and test sets. This operation 

is very important to ensure that the model learns from one 

part of the data and then gets tested on another part, 

unknown data, to measure its generalization performance. 

Rationale for Splitting the Dataset 



                           International Scientific Journal of Engineering and Management (ISJEM)                                ISSN: 2583-6129 
                                  Volume: 04 Issue: 04 | April – 2025                                                                              DOI: 10.55041/ISJEM03827                                                                                                                                         

                                  An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        

 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                                                                                 |        Page 7 

In any supervised learning problem—like our objective to 

predict crop yield (hg/ha_yield)—it's important to 

measure how accurately a model performs on fresh, unseen 

data. Training and testing on the same data would cause 

overfitting, with the model remembering the data instead 

of learning the patterns behind the data. 

To counter this, the dataset is split into two broad subsets: 

Training set: Employed by the model to learn the 

associations between input features and the target variable. 

Testing set: Employed to independently test the model's 

predictive performance on unseen data. 

X = df.drop('hg/ha_yield', axis=1): 

This line extracts all features (independent variables) from the 

dataset except the target variable hg/ha_yield. 

y = df['hg/ha_yield']: 

This isolates the target variable, which is the crop yield 

measured in hectograms per hectare. 

train_test_split(...): 

This function from the scikit-learn library is used to randomly 

divide the dataset: 

• test_size=0.2: 20% of the data is set aside for testing, 

while 80% is used for training. This ratio balances 

model training and evaluation. 

• random_state=0: Ensures reproducibility—using the 

same random state will always result in the same split. 

• shuffle=True: Ensures the data is shuffled before 

splitting. This is crucial to avoid bias caused by 

sequential data patterns (e.g., years or countries 

appearing in sorted order). 

X ∈ ℝ^(nd) : Feature matrix with n samples and d features. 

𝑦 ∈ ℝ𝑛  : Target vector representing crop yield. 

The dataset is split into: 

Training set: ( X train ,y train ) 

Testing set: ( X test ,y test ) 

X train ∪ X test =X     and   y train ∪ y test  = y 

|X test |= 0.2 × n ,     |X train |= 0.8 × n 

Splitting the dataset allowed for the unbiased testing of the 

machine learning model. In keeping the testing data apart 

throughout training, we were able to quantify how good the 

model generalized to new situations, which in real-world crop 

yield prediction application is crucial when the model should 

perform under diverse years, nations, and types of crops. This 

step helps ensure that the performance measures like R² score, 

MAE (Mean Absolute Error), and RMSE (Root Mean Squared 

Error) are a true indicator of the model's predictive ability and 

not its capacity to memorize past data. 

IV. Model Selection and Evaluation 

In this crop yield prediction project, we tried to develop a 

good machine learning model that can be used to forecast the 

yield of different crops with respect to environmental and 

agricultural factors like country, year, crop type, mean 

rainfall, use of pesticides, and temperature. To do that, we 

contrasted the performances of five diverse regression models. 

Each model was tested on how well it generalizes on unseen 

data based on standard evaluation metrics: Mean Absolute 

Error (MAE), Mean Squared Error (MSE), and the Coefficient 

of Determination (R² score). 

Linear Regression 

A basic algorithm that presumes a linear relationship between 

the independent and dependent variables. It was employed as a 

base model to measure the performance improvement offered 

by more sophisticated methods. 

Lasso Regression 

A regularized linear regression that uses L1 regularization. It is 

useful in model simplification and variable selection by 

limiting less important feature coefficients to zero. 

Ridge Regression 

Like Lasso, Ridge Regression uses L2 regularization, which 

imposes a penalty on the size of coefficients. However, unlike 

Lasso, it does not drop variables completely and is therefore 

applicable when all the features are suspected to have a 

contribution to prediction. 

Decision Tree Regressor 

A non-parametric model which splits the feature space into 

regions using feature values and hence extracts non-linear 

relationships well. It supports categorical and numerical data 

and is not sensitive to scaling of features. 

K-Nearest Neighbors (KNN) Regressor 

A k-nearest neighbors algorithm that uses the average target 

value of the k-nearest training instances for prediction. It is 

intuitive and works well in the presence of localized patterns 

but extremely sensitive to data sparsity and scaling. 

1. Mean Absolute Error (MAE) 
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𝑴𝑨𝑬 =
𝟏

𝒏
𝜮|𝒚𝒊 − �̂�𝒊| 

• Measures the average magnitude of errors without 

considering their direction. 

• Lower MAE = better accuracy. 

2. Mean Squared Error (MSE) 

𝑴𝑺𝑬 =
𝟏

𝒏
𝜮(𝒚𝒊 − �̅�𝒊)

𝟐 

• Penalizes larger errors more than MAE due to 

squaring. 

• Lower MSE = better model performance. 

3. Coefficient of Determination (R² Score) 

 

𝑹𝟐 = 𝟏 −
𝜮𝒊=𝟏
𝒏 (𝒚𝒊 − �̂�𝒊)

𝟐

𝜮𝒊=𝟏
𝒏 (𝒚𝒊 − �̅�)𝟐

 

• Compares the model’s performance to a baseline 

mean prediction. 

• R2 = 1 implies perfect predictions. 

• R2=  0 means predictions are no better than the mean. 

 

Fig4: R² Score Comparison Across Models 

Decision Tree Regressor Evaluation  

In the context of predicting crop yields using various 

agricultural and climatic features (e.g., country, crop type, 

rainfall, temperature, pesticide use, year), the Decision Tree 

Regressor demonstrated exceptional performance based on 

standard evaluation metrics: 

1. Mean Absolute Error (MAE) = 5,332.39 hg/ha 

 

This metric represents the average absolute difference 

between the actual crop yields and the predicted values 

produced by the model. In simpler terms: 

• On average, the model's prediction differs from the 

true yield by only ~5,300 hectograms per hectare 

(hg/ha). 

• Given that typical crop yields in the dataset span a 

wide range (from thousands to hundreds of thousands 

of hg/ha), this low MAE highlights that the model's 

predictions are highly accurate and close to real 

values. 

2. Mean Squared Error (MSE) = 266,386,401.04 (hg/ha)² 

MSE calculates the average of the squares of 

prediction errors. Squaring the errors penalizes 

larger mistakes more heavily than smaller ones. 

• Despite the large numeric value (due to squaring and 

the scale of yield units), this MSE is quite low in the 

context of yield prediction. 

• It suggests that the model rarely makes large 

prediction mistakes, and overall variance in errors 

is well-controlled. 

 3. R² Score (Coefficient of Determination) = 0.96 

The R² score measures the proportion of the variance 

in the target variable (crop yield) that is explained 

by the model. 

• An R² score of 0.96 means that 96% of the total 

variability in crop yield can be explained by the 

input features used in the model. 

• Only 4% of the variation is left unexplained, which 

could be due to random noise, unmeasured variables, 

or data anomalies. 

 

Model 

MAE 

(hg/ha) 

 

MSE (hg/ha)² 

 

R² 

Linear 

Regression 
22,000+ 484,000,000 0.50 

Lasso 29,909 1,819,003,478 0.75 

Ridge 29,888 1,819,010,174 0.75 

Decision 

Tree 
5,332 266,386,401 0.96 

KNN 31,682 2,576,076,749 0.64 

 

Table1: Performance Metrices of Different Models 
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Among all tested models (Linear Regression, Lasso, Ridge, 

KNN, Decision Tree), the Decision Tree Regressor 

significantly outperformed others across all major evaluation 

metrics: 

• Lowest MAE → Smallest average error per 

prediction 

• Lowest MSE → Most consistent predictions with 

minimal large errors 

• Highest R² Score → Most explanatory power and 

predictive accuracy 

Thus, the Decision Tree Regressor is the model of choice 

within this research to predict crop yield based on its high 

accuracy, minimal error levels, and strong ability to map 

intricate, non-linear relationships characteristic of agricultural 

data. 

6. DISCUSSION 

       Our results clearly show that the Decision Tree Regressor 

(DTR) model performs extremely well for predicting crop yield 

from different environmental and agricultural factors. The 

Decision Tree Regressor performed better than the other 

models every time, including  Linear Regression (LR), Lasso,  

Ridge , and K-Nearest Neighbours (KNN) across all of the 

main metrics, including Mean Absolute Error (MAE), Mean 

Squared Error (MSE), and R². With a remarkably high R² value 

of 0.96, the Decision Tree model accounts for 96% of the 

variation in crop yield, which means that it does an excellent 

job of capturing the pattern among the features and the target 

variable. 

Whereas models such as Linear Regression  and Lasso had 

difficulty making accurate predictions with their own weakness 

in dealing with intricate relationships among features, the 

Decision Tree Regressor could effectively capture non-linear 

relationships, which is normally the situation in agricultural 

systems. This is particularly important in modelling crop yield, 

where the correspondence between environmental drivers (e.g., 

temperature, rainfall) and crop yield can be very non-linear and 

subject to sophisticated interactions that straightforward linear 

models are unlikely to handle well. 

The fact that Decision Trees can process both numerical and 

categorical data without requiring heavy preprocessing, 

coupled with the interpretability of decision trees, makes them 

an exceptionally good candidate for this problem. Visualizing 

the splits in decision trees allows stakeholders in agribusiness 

to understand what factors are most relevant to predicting crop 

yield, thus making the model more explainable and actionable. 

Our discussion also emphasizes the significance of data 

splitting during training and testing. Although Decision Trees 

do not necessarily need to have different training and testing 

datasets owing to their data bootstrapping and bagging 

behaviour, we followed the traditional approach of data 

splitting so that the model was tested thoroughly on unseen 

samples. This division of the training and test sets helps our 

results to be valid and applicable in real-world situations where 

unseen data are encountered. 

In addition, we saw that the accuracy of the Decision Tree 

Regressor increases with the size of the dataset, just like in the 

results of other research on machine learning. Adding more 

data for training may help improve the generalization capability 

of the model, particularly for the prediction of crop yields in 

different regions or under different climatic conditions. 

In summary, the  Decision Tree Regressor was an outstanding 

selection for crop yield forecasting, offering very accurate 

forecasts and great interpretability. This model's capability to 

process big data, intricate relationships, and high predictive 

accuracy indicates its robust potential for agricultural 

prediction. Additional research can also focus on 

hyperparameter tuning of the model, cross-validation, and 

using finer data (like satellite images or composition of the soil) 

to optimize the model performance and usefulness in actual 

field scenarios. 

7. CONCLUSION 

Here, we created a machine learning pipeline to forecast crop 

yield (in hectograms per hectare) from important agricultural 

and environmental characteristics like mean rainfall, use of 

pesticides, temperature, crop variety, region (country), and 

year. We used several regression models—Linear Regression, 

Lasso, Ridge, K-Nearest Neighbours, and Decision Tree 

Regressor—to test the efficacy of these models in forecasting 

crop yield. Of all the models that were tried, the Decision Tree 

Regressor performed the best, with an R² of 0.96, MAE of 

5,332.39, and MSE of 266,386,401.04. This shows that the 

model could explain 96% of crop yield variance and make very 

accurate predictions, performing much better than the other 

methods. The capacity of the model to process numerical and 

categorical inputs, extract intricate and non-linear patterns, and 

yield interpretable results is indicative of its potential 

application in real-world agricultural prediction problem-

solving. These outcomes reinforce the promise of machine 

learning models—particularly tree-based methods—to 

underpin data-driven decision-making in agriculture. 

Through the use of a well-designed pipeline involving data 

cleaning, preprocessing, feature encoding, scaling, model 

comparison, and performance evaluation, this project lays the 

groundwork for future applications and research in predictive 

agriculture. Future enhancements may involve hyperparameter 

tuning, ensemble techniques (such as Random Forest or 

Gradient Boosting), and the incorporation of other data sources 

to increase robustness and generalizability. In summary, our 

method effectively showcases the ability of machine learning 
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to accurately and effectively predict crop yield, thus promoting 

smarter, more sustainable agricultural planning. 
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