
                           International Scientific Journal of Engineering and Management (ISJEM)                                ISSN: 2583-6129 
                                  Volume: 04 Issue: 06 | June – 2025                                                                              DOI: 10.55041/ISJEM04175                                                                                                                                        

                                  An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        

 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                                                                                 |        Page 1 

AI-Powered Video Surveillance for Enhanced Object Detection and Incident 

Monitoring Using YOLOv8 

Shreyas Ghansawant1, Atharva Thokal2, Tanishq Ladde3, Prof. Nikita Khawase4 

1Shreyas Ghansawant, Department of AI & DS - ISBM College of Engineering, Pune 

2 Atharva Thokal, Department of AI & DS - ISBM College of Engineering, Pune 

3 Tanishq Ladde, Department of AI & DS - ISBM College of Engineering, Pune 

4 Prof. Nikita Khawase, Department of AI & DS - ISBM College of Engineering, Pune 

 

---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - Timely and accurate detection of safety-critical 

incidents, such as vehicle accidents and human falls, is crucial 

for improving real-world surveillance-based emergency 

response. In this work, we investigate the use of YOLOv8-

based object detection models, trained on small, domain-

restricted datasets, for event detection. All variants of the 

model were deployed through a Flask-hosted web interface, 

allowing for extensive testing on static images as well as 

uploaded video streams. On a range of hardware platforms, 

the detectors showed well-balanced precision-recall 

performance with near real-time appropriateness of inference 

times. An added alerting module further enhances the 

pipeline, with an integrated solution for automated incident 

alerting. These results illustrate the viability of using light 

YOLOv8 models in efficient surveillance contexts in smart 

cities and industrial processes. 
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1.INTRODUCTION 

 
1.1 Background & Motivation 

In urban and industrial settings, the meteoric rise of 

surveillance cameras has generated a vast amount of video data 

which cannot be monitored by human observers with equal 

swiftness. Watching live feeds by humans is laborious, with 

fatigue-related errors causing many critical events to be 

missed, leaving responses to emergencies delayed. 

Convolutional neural networks and deep learning have truly 

turned the tables on automated object detection and real-time 

analysis of sophisticated scenes. The family of detectors 

known as "You Only Look Once" (YOLO) stands out for 

providing an excellent compromise between speed and 

accuracy when deployed in resource-constrained environments 

[1], [2].  

1.2 Problem Statement 

In spite of deep learning's promises for monitoring, many 

endeavors are still hindered when it comes to using large 

datasets, requiring extensive user annotation, and high-end 

hardware. Practical problems involving small-scale 

installations or legacy camera networks may suffer from data 

limitations and low compute power. Yet safe incident 

detection, of utmost priority is highly valuable: being accidents 

like car crashes, or human falls. It shall, therefore, take 

lightweight models trained over curated smaller datasets, and 

an end-to-end pipeline that allows image and video analysis 

and real-time alerting through an easy-to-use interface.  

1.3 Contributions of This Work 

In this paper, we address these challenges through the 

following key contributions: 

Compact YOLOv8 Model Variants: We train multiple 

YOLOv8-based detectors on a carefully assembled car crash 

and fall dataset to yield reasonable detection performances 

with limited training samples. 

Flask Powered Deployment: A web-based interface built 

using the Flask framework allows users to upload images or 

videos for immediate incident detection and monitor live 

camera streams with automated alerts.  

Hardware Aware Evaluation: Inference latencies and 

detection consistencies of different computing platforms were 

evaluated to reveal the trade-offs between model size, dataset 

variety, and processing speed.  

Integrated Alerting Mechanism: Real-time alerts during 

incident recognition by a fully implemented notification 

subsystem show the operational readiness of the system. 

 

2. LITERATURE REVIEW/RELATED WORK 
 

Over the last few years, the incorporation of deep-learning 

algorithms into video-surveillance systems has transformed 

traditional surveillance systems by enabling real-time, 

automated assessment of complex scenes. The pioneering 

research done by Redmon et al. on You Only Look Once 

(YOLO) developed a single, homogeneous framework for 

detecting objects that processes a complete image in a single 

pass, hence achieving an unrivaled speed-accuracy trade-off 

[1]. Building on this architecture, subsequent YOLO-based 

architectures have continued to increase inference throughputs, 

thereby making them particularly well-suited for latency-

critical applications like incident monitoring. 

High-diversity and high-quality datasets are needed to train 

effective detection models. The Microsoft COCO dataset, 

established by Lin et al., has dense object annotations in eighty 

typical categories and has established itself as a metric for 

general-purpose detection algorithms [2]. Although the large 

size and diversity of COCO contribute to state-of-the-art 

performance, real-world surveillance deployments typically 

have to deal with data availability constraints—specifically for 

rare or high-consequence safety events—so therefore require 

the application of data augmentation and transfer learning 

techniques for fitting large models to small domain-specific 

datasets. 
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Several research studies have explored automatic traffic crash 

detection in surveillance footage. Ghahremannezhad et al. 

demonstrated that end to end deep learning pipelines can 

identify vehicle crashes in real time with the possibility of 

significant reductions in emergency response time through 

continuous feed analysis [3]. Their work indicates the 

possibility of end to end learning approaches but also suggests 

the challenges of finding a trade-off between detection 

sensitivity and false alarms, especially in heterogeneous urban 

settings. 

Supporting vehicle collision detection, fall detection by 

humans has been investigated as part of public safety 

surveillance. Kavya et al. utilized convolutional neural 

networks to analyze video streams and demonstrated 

promising advances in fall detection accuracy compared to 

heuristic based approaches [4]. The results highlight the 

significance of posture and movement patterns in 

distinguishing between benign activity and genuine emergency 

situations, guiding the development of more trustworthy fall 

alarm systems. 

Cumulatively, these earlier initiatives define both 

methodological underpinnings and practical implications of 

deploying AI driven surveillance. Our work builds upon 

advance YOLOv8 architectures—trained on custom crash and 

fall datasets—and combines them in a single web based 

platform, overcoming data shortage, computational limitations, 

and requirements for instant alerting in real world scenarios. 

 

3. SYSTEM ARCHITECTURE & 

IMPLEMENTATION 
 

3.1 Overall Pipeline Design  

 

The system we propose uses a modular, end-to-end pipeline 

(see Figure 1) with clearly defined processes for data intake, 

model inference, incident analysis, alert generation, and user 

interaction. All the components execute asynchronously—

enabling concurrent capture and queuing of video frames in 

parallel with detection engine and alert subsystem 

processing—so as to achieve maximum throughput and 

responsiveness on different hardware configurations. 

3.2 Video Capture and Early Processing 

 

Raw video streams and user-uploaded videos are processed by 

the system using a centralized capture module. Frames are 

captured at the frame rate specified by the user and resized to 

640×640 pixels to meet the input needs of YOLOv8. A light 

normalization step converts pixel values to [0,1] range, and 

data augmentation methods like random flipping and 

brightness adjustments can be enabled at inference time to 

improve robustness against harsh lighting or viewpoint 

changes. 

3.3 YOLOv8 Model Integration 

 

At the core of the system, one or more YOLOv8 model 

variants—each fine tuned on car crash and fall datasets—are 

loaded into memory via the PyTorch inference API. The 

detection engine batches incoming frames (batch size 

adjustable per GPU/CPU capacity) and performs a single 

forward pass per batch.Postprocessing carries out non 

maximum suppression (NMS) at an intersection over union 

threshold of 0.45 to remove redundant boxes, providing final 

bounding boxes, class IDs, and confidence scores per frame. 

3.4 Incident Detection Logic 

Detection results are passed on to the incident analysis module, 

which performs class specific logic: 

 

Collision identification: Fires when two car bounding boxes 

overlap beyond a certain spatial threshold, or when a "crash" 

class confidence exceeds 0.6. 

 

Fall detection: Combines fall class detections with temporal 

consistency checks—i.e., checking that a subject's bounding 

box is low and static for at least 0.8 seconds—to prevent 

spurious alarms. 

This two-step decision process trades sensitivity against false 

alarms, adaptively setting thresholds over recent detection 

history. 

3.5 Alerting & Logging Subsystem 

Once an event is validated, the system stores the event 

timestamp, frame capture, and detection metadata in a 

persistent datastore. At the same time, the alerting engine 

creates a notification payload—class type, confidence, and 

thumbnail—and sends it via email, HTTP webhook, or in-page 

banner.Retry logic and queuing guarantee delivery in the face 

of transient network conditions. 

3.6 Web Interface Based on Flask 

A Flask application brings together the user experience by 

offering routes for: 

Static test uploads: /upload/image and /upload/video endpoints 

will accept files and return annotated results. 

Live stream: /stream gives a Jetson/GPU powered camera 

stream with overlay in real time. 

Dashboard: A minimal frontend in HTML/JavaScript displays 

the latest warnings, system health gauges (frame rate, 

GPU/CPU use), and setup controls (confidences, batch size). 

The interface uses WebSockets for low-latency updates and 

Bootstrap for responsive design, allowing it to be executed on 

desktop or mobile devices without the need for extra client 

software. 

3.7 Deployment and Scalability Considerations 

The whole stack is containerized using Docker, and GPU 

acceleration is supported with the NVIDIA Container Toolkit 

where that is required. Horizontal scaling is done by running 

many detection workers behind an NGINX reverse proxy and a 

shared messaging queue (e.g., Redis). That is, the system can 

be horizontally scaled to support more cameras or higher 

throughput needs by simply adding more worker instances. 

 

4. DATA PREPARATION & MODEL TRAINING 
 

For efficient detection of human falls and car crashes, pre-

annotated data was purchased from Roboflow, which is a 

common dataset curation and computer vision dataset 

management platform. The used datasets contained YOLO-

format bounding box annotations, which are specifically 

optimized for fall and crash recognition tasks. Without manual 

annotation, direct integration into the training pipeline was 

possible, significantly lessening the task of model building. 

Every dataset had unique features in size and composition, 

requiring a respective modification of the data partitioning 

approach. Based on the number and diversity of available 

images, the datasets were divided into training, validation, and 

testing sets with different split proportions—typically between 

70:20:10 and 80:10:10—guided by the need to ensure proper 
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representation in each set. This variable partitioning approach 

enabled reliable testing without sacrificing high learning 

quality, especially for relatively small datasets. 

The images were resized to a resolution of 640×640 pixels to 

satisfy the input requirement of YOLOv8 models. Random 

horizontal flip, change of brightness, scaling, and rotation 

were performed at export and training time to improve the 

model's resistance to changes in scene conditions and camera 

views. 

YOLOv8n (nano) was used for model training due to its 

lightweight architecture, offering a reasonable balance 

between speed and accuracy—appropriate for real-time use 

and deployment on low-end devices. Training was done using 

the Ultralytics YOLOv8 framework, with pretrained weights 

on the COCO dataset to achieve transfer learning and improve 

convergence rate. A few hyperparameters, such as learning 

rate, batch size, and epochs, were experimented in a 

conservative approach through a sequence of experiments 

looking to improve performance over a spectrum of datasets. 

Throughout the training process, key metrics like 

classification loss, objectness score, precision, recall, and 

mean Average Precision (mAP) were monitored 

systematically to gauge the performance of the model.The 

ultimate model versions were chosen based on the 

performance on their validation set and generalization 

capability, such that each was well-suited to its corresponding 

detection task. 

The presented methodology illustrated that it is possible to 

create effective and responsive detection models utilizing 

YOLOv8n, even when employing modest and diverse 

datasets, thereby endorsing its practical use in incident 

monitoring and video surveillance. 

 

5. RESULTS 

 

5.1 Quantitative Performance 

The YOLOv8n variant set, each having been trained on one or 

more of a number of Roboflow datasets, showed enormous 

variability in detection quality as a function of dataset size, 

density of annotation, and choice of hyperparameters. For the 

smallest of crash-only datasets, mean Average Precision at 0.5 

(mAP@0.5) settled at around 0.62, whereas for a very large, 

augmented crash dataset, mAP@0.5 rose to almost 0.78. 

Corresponding precision–recall curves (Figures 6–7) show 

maximum precision values of between 0.68 and 0.92, and 

corresponding recall values ranging 0.54–0.83, depending on 

individual model–data pairs. Normalized confusion matrices 

show that models trained from more diverse scenes are to be 

correlated with a decrease in missed collisions, from over 25 

to under 10 instances, while causing a marginal increase in 

false positives. 

 
Fig-1: Confusion Matrix Normalized 

Inference latency also showed variability depending on 

architecture and dataset disparities. On a mid-range GPU, 

average frame processing times ranged from 0.03 seconds (for 

pruned, small models) to 0.06 seconds (for fully augmented 

variants). CPU-only runs, however, showed much slower 

performance—ranging from 0.10 seconds to 0.15 seconds per 

frame—that required the enforcement of frame skipping to 

achieve an approximately real-time throughput at the expense 

of very minimal recall loss. These results illustrate the 

inherent trade-offs in matching model complexity to 

accommodate within resource constraints. 

 

 
 

Ongoing Improvements: Our work to expand the dataset for 

the detection of falls continues, and we are looking into the 

use of mixed precision training in conjunction with dynamic 

pruning to improve accuracy while, at the same time, reducing 

computational requirements. 
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5.2 Qualitative Examples  

 

Figure 8 provides sample frames of the top-performing crash 

detection model. Under occlusions, low-light environments, 

and out-of-view camera poses, the system successfully 

localizes collision events with bounding box confidence 

scores that are generally greater than 0.75. The bottom-center 

panel of the flipped car found at 0.89 confidence is 

representative of the network's robustness against extreme 

object orientation. 

 

 
Fig-2: Predicted Test Samples 

 

By contrast, failure occurrences—illustrated by the periodic 

misclassification of neighboring parked vehicles as 

"Accident"—indicate the challenging nature of false positives 

that accrue when models are trained upon a limited class of 

parking lot images. Results will guide our next phase of 

improvement, involving a strategic enlargement of the dataset 

with regard to common failure classes. 

 

Mo

del  

Dataset Size 

(Train/Test/Val) 

mAP

@0.5 

Preci

sion 

Recal

l 

F1-Sc

ore 

V1 373 / 77 / 130 0.77 0.85 0.74 0.79 

V2 373 / 77 / 130 0.79 0.80 0.76 0.78 

Table 1: Model Metrics (Car Crash Models) 

 

Mo

del  

Dataset Size 

(Train/Test/Val) 

mAP

@0.5 

Preci

sion 

Recal

l 

Fitne

ss 

V2 9444 / 899 / 450 0.86 0.81 0.81 0.57 

V3 9444 / 899 / 450 0.88 0.82 0.83 0.59 

Table 2:  Model Metrics (Fall Detection Models) 

 

6. DISCUSSION 
 

Recent incident detection systems often rely on large datasets 

and heavyweight architectures to achieve top tier accuracy, 

but they can be resource intensive and complex to deploy. 

Classical approaches—such as motion based heuristics paired 

with traditional classifiers—tend to falter under occlusion or 

unusual viewpoints, while even “lightweight” backbones may 

struggle to maintain real time speeds on CPU only hardware. 

In contrast, our YOLOv8n variants, trained on compact, 

annotated crash and fall datasets, deliver competitive 

precision–recall trade offs with per frame inference times 

under 0.1 s on commodity processors. The Flask based 

interface further streamlines integration, allowing both 

uploaded media and live streams to generate instant alerts 

without specialized client software. By focusing on domain 

specific data, targeted frame skipping, and an end to end web 

pipeline, this work demonstrates that effective, real time 

incident monitoring can be achieved with modest compute 

and development overhead—making it well suited for rapid 

prototyping and scalable smart environment deployments. 

 

7. LIMITATIONS & FUTURE WORK 
 

Although the existing pipeline achieves near real time 

performance with frame skipping and light YOLOv8n models, 

full frame, low latency processing is still an objective. Future 

work will investigate the use of higher capacity GPUs and 

mixed precision training to enable larger, more complex 

architectures—e.g., YOLOv8 L or YOLOv8 X—to enable 

better detection accuracy. We will also continue to optimize 

our data augmentation strategy and increase datasets to 

minimize false positives in difficult cases. Lastly, more 

incident analysis modules (e.g., pedestrian intrusion, object 

left behind alarms) will be added to enable the system to be 

applied in various smart environment domains. 

 

8. CONCLUSION 

In this work, we presented a streamlined AI driven surveillance 

framework for detecting vehicle collisions and human falls 

using YOLOv8n models trained on compact Roboflow datasets. 

By coupling lightweight, pretrained architectures with domain 

specific data and targeted frame skipping, our system delivers 

balanced precision–recall performance (mAP@0.5 of 0.62–

0.78) alongside inference times under 0.1 s per frame on 

standard hardware. The Flask based web interface unifies 

image/video uploads, live stream monitoring, and an integrated 

alerting mechanism, enabling end users to deploy incident 

detection capabilities without specialized software. 

Our evaluation across diverse model–data configurations 

highlights the viability of resource efficient deep learning 

solutions for real time incident monitoring. The modular 

design—covering data ingestion, YOLOv8 inference, incident 
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logic, and notification—facilitates increased potential for future 

growth, including adding higher-capacity YOLO variants and 

additional event categories. 

 

In summary, the present study shows that highly effective 

surveillance programs with significant impact can be achieved 

with relatively low development and computational 

requirements. It is proposed that this method provides a 

valuable paradigm for the rapid prototyping and scalable 

deployment of intelligent monitoring systems in urban 

intelligent environments and industrial applications.  
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