
 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 06 | June – 2025 DOI: 10.55041/ISJEM04175

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

AI-Powered Video Surveillance for Enhanced Object Detection and Incident

Monitoring Using YOLOv8

Shreyas Ghansawant1, Atharva Thokal2, Tanishq Ladde3, Prof. Nikita Khawase4

1Shreyas Ghansawant, Department of AI & DS - ISBM College of Engineering, Pune

2 Atharva Thokal, Department of AI & DS - ISBM College of Engineering, Pune

3 Tanishq Ladde, Department of AI & DS - ISBM College of Engineering, Pune

4 Prof. Nikita Khawase, Department of AI & DS - ISBM College of Engineering, Pune

---***---
Abstract - Timely and accurate detection of safety-critical

incidents, such as vehicle accidents and human falls, is crucial

for improving real-world surveillance-based emergency

response. In this work, we investigate the use of YOLOv8-

based object detection models, trained on small, domain-

restricted datasets, for event detection. All variants of the

model were deployed through a Flask-hosted web interface,

allowing for extensive testing on static images as well as

uploaded video streams. On a range of hardware platforms,

the detectors showed well-balanced precision-recall

performance with near real-time appropriateness of inference

times. An added alerting module further enhances the

pipeline, with an integrated solution for automated incident

alerting. These results illustrate the viability of using light

YOLOv8 models in efficient surveillance contexts in smart

cities and industrial processes.

Key Words: YOLOv8, video surveillance, object detection,

incident detection, vehicle collision detection, human fall

detection, Flask web interface, real time monitoring, alerting,

deep learning.

1.INTRODUCTION

1.1 Background & Motivation

In urban and industrial settings, the meteoric rise of

surveillance cameras has generated a vast amount of video data

which cannot be monitored by human observers with equal

swiftness. Watching live feeds by humans is laborious, with

fatigue-related errors causing many critical events to be

missed, leaving responses to emergencies delayed.

Convolutional neural networks and deep learning have truly

turned the tables on automated object detection and real-time

analysis of sophisticated scenes. The family of detectors

known as "You Only Look Once" (YOLO) stands out for

providing an excellent compromise between speed and

accuracy when deployed in resource-constrained environments

[1], [2].

1.2 Problem Statement

In spite of deep learning's promises for monitoring, many

endeavors are still hindered when it comes to using large

datasets, requiring extensive user annotation, and high-end

hardware. Practical problems involving small-scale

installations or legacy camera networks may suffer from data

limitations and low compute power. Yet safe incident

detection, of utmost priority is highly valuable: being accidents

like car crashes, or human falls. It shall, therefore, take

lightweight models trained over curated smaller datasets, and

an end-to-end pipeline that allows image and video analysis

and real-time alerting through an easy-to-use interface.

1.3 Contributions of This Work

In this paper, we address these challenges through the

following key contributions:

Compact YOLOv8 Model Variants: We train multiple

YOLOv8-based detectors on a carefully assembled car crash

and fall dataset to yield reasonable detection performances

with limited training samples.

Flask Powered Deployment: A web-based interface built

using the Flask framework allows users to upload images or

videos for immediate incident detection and monitor live

camera streams with automated alerts.

Hardware Aware Evaluation: Inference latencies and

detection consistencies of different computing platforms were

evaluated to reveal the trade-offs between model size, dataset

variety, and processing speed.

Integrated Alerting Mechanism: Real-time alerts during

incident recognition by a fully implemented notification

subsystem show the operational readiness of the system.

2. LITERATURE REVIEW/RELATED WORK

Over the last few years, the incorporation of deep-learning

algorithms into video-surveillance systems has transformed

traditional surveillance systems by enabling real-time,

automated assessment of complex scenes. The pioneering

research done by Redmon et al. on You Only Look Once

(YOLO) developed a single, homogeneous framework for

detecting objects that processes a complete image in a single

pass, hence achieving an unrivaled speed-accuracy trade-off

[1]. Building on this architecture, subsequent YOLO-based

architectures have continued to increase inference throughputs,

thereby making them particularly well-suited for latency-

critical applications like incident monitoring.

High-diversity and high-quality datasets are needed to train

effective detection models. The Microsoft COCO dataset,

established by Lin et al., has dense object annotations in eighty

typical categories and has established itself as a metric for

general-purpose detection algorithms [2]. Although the large

size and diversity of COCO contribute to state-of-the-art

performance, real-world surveillance deployments typically

have to deal with data availability constraints—specifically for

rare or high-consequence safety events—so therefore require

the application of data augmentation and transfer learning

techniques for fitting large models to small domain-specific

datasets.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 06 | June – 2025 DOI: 10.55041/ISJEM04175

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

Several research studies have explored automatic traffic crash

detection in surveillance footage. Ghahremannezhad et al.

demonstrated that end to end deep learning pipelines can

identify vehicle crashes in real time with the possibility of

significant reductions in emergency response time through

continuous feed analysis [3]. Their work indicates the

possibility of end to end learning approaches but also suggests

the challenges of finding a trade-off between detection

sensitivity and false alarms, especially in heterogeneous urban

settings.

Supporting vehicle collision detection, fall detection by

humans has been investigated as part of public safety

surveillance. Kavya et al. utilized convolutional neural

networks to analyze video streams and demonstrated

promising advances in fall detection accuracy compared to

heuristic based approaches [4]. The results highlight the

significance of posture and movement patterns in

distinguishing between benign activity and genuine emergency

situations, guiding the development of more trustworthy fall

alarm systems.

Cumulatively, these earlier initiatives define both

methodological underpinnings and practical implications of

deploying AI driven surveillance. Our work builds upon

advance YOLOv8 architectures—trained on custom crash and

fall datasets—and combines them in a single web based

platform, overcoming data shortage, computational limitations,

and requirements for instant alerting in real world scenarios.

3. SYSTEM ARCHITECTURE &

IMPLEMENTATION

3.1 Overall Pipeline Design

The system we propose uses a modular, end-to-end pipeline

(see Figure 1) with clearly defined processes for data intake,

model inference, incident analysis, alert generation, and user

interaction. All the components execute asynchronously—

enabling concurrent capture and queuing of video frames in

parallel with detection engine and alert subsystem

processing—so as to achieve maximum throughput and

responsiveness on different hardware configurations.

3.2 Video Capture and Early Processing

Raw video streams and user-uploaded videos are processed by

the system using a centralized capture module. Frames are

captured at the frame rate specified by the user and resized to

640×640 pixels to meet the input needs of YOLOv8. A light

normalization step converts pixel values to [0,1] range, and

data augmentation methods like random flipping and

brightness adjustments can be enabled at inference time to

improve robustness against harsh lighting or viewpoint

changes.

3.3 YOLOv8 Model Integration

At the core of the system, one or more YOLOv8 model

variants—each fine tuned on car crash and fall datasets—are

loaded into memory via the PyTorch inference API. The

detection engine batches incoming frames (batch size

adjustable per GPU/CPU capacity) and performs a single

forward pass per batch.Postprocessing carries out non

maximum suppression (NMS) at an intersection over union

threshold of 0.45 to remove redundant boxes, providing final

bounding boxes, class IDs, and confidence scores per frame.

3.4 Incident Detection Logic

Detection results are passed on to the incident analysis module,

which performs class specific logic:

Collision identification: Fires when two car bounding boxes

overlap beyond a certain spatial threshold, or when a "crash"

class confidence exceeds 0.6.

Fall detection: Combines fall class detections with temporal

consistency checks—i.e., checking that a subject's bounding

box is low and static for at least 0.8 seconds—to prevent

spurious alarms.

This two-step decision process trades sensitivity against false

alarms, adaptively setting thresholds over recent detection

history.

3.5 Alerting & Logging Subsystem

Once an event is validated, the system stores the event

timestamp, frame capture, and detection metadata in a

persistent datastore. At the same time, the alerting engine

creates a notification payload—class type, confidence, and

thumbnail—and sends it via email, HTTP webhook, or in-page

banner.Retry logic and queuing guarantee delivery in the face

of transient network conditions.

3.6 Web Interface Based on Flask

A Flask application brings together the user experience by

offering routes for:

Static test uploads: /upload/image and /upload/video endpoints

will accept files and return annotated results.

Live stream: /stream gives a Jetson/GPU powered camera

stream with overlay in real time.

Dashboard: A minimal frontend in HTML/JavaScript displays

the latest warnings, system health gauges (frame rate,

GPU/CPU use), and setup controls (confidences, batch size).

The interface uses WebSockets for low-latency updates and

Bootstrap for responsive design, allowing it to be executed on

desktop or mobile devices without the need for extra client

software.

3.7 Deployment and Scalability Considerations

The whole stack is containerized using Docker, and GPU

acceleration is supported with the NVIDIA Container Toolkit

where that is required. Horizontal scaling is done by running

many detection workers behind an NGINX reverse proxy and a

shared messaging queue (e.g., Redis). That is, the system can

be horizontally scaled to support more cameras or higher

throughput needs by simply adding more worker instances.

4. DATA PREPARATION & MODEL TRAINING

For efficient detection of human falls and car crashes, pre-

annotated data was purchased from Roboflow, which is a

common dataset curation and computer vision dataset

management platform. The used datasets contained YOLO-

format bounding box annotations, which are specifically

optimized for fall and crash recognition tasks. Without manual

annotation, direct integration into the training pipeline was

possible, significantly lessening the task of model building.

Every dataset had unique features in size and composition,

requiring a respective modification of the data partitioning

approach. Based on the number and diversity of available

images, the datasets were divided into training, validation, and

testing sets with different split proportions—typically between

70:20:10 and 80:10:10—guided by the need to ensure proper

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 06 | June – 2025 DOI: 10.55041/ISJEM04175

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

representation in each set. This variable partitioning approach

enabled reliable testing without sacrificing high learning

quality, especially for relatively small datasets.

The images were resized to a resolution of 640×640 pixels to

satisfy the input requirement of YOLOv8 models. Random

horizontal flip, change of brightness, scaling, and rotation

were performed at export and training time to improve the

model's resistance to changes in scene conditions and camera

views.

YOLOv8n (nano) was used for model training due to its

lightweight architecture, offering a reasonable balance

between speed and accuracy—appropriate for real-time use

and deployment on low-end devices. Training was done using

the Ultralytics YOLOv8 framework, with pretrained weights

on the COCO dataset to achieve transfer learning and improve

convergence rate. A few hyperparameters, such as learning

rate, batch size, and epochs, were experimented in a

conservative approach through a sequence of experiments

looking to improve performance over a spectrum of datasets.

Throughout the training process, key metrics like

classification loss, objectness score, precision, recall, and

mean Average Precision (mAP) were monitored

systematically to gauge the performance of the model.The

ultimate model versions were chosen based on the

performance on their validation set and generalization

capability, such that each was well-suited to its corresponding

detection task.

The presented methodology illustrated that it is possible to

create effective and responsive detection models utilizing

YOLOv8n, even when employing modest and diverse

datasets, thereby endorsing its practical use in incident

monitoring and video surveillance.

5. RESULTS

5.1 Quantitative Performance

The YOLOv8n variant set, each having been trained on one or

more of a number of Roboflow datasets, showed enormous

variability in detection quality as a function of dataset size,

density of annotation, and choice of hyperparameters. For the

smallest of crash-only datasets, mean Average Precision at 0.5

(mAP@0.5) settled at around 0.62, whereas for a very large,

augmented crash dataset, mAP@0.5 rose to almost 0.78.

Corresponding precision–recall curves (Figures 6–7) show

maximum precision values of between 0.68 and 0.92, and

corresponding recall values ranging 0.54–0.83, depending on

individual model–data pairs. Normalized confusion matrices

show that models trained from more diverse scenes are to be

correlated with a decrease in missed collisions, from over 25

to under 10 instances, while causing a marginal increase in

false positives.

Fig-1: Confusion Matrix Normalized

Inference latency also showed variability depending on

architecture and dataset disparities. On a mid-range GPU,

average frame processing times ranged from 0.03 seconds (for

pruned, small models) to 0.06 seconds (for fully augmented

variants). CPU-only runs, however, showed much slower

performance—ranging from 0.10 seconds to 0.15 seconds per

frame—that required the enforcement of frame skipping to

achieve an approximately real-time throughput at the expense

of very minimal recall loss. These results illustrate the

inherent trade-offs in matching model complexity to

accommodate within resource constraints.

Ongoing Improvements: Our work to expand the dataset for

the detection of falls continues, and we are looking into the

use of mixed precision training in conjunction with dynamic

pruning to improve accuracy while, at the same time, reducing

computational requirements.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 06 | June – 2025 DOI: 10.55041/ISJEM04175

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

5.2 Qualitative Examples

Figure 8 provides sample frames of the top-performing crash

detection model. Under occlusions, low-light environments,

and out-of-view camera poses, the system successfully

localizes collision events with bounding box confidence

scores that are generally greater than 0.75. The bottom-center

panel of the flipped car found at 0.89 confidence is

representative of the network's robustness against extreme

object orientation.

Fig-2: Predicted Test Samples

By contrast, failure occurrences—illustrated by the periodic

misclassification of neighboring parked vehicles as

"Accident"—indicate the challenging nature of false positives

that accrue when models are trained upon a limited class of

parking lot images. Results will guide our next phase of

improvement, involving a strategic enlargement of the dataset

with regard to common failure classes.

Mo

del

Dataset Size

(Train/Test/Val)

mAP

@0.5

Preci

sion

Recal

l

F1-Sc

ore

V1 373 / 77 / 130 0.77 0.85 0.74 0.79

V2 373 / 77 / 130 0.79 0.80 0.76 0.78

Table 1: Model Metrics (Car Crash Models)

Mo

del

Dataset Size

(Train/Test/Val)

mAP

@0.5

Preci

sion

Recal

l

Fitne

ss

V2 9444 / 899 / 450 0.86 0.81 0.81 0.57

V3 9444 / 899 / 450 0.88 0.82 0.83 0.59

Table 2: Model Metrics (Fall Detection Models)

6. DISCUSSION

Recent incident detection systems often rely on large datasets

and heavyweight architectures to achieve top tier accuracy,

but they can be resource intensive and complex to deploy.

Classical approaches—such as motion based heuristics paired

with traditional classifiers—tend to falter under occlusion or

unusual viewpoints, while even “lightweight” backbones may

struggle to maintain real time speeds on CPU only hardware.

In contrast, our YOLOv8n variants, trained on compact,

annotated crash and fall datasets, deliver competitive

precision–recall trade offs with per frame inference times

under 0.1 s on commodity processors. The Flask based

interface further streamlines integration, allowing both

uploaded media and live streams to generate instant alerts

without specialized client software. By focusing on domain

specific data, targeted frame skipping, and an end to end web

pipeline, this work demonstrates that effective, real time

incident monitoring can be achieved with modest compute

and development overhead—making it well suited for rapid

prototyping and scalable smart environment deployments.

7. LIMITATIONS & FUTURE WORK

Although the existing pipeline achieves near real time

performance with frame skipping and light YOLOv8n models,

full frame, low latency processing is still an objective. Future

work will investigate the use of higher capacity GPUs and

mixed precision training to enable larger, more complex

architectures—e.g., YOLOv8 L or YOLOv8 X—to enable

better detection accuracy. We will also continue to optimize

our data augmentation strategy and increase datasets to

minimize false positives in difficult cases. Lastly, more

incident analysis modules (e.g., pedestrian intrusion, object

left behind alarms) will be added to enable the system to be

applied in various smart environment domains.

8. CONCLUSION

In this work, we presented a streamlined AI driven surveillance

framework for detecting vehicle collisions and human falls

using YOLOv8n models trained on compact Roboflow datasets.

By coupling lightweight, pretrained architectures with domain

specific data and targeted frame skipping, our system delivers

balanced precision–recall performance (mAP@0.5 of 0.62–

0.78) alongside inference times under 0.1 s per frame on

standard hardware. The Flask based web interface unifies

image/video uploads, live stream monitoring, and an integrated

alerting mechanism, enabling end users to deploy incident

detection capabilities without specialized software.

Our evaluation across diverse model–data configurations

highlights the viability of resource efficient deep learning

solutions for real time incident monitoring. The modular

design—covering data ingestion, YOLOv8 inference, incident

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 06 | June – 2025 DOI: 10.55041/ISJEM04175

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

logic, and notification—facilitates increased potential for future

growth, including adding higher-capacity YOLO variants and

additional event categories.

In summary, the present study shows that highly effective

surveillance programs with significant impact can be achieved

with relatively low development and computational

requirements. It is proposed that this method provides a

valuable paradigm for the rapid prototyping and scalable

deployment of intelligent monitoring systems in urban

intelligent environments and industrial applications.

REFERENCES

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only

look once: Unified, real time object detection,” arXiv preprint

arXiv:1506.02640, 2016.

[2] T. Y. Lin et al., “Microsoft COCO: Common objects in context,”

in European Conference on Computer Vision, 2014.

[3] H. Ghahremannezhad, H. Shi, and C. Liu, “Real time accident

detection in traffic surveillance using deep learning,” New Jersey

Institute of Technology, 2021.

[4] G. Kavya, C. T. Sunil Kumar, C. Dhanush, and J. Kruthika,

“Human fall detection using video surveillance,” Visvesvaraya

Technological University, Karnataka, India, 2020.

[5] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, "YOLOv4:

Optimal speed and accuracy of object detection," arXiv preprint

arXiv:2004.10934, 2020.

[6] G. Jocher et al., "YOLOv8: Real time object detection,"

Ultralytics GitHub repository, 2023.

[7] M. Grinberg, Flask Web Development: Developing Web

Applications with Python, O’Reilly Media, 2018.

[8] Roboflow, "Roboflow: Image and object detection dataset

management," 2025.

[9] S. Ghansawant, A. Thokal, T. Ladde, and N. Khawase,

“AI-Powered Video Surveillance for Enhanced Object Detection and

Incident Monitoring,” International Journal of Innovative Research

in Technology, vol. 11, no. 6, pp. 1410–1414, Nov. 2024.

