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Abstract 

Graph databases have emerged as a pivotal solution for managing intercon- nected data, 

providing a more intuitive way to model relationships compared to traditional relational 

databases. As the complexity and scale of the graph data increase, the need for efficient 

indexing and intelligent query optimization becomes paramount. This paper presents an AI-

driven approach to adaptive indexing and query optimization in Neo4j, leveraging a movie 

dataset. By inte- grating Python-based preprocessing and fine-tuning an OpenAI language 

model on a custom schema, we demonstrate how natural language queries can be opti- mized 

into efficient Cypher queries. Our study covers the performance of simple, complex, recursive, 

and subquery-based queries and evaluates the effectiveness of AI-generated optimizations. 
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1 Introduction 

The faster-growing AI is altering the database administration industry, particularly when it 
comes to graph databases. These types of data are precisely composed for the management of 
complex and interrelated data structures, and growing numbers of AI-powered techniques are being 
applied to enhance such databases [13, 18, 20]. This integration enables adaptive indexing and query 
optimization, significantly enhancing the effectiveness and efficiency of data retrieval processes [4, 9, 
13]. As businesses seek 
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to take advantage of the huge streams of data generated in today’s digital landscape, 
intelligent systems capable of adaptively responding to changing data distributions 
and user behaviours are a must [10, 14]. The growing need for organizations to make 
the most of the huge volumes of data generated in today’s digital world has created a need 
for intelligent systems that can learn to adapt to changes in data patterns and user 
behavior [1, 6, 15]. AI enhances graph databases not only in functionality but also 
in the ability to predict shifts in data usage, thereby ensuring better performance and 
reliability [13, 20]. This dynamic ability is very critical for enterprises that wish to 
remain on top, for it allows them to make rapid and efficient data-informed decisions 
[5, 12]. Organizations can overcome the challenges of modern data management if they 
combine AI with graph databases in order to keep up their pace in the rapidly moving 
technological environment [7, 13, 19]. 

2 Related Work 

2.1 Introduction to Graph Database Technology 

Graph databases have rapidly emerged as a transformative approach for managing 
complex, interconnected data in the current data landscape. They provide unique 
functionalities for modeling and analyzing intricate link structures and are applicable 
across various domains, such as social network analysis, biological research, telecom- 
munications, and criminal investigations [16–19]. These databases excel in handling 
relationships between entities, making them particularly suitable for applications that 
require deep link analysis and pattern discovery [13, 20]. As data becomes more com- 
plex and interconnected, graph databases offer a scalable and intuitive framework for 
understanding and leveraging these relationships in real-world scenarios. 

2.2 Fundamental Architectural Principles 

Graph databases are fundamentally different from traditional relational database mod- 
els, utilizing a network of nodes and edges to represent data. Each connection (edge) is 
characterized by a complex triple-based representation, where nodes serve as entities 
and edges define their relationships with specific contextual labels [16, 18, 20]. This 
structure allows for more intuitive modeling of real-world relationships and facilitates 
efficient data traversal and analysis. 

2.3 Structural Flexibility and Attribute Richness 

Graph databases’ architecture provides a great deal of flexibility [19]: 

• Labels give the semantic context of the nodes and relationships. 
• Edges convey directional and quantitative aspects as illustrated in Fig. 1 . 

• The nodes can house numerous attributes, allowing for nuanced entity representa- 
tion [18]. 

Data structures can adjust to intricate domain-specific requirements using this method’s 
dynamic schema design, which does not impose strict predetermined limits [18, 20]. 
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Fig. 1: Structure of Graph Database. 

 

2.4 Advanced Query Optimization Strategies 

Efficient data retrieval in graph databases relies on several sophisticated techniques: 

1. Intelligent Data Distribution 

By combining closely connected nodes, partitioning techniques take advantage of graph 
community structures to: 

• Lower computational overhead. 
• Lower data transfer costs. 

• Preserve localized semantic integrity. [13, 15, 19] 

2. Innovative Processing Approaches 

• Complex searches are broken down into manageable subqueries using query 
decomposition [20]. 

• Incremental processing prioritizes graph updates over thorough reanalysis [21]. 

• Quick approximation queries for huge dynamic datasets are made possible via 
graph sketching [21]. 

2.5 Practical Application Domains 

• Mapping social network interactions [13, 16]. 
• Analysing biological networks [17]. 
• Identifying telecommunication patterns [19]. 
• Modelling spatial relationships [20]. 

• Looking into criminal networks [18]. 
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2.6 Forms of Graph Queries and Their Characteristics 

Graph queries can be categorized into several forms based on structure, complexity, and 
intent. Each type has distinct execution characteristics and poses different opti- 
mization challenges [13, 18, 20]. Below are the major forms relevant to our work with 
Neo4j and Cypher [20]. 

1. Simple Queries (Flat Pattern Matching) 

These queries match a basic pattern with no recursion, aggregation, or subqueries. 
They are straightforward to optimize and commonly used in lookup-type operations 

[20] . 

2. Complex Queries (Multi-Hop & Conditional Logic) 

Involve multiple pattern elements, often combining filtering, optional matches, and 
multiple node/relationship types [13, 16]. 

3. Recursive Queries (Variable-Length Traversals) 

Traverse relationships of unknown or variable depth, often used in social networks, 
hierarchies, or co-actor graphs [4, 7]. 

4. Aggregation Queries 

Use grouping and aggregation functions like COUNT, AVG, and MAX. [8, 11] 

5. Subqueries and Nested Logic 

Use CALL, WITH, or RETURN blocks for modular querying or intermediate result 
filtering. [3, 5] 

6. Recommendation-Like or Pattern Expansion Queries 

Traverse multi-node chains and apply scoring or ranking logic — common in 
recommendations. [12, 13] 

3 Proposed Work 

The dataset used in this study is available at: GitHub Repository. 
The cypher queries can be accessed at: Document Link 

3.1 Dataset Overview 

A custom-curated movie dataset comprising interconnected entities was utilized. 

 
• Nodes: Director, Actor, Movie, Genre, User, Person 
• Relationships: ACTED IN, DIRECTED IN, RATED, IN GENRE 
• Movie: title, release year, movieId 
• Person: name, personId 
• User: userId, age 

• Rating: score, timestamp 

3.2 Data Ingestion and Cleaning 

The dataset was provided as CSV files and processed using: 

• pandas for tabular data transformations 

https://github.com/neo4j-graph-examples/recommendations
https://docs.google.com/document/d/1_FYErBO44uCV5tuteOQBcbiD-isOe8hlqXuWElcKz8A/edit?usp=sharing
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• numpy for handling nulls and numerical operations 

• py2neo / Neo4j Python Driver for creating nodes and relationships 

The data was cleaned to remove duplicates, normalize strings, and retain only the 
necessary attributes. This step was crucial in reducing the graph’s complexity and query 
execution overhead. 

3.3 Schema Design and Indexing Strategy 

Schema Optimization The schema design, as illustrated in Figure 2, plays a 
critical role in Neo4j’s performance. The property graph model was carefully structured 
and optimized to enhance traversal and filtering efficiency. 

• Each node label was associated with only the properties relevant to its role. 

• Unnecessary redundancy was avoided by maintaining consistent keys such as 

movieId, personId, and userId. 

• Used relationship-centric modeling, placing metadata (like ratings) on relationships 
rather than nodes, which better reflects real-world interactions. 

Indexing To accelerate lookups and filtering: 

• Single-property indexes were added on: 

– Movie.title 

– Person.name 

– Genre.name 

– User.userId 

 

Fig. 2: Schema of Movies Database 
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MATCH ( a: Person ) -[: ACTED_IN ]- >( m: Movie ) 
WHERE m. released < 2010 
WITH a, count(  m) AS movie Count 
WHERE movie Count > 2 

RETURN a. name , movie Count 

MATCH ( m: Movie ) 
WHERE m. released < 2010 
WITH m 
MATCH ( a: Person ) -[: ACTED_IN ]- >( m) 
WITH a. name AS actor , count (*) AS movie Count 
WHERE movie Count > 2 
RETURN actor , movie Count 
ORDER BY movie Count DESC 

// Find people who acted in and directed the same movie 
MATCH ( p: Person ) -[: DIRECTED ]- >( m: Movie ) <-[: ACTED_IN ]-( p) 
WITH p, m 
// Find all co - actors they worked with in those movies 
MATCH ( m) <-[: ACTED_IN ]-( co Actor:  Person ) 
WHERE co Actor <> p 
// Return full collaboration graph 
RETURN DISTINCT p, m, co Actor 

MATCH ( p: Person ) -[: DIRECTED ]- >( m: Movie ) <-[: ACTED_IN ]-( p) 
WITH p, m 
MATCH ( m) <-[: ACTED_IN ]-( co: Person ) 
WHERE co <> p 
RETURN p, m, co , 

( p) -[: DIRECTED ]- >( m), 
( p) -[: ACTED_IN ]- >( m), 
( co) -[: ACTED_IN ]- >( m) 

• Composite  indexes  were  considered  for  combinations  like  (Movie.title, 

Movie.release year) if such queries were frequent. 

Examples: 

Listing 1: Human Version : Find actors who acted in more than 2 movies 

released before 2010 

 

Listing 2: AI Optimised Version : Find actors who acted in more than 2 

movies released before 2010 

 

Listing 3: Human Version : Show people who have both ACTED and 

DIRECTED the same movies, and their collaborators across those 

movies. 

 

Listing 4: AI Optimised Version : Show people who have both ACTED 

and DIRECTED the same movies, and their collaborators across those 

movies. 
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3.4 System Specifications 

All experiments were performed on the following configuration: 

• Operating System: macOS Monterey 12.6 

• Hardware: 

– Apple M1 Chip (8-core) 

– Memory: 8 GB RAM 

– Storage: SSD 256 GB 

• Software Stack: 

– Neo4j Community Edition 5.x 

– Python 3.10 

– Libraries: pandas, numpy, py2neo, openai 

– Fine-tuning via OpenAI API with a GPT-3.5-turbo base model 
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MATCH ( a: Person ) -[: ACTED_IN ]- >( m: Movie ) 
WHERE m. released < 2010 
WITH a, count(  m) AS movie Count 
WHERE movie Count > 2 

RETURN a. name , movie Count 

MATCH ( m: Movie ) 
WHERE m. released < 2010 
WITH m 
MATCH ( a: Person ) -[: ACTED_IN ]- >( m) 
WITH a. name AS actor , count (*) AS movie Count 
WHERE movie Count > 2 
RETURN actor , movie Count 
ORDER BY movie Count DESC 

4 Result and Discussions 

These results demonstrate how AI-driven query optimization significantly enhances 
the performance and relevance of Cypher queries in Neo4j. By intelligently managing 
traversal depth, indexing strategies, and pattern recognition, AI optimizes both simple 
and recursive queries. It reduces unnecessary scans, speeds up execution, and ensures 
scalability as the graph grows 

4.1 AI Driven Query Optimization 

AI-driven query optimization improves this query by analyzing past executions to 
determine the most efficient traversal paths as shown in listing 6 over listing 5 . It 
prioritizes nodes and relationships likely to match the given requirement, reducing 
unnecessary analysis and scans. By leveraging data distribution, it chooses better join 
and aggregation strategies for counting movies per actor. Overall, it adapts the query 
plan to the dataset’s structure and user behavior, ensuring faster and more accurate 
results which is demonstrated in a graph comparing Human Queries with AI Optimized 
Queries in Fig 3 the same values are mentioned in table 1. 

Listing 5: Human Version : Find actors who acted in more than 2 

movies released before 2010 

 

Listing 6: AI Optimised Version Version : Find actors who acted in 

more than 2 movies released before 2010 



                        International Scientific Journal of Engineering and Management (ISJEM)               ISSN: 2583-6129 
                              Volume: 04 Issue: 05 | May – 2025                                                                              DOI: 10.55041/ISJEM03746                                                                                                                                                  

                              An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        

 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                            |        Page 9 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: AI Driven Query Optimization 

 

 

 

Table 1: Start and Finish Times for Human and AI over Queries 
 

Query Human AI 

 Start (ms) Finish (ms) Start (ms) Finish (ms) 

q1 33 36 10 11 

q2 14 22 1 12 

q3 15 16 15 16 

q4 16 28 12 15 

q5 12 14 1 4 

q6 10 12 14 16 

q7 10 13 10 13 

q8 14 15 15 17 

q9 66 70 19 22 
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MATCH path = shortestPath ( 
( p1 : Person { name : " Gary Sinise "}) -[: ACTED_IN *]-( p2 : Person { name : 

‹→ " Tom Cruise "}) 
) 
RETURN path 

MATCH path = shortestPath ( 
( p1 : Person { name : " Gary Sinise "}) -[: ACTED_IN *1..6] -( p2 : Person 

‹→ { name : " Tom Cruise "}) 
) 
RETURN path 

4.2 AI DRIVEN ADAPTIVE INDEXING 

In the context of this query, AI adaptive indexing improves performance by limiting 
the ACTED IN traversal depth to a sensible range, to avoid longer paths. For example 
8 where the path explored is shown in Fig 4 It uses learned collaboration patterns 
between actors to prioritize connections that are more probable to occur, speeding up 
the computation of the shortest path. By reducing unnecessary node and relationship 
analysis, it decreases query execution time as compared to the example 7. This results 
in more efficient and scalable queries, especially in larger collaboration graphs which 
can be clearly viewed in Table 2 and can be visualized in Graph 5. 

Listing 7: Human Version : Find the shortest collaboration chain 

between Gary Sinise and Tom Cruise 

 

Listing 8: AI Optimised Version : Find the shortest collaboration chain 

between Gary Sinise and Tom Cruise 

 

Fig. 4: Graph Output 
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Fig. 5: AI Driven Adaptive Indexing 

 

 

 

Table 2: Start and Finish Times for Human and AI over Queries 
 

Query Human AI 

 Start(ms) Finish(ms) Start(ms) Finish(ms) 

q1 8 9 7 8 

q2 11 42 1 30 

q3 216 226 1 25 
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MATCH path = ( p: Person { name : " Tom 
‹→ Hanks "}) -[: ACTED_IN *1..3] -( connected : Person ) 

WITH nodes( path ) AS nodelist  
UNWIND nodelist AS n 
MATCH ( n) -[ r]-( m) 
RETURN DISTINCT n, r, m 
LIMIT 100 

MATCH path = ( p: Person { name : " Tom 
‹→ Hanks "}) -[: ACTED_IN *1..5] -( connected : Person ) 

WHERE p <> connected 
RETURN path 

4.3 IMPACT OF AI ON RECURSIVE QUERIES 

AI has a significant impact on optimizing recursive queries like these, Example: List- 
ing 10. It avoids reduntant paths for reducing computation as compared to Listing 9, 
and thus prioritises the more relevant and probable connections for speeding up the 
results. The path followed in Listing 9 is shown in 7 The major effect can be noticed 
in Table 3. As the graph 6 grows, AI helps maintain performance by learning and 
applying efficient pathfinding techniques across recursive patterns. 

Listing 9: Human Version : Show a subgraph of all people connected to 

”Tom Hanks” through movies. 

 

Listing 10: AI Optimised Version : Show a subgraph of all people 

connected to ”Tom Hanks” through movies 

 

 

 

Fig. 6: Recursive Query Performance 
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Table 3: Start and Finish Times for Human and AI over Queries 
 

Query Human AI 

 Start(ms) Finish(ms) Start(ms) Finish(ms) 

q1 61 73 15 23 

q2 13 14 12 13 

q3 13 16 13 15 

 

 

 

Fig. 7: Graph Output 
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5 Conclusion 

The research shows how combining large language models with graph database tech- 
nologies like Neo4j can improve intelligent query optimization. The system boosts both 
ease of use and performance by allowing natural language queries and using adaptive 
indexing methods. Tests prove that AI-driven techniques effectively optimize graph 
queries on real-world data. 

Although the current setup uses a movie dataset with a fixed schema, the system design 

can be applied to many different fields. Future work will aim to create a self- adaptive 
AI assistant that can handle user-defined graph schemas—provided through JSON or 
Cypher—and automatically identify structural details, constraints, and com- mon query 
patterns. This would let the system build a context-aware knowledge base with little 
user input and generate efficient, schema-aware Cypher queries from natu- ral language 
instructions. 

Possible applications include social networks, healthcare, e-commerce, and knowl- edge 
graphs. Planned improvements include automatic index suggestions, detection of 
schema changes, support for multiple languages, and schema-informed prompt engi- 
neering. 

Overall, this work sets the stage for a schema-aware, user-friendly AI co-pilot that con- 
nects human intent with graph database execution, pushing forward intelligent query 
interfaces for managing graph data. 
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