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Abstract - The intersection of Computational Creativity and
Music Information Retrieval (MIR) presents unique challenges
in automating music generation while maintaining emotional
coherence. While Deep Learning models like Generative
Adversarial Networks (GANs) and Transformers have
achieved state-of-the-art results in symbolic music generation,
they often suffer from high computational costs, "black-box"
un-interpretability, and a lack of closed-loop feedback. This
paper proposes a lightweight, transparent,
framework for affective melody generation coupled with a
deterministic validation engine. The
constrained stochastic process (Random Walk) to generate
MIDI sequences based on Western music theory, which are
immediately synthesized  into audio
Simultaneously, a Digital Signal Processing (DSP) module

rule-based

system utilizes a

waveforms.

extracts spectral features—specifically Spectral Centroid,
Bandwidth, and RMS energy—to classify the generated audio
into "Energetic" or "Calm" affective states. Experimental
validation demonstrates that this architecture successfully
enforces harmonic consonance while providing objective,
quantifiable feedback on the emotional timbre of the generated
composition, achieving a 92% classification accuracy against
target moods.

Keywords— Music Information Retrieval (MIR), Spectral
Feature Extraction, Affective Computing, Digital Signal
Processing.

1.INTRODUCTION

This Music is fundamentally a mathematical organization of
sound events in time, yet it serves as a profound medium for
human emotion. The ability to automate this process has been a
goal of computer science for decades. The field of Algorithmic
Composition has evolved from early stochastic experiments to
complex neural networks [1]. However, a significant gap
remains in the development of "Closed-Loop" systems—
architectures that not only generate music but immediately
analyze the output to verify if it meets specific emotional or
aesthetic criteria.

A. Background and Motivation

Traditional algorithmic composition relies on predefined rules
or stochastic probabilities to determine pitch and rhythm. With
the advent of Machine Learning, the focus shifted toward data-
driven models that learn from vast corpora of MIDI files.
Simultaneously, the field of Music Information Retrieval (MIR)
has developed robust techniques for extracting high-level

semantic descriptors (such as mood or genre) from low-level
audio features [2].

However, these two fields—Generation and Analysis—often
operate in isolation. Generative models rarely check their own
output, and analysis models rarely create content. Integrating
them into a single pipeline allows for "self-correcting" systems
that can ensure emotional fidelity.

B. Problem Statement

Despite advancements, current automated music systems face
three critical limitations:

1. Black-Box Nature: Deep Learning models (e.g., LSTMs,
Transformers) often lack interpretability. It is difficult to trace
how specific inputs (like a "Major Scale") result in specific
outputs, making debugging and artistic control challenging [3].

2. Computational Latency: Neural audio synthesis is
computationally expensive, often requiring GPU acceleration,
which renders it unsuitable for lightweight, real-time consumer

applications or embedded systems [4].

3. Open-Loop Blindness: Most generative systems output
symbolic music (MIDI) without validating the psychoacoustic
properties of the rendered audio. There is a lack of frameworks
that mathematically verify if a "Sad" generated melody actually
possesses the spectral characteristics (e.g., low brightness, low
energy) associated with sadness [5].

C. Objectives and Contributions

This paper addresses these issues by proposing a transparent
Rule-Based Expert System. The primary contributions of this
work are:

1. Formulation of a Deterministic Generator: A random-walk
algorithm constrained by harmonic scales.

2. Spectral Validation Engine: A module that translates vague
concepts like "Energetic" into concrete signal processing
metrics (Centroid, RMS).

3. Visualizable Decision Boundaries: Providing a clear
geometric representation of where "moods" exist in the audio
feature space.

2. LITERATURE REVIEW
The history of automated music is a dialogue between
deterministic rules and stochastic probabilities.

Early Stochastic and Rule-Based Systems: The automation of
music dates back to the Illiac Suite (1957), where Hiller and

© 2025, ISJEM (All Rights Reserved) | www.isjem.com

| Page 1



3,

< T

4 £C

Jd = Volume: 04 Issue: 11 | Nov - 2025

<7

1 jlgm’ International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05180

T 100> g
‘,«5'"'"""“%3; An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

Isaacson utilized Markov Chains for probability-based
sequencing [1]. This stochastic approach laid the foundation for
rule-based composition, proving that statistical distributions
could mimic musical style [6]. Nierhaus later categorized these
approaches, noting that rule-based systems (Grammars) offer
superior structural coherence compared to pure randomness [7].

The Rise of Deep Learning: In modern contexts, Briot et al. [8]
surveyed deep learning techniques, noting that while Recurrent
Neural Networks (RNNs) and Long Short-Term Memory
(LSTMs) units capture temporal dependencies effectively [9],
they often fail to maintain long-term structural coherence
without complex architectures like Transformers [10]. While
models like Google's Music Transformer generate impressive
piano pieces, they require massive datasets (e.g., the
MAESTRO dataset) and significant training time, creating a
barrier to entry for smaller, engineering-focused applications.

Music Emotion Recognition (MER): Conversely, Music
Information Retrieval (MIR) has focused on classification.
Tzanetakis and Cook [11] established that feature sets including
Timbre, Rhythm, and Pitch are sufficient for genre
classification. Building on this, Kim et al. [12] reviewed Music
Emotion Recognition (MER), highlighting that energy (RMS)
and stress (tempo) are primary indicators of arousal in the
Russell Circumplex Model of Affect [13].

Recent work in affective computing suggests that mapping low-
level features (like Zero-Crossing Rate) to high-level emotions
can be achieved through deterministic thresholds without heavy
training phases [14], [15]. Tools like Librosa [16] have
democratized this analysis. However, few systems integrate
generation and analysis. Pachet’s Continuator [17] explored
interaction, but our work specifically targets the verification of
mood using spectral morphology, distinguishing it from purely
generative models.

3. THEORITICAL FRAMEWORK

This section details the mathematical models governing both the
generation of notes and the analysis of waves.

A. Mathematical Formulation of Melody Generation

The generation engine utilizes a Constrained Random Walk.
Unlike a pure random walk where X¢yq = X¢ + €, our
system imposes hard constraints based on Western Music
Theory.

Let S be the set of valid MIDI note numbers for a selected scale.
For a C Major scale spanning two octaves:

Smajor = (60,62,64,65,67,69,71,72 .....}

The melody M is defined as a sequence of note events where
represents the time step {0, 1..., L}.

ng €8

To ensure musicality, the transition probability P(ne4 ;| ny) is
not uniform. The system favours small intervals (steps) over
large leaps, mimicking human vocal constraints.

The temporal dimension is governed by the Tempo (Tyy,). The
duration of a quarter note At is calculated as:

At = 60

prm

B. Audio Synthesis and Signal Processing

The symbolic MIDI data is rendered into a continuous
waveform y(t) using FluidSynth. To analyze this signal, we
process the time-domain signal into the frequency domain using
the Short-Time Fourier Transform (STFT).

The signal y(n) is windowed using a Hann window w(n) of
length N:

N-1
X(m, k) = y(n + mH)w(n)e JZmkn/N

n=0

Where X (m, k) is the magnitude of the k — th frequency bin at
time frame m.

From this spectral representation, we extract the key features:
Spectral Centroid (i,,): Often referred to as the "center of
mass" of the spectrum, this correlates with the perceived
"brightness" of the sound.

_ 2k fel X (K]
b = X (o]

Where f;, is the frequency at bin k. Higher centroids are
associated with energetic, happy, or aggressive moods.

Root Mean Square (RMS) Energy: This represents the loudness
or physical intensity of the signal over a frame of length N.

RMS =

Spectral Rolloff: The frequency below which 85% of the
magnitude distribution is concentrated. This helps distinguish
between harmonic sounds (low rolloff) and noisy/percussive
sounds (high rolloff).
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4. SYSTEM IMPLEMENTATION
The framework is implemented in Python 3.11 utilizing a
modular architecture.

Algorithm 1: Melody Generation
Input: scale_type, tempo, length

Output: midi_file, wav_file

1. Define Scale Set S based on scale_type

2. Initialize MIDI object with tempo

3. Select Instrument I from GM_Bank

4. For t from 0 to length:

5. Select note n from S using Uniform Distribution

6. Define duration d = 60/tempo

~

. Append Note(n, velocity=100, start=t*d, end = (t + 1)*d)
8. End Loop

9. Write MIDI file

10. Synthesize WAV using FluidSynth(SoundFont)

In terms of software architecture, the core operational logic is
fully encapsulated within two distinct and interacting class
structures known as MusicGenerator and MoodDetector. A
detailed diagram demonstrating the step-by-step control flow
required for the successful generation of a melody is presented
in Fig. 1. The execution phase initiates when the system
initializes a new MIDI object, a critical step that is governed by
specific user-defined constraints, including the musical Scale
and Tempo. Following this initial configuration, the system
enters a complex stochastic loop designed for the purpose of
autonomous note selection. This iterative process relies on
weighted probabilities to construct the melody line, the specific
technical details and procedural steps of which are
comprehensively documented in Algorithm 1.
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Fig. 1. Flowchart of the Deterministic Melody Generation
Algorithm

The Decision Matrix (Expert System)

The core intelligence lies in the Rule-Based Classifier. Instead
of training a black-box classifier, we define explicit decision
boundaries based on psychoacoustic literature.

We define the following predicates:
IsFast(x) < Tempo(x) > 110
IsBright(x) < Centroid(x) > 2000Hz
IsLoud(x) < RMS(x) > 0.05

The classification rules are:

Class A (Energetic): IsFast(x) A IsBright(x) A
IsLoud(x)

Class B (Calm): — IsFast(x) A — IsBright(x) A
— IsLoud(x)

Class C (Neutral): All other cases.

5. EXPERIMENTAL RESULTS

To validate the system, we performed a batch generation of
100 samples (50 constrained to "Energetic" parameters, 50 to
"Calm" parameters) and analyzed the resulting waveforms.

Visual Analysis of Decision Boundaries—

Fig. 2. visualizes the decision space. We projected the dataset
onto a 2D plane defined by Tempo (X-axis) and Spectral
Centroid (Y-axis).

Observation: The scatter plot reveals two distinct, non-
overlapping clusters. The "Energetic" samples (Red) cluster in
the upper-right quadrant, while the "Calm" samples (Blue)
remain in the lower-left. This confirms that the generation rules
successfully translate into distinct audio features.
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Fig. 2. Mood Classification Decision Boundaries

Multi-Metric Comparison

Observation: The "Energetic" mood exhibits a broad footprint,
maximizing all axes (Tempo, Centroid, Rolloff, RMS). The
"Calm" mood shows a contracted footprint. This visual proof
demonstrates that "Mood" is not a single feature, but a
composite vector of multiple signal properties. Fig. 3. utilizes a
Radar Chart to compare the feature "footprints" of the two
moods.
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Fig. 3. Feature Footprint Comparison

Quantitative Data

The Table -1 presents the statistical values of the extracted
features and the system achieved a classification accuracy of
92% when validating the generated files against their intended
mood labels. Errors primarily occurred in "Neutral" ranges
where the random note selection inadvertently created dissonant
or ambiguous spectral profiles.

Table -1: AVERAGE FEATURE VALUE DETECTED BY

MOOD

Feature Calm Energetic Unit | Standard
(Mean) (Mean) Dev.

Tempo 85.4 125.6 BPM | £5.2

Spectral 1350.2 2450.8 Hz + 1504

Centroid

Rolloff 2100.5 4800.2 Hz +210.8

Frequency

RMS 0.025 0.068 Amp | £0.01

Energy

6. DISCUSSION

Rule-Based vs. Deep Learning: While Deep Learning models
like LSTMs can generate more complex melodies with long-
term structure, they require significant computational resources
(GPUs) and vast training datasets. Our Rule-Based approach
runs on standard CPUs with negligible latency (< 2 seconds for
generation and analysis). This makes it ideal for embedded
systems, mobile applications, or game audio engines where
efficiency is paramount.

The Semantic Gap: One of the challenges in this research is
bridging the "Semantic Gap"—the disconnect between low-
level features (numbers) and high-level concepts (emotions).
Our results show that simple linear thresholds on Spectral
Centroid and Tempo are surprisingly effective proxies for
"Energy" and "Calmness." However, more complex emotions
like "Nostalgia" or "Irony" likely require the non-linear
capabilities of Neural Networks, marking the limit of this rule-
based framework.

7. CONCLUSION AND FUTURE SCOPE

This paper presented a comprehensive framework for
deterministic music generation and analysis. By integrating
algorithmic composition with spectral signal processing, we
achieved a transparent system where the correlation between
music theory inputs and audio outputs is verifiable.

Future Scope:

Machine Learning Integration: Future work involves
replacing static thresholds with a Support Vector Machine
(SVM) to learn mood boundaries dynamically from user
feedback.

Polyphonic Generation: Extending the generation rules to
include chord progressions and multi-track arrangement.

Real-Time Feedback Loop: Implementing a system where the
analyzer adjusts the generator's parameters in real-time (e.g., if
the song is too "dark," the system automatically shifts the scale
or increases tempo).
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