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Abstract - The intersection of Computational Creativity and 

Music Information Retrieval (MIR) presents unique challenges 

in automating music generation while maintaining emotional 

coherence. While Deep Learning models like Generative 

Adversarial Networks (GANs) and Transformers have 

achieved state-of-the-art results in symbolic music generation, 

they often suffer from high computational costs, "black-box" 

un-interpretability, and a lack of closed-loop feedback. This 

paper proposes a lightweight, transparent, rule-based 

framework for affective melody generation coupled with a 

deterministic validation engine. The system utilizes a 

constrained stochastic process (Random Walk) to generate 

MIDI sequences based on Western music theory, which are 

immediately synthesized into audio waveforms. 

Simultaneously, a Digital Signal Processing (DSP) module 

extracts spectral features—specifically Spectral Centroid, 

Bandwidth, and RMS energy—to classify the generated audio 

into "Energetic" or "Calm" affective states. Experimental 

validation demonstrates that this architecture successfully 

enforces harmonic consonance while providing objective, 

quantifiable feedback on the emotional timbre of the generated 

composition, achieving a 92% classification accuracy against 

target moods. 
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1.INTRODUCTION  

 
 This Music is fundamentally a mathematical organization of 

sound events in time, yet it serves as a profound medium for 

human emotion. The ability to automate this process has been a 

goal of computer science for decades. The field of Algorithmic 

Composition has evolved from early stochastic experiments to 

complex neural networks [1]. However, a significant gap 

remains in the development of "Closed-Loop" systems—

architectures that not only generate music but immediately 

analyze the output to verify if it meets specific emotional or 

aesthetic criteria. 

A. Background and Motivation 

Traditional algorithmic composition relies on predefined rules 

or stochastic probabilities to determine pitch and rhythm. With 

the advent of Machine Learning, the focus shifted toward data-

driven models that learn from vast corpora of MIDI files. 

Simultaneously, the field of Music Information Retrieval (MIR) 

has developed robust techniques for extracting high-level 

semantic descriptors (such as mood or genre) from low-level 

audio features [2]. 

However, these two fields—Generation and Analysis—often 

operate in isolation. Generative models rarely check their own 

output, and analysis models rarely create content. Integrating 

them into a single pipeline allows for "self-correcting" systems 

that can ensure emotional fidelity. 

B. Problem Statement 

Despite advancements, current automated music systems face 

three critical limitations: 

1. Black-Box Nature: Deep Learning models (e.g., LSTMs, 

Transformers) often lack interpretability. It is difficult to trace 

how specific inputs (like a "Major Scale") result in specific 

outputs, making debugging and artistic control challenging [3]. 

2. Computational Latency: Neural audio synthesis is 

computationally expensive, often requiring GPU acceleration, 

which renders it unsuitable for lightweight, real-time consumer 

applications or embedded systems [4]. 

3. Open-Loop Blindness: Most generative systems output 

symbolic music (MIDI) without validating the psychoacoustic 

properties of the rendered audio. There is a lack of frameworks 

that mathematically verify if a "Sad" generated melody actually 

possesses the spectral characteristics (e.g., low brightness, low 

energy) associated with sadness [5]. 

C. Objectives and Contributions 

This paper addresses these issues by proposing a transparent 

Rule-Based Expert System. The primary contributions of this 

work are: 

1. Formulation of a Deterministic Generator: A random-walk 

algorithm constrained by harmonic scales. 

2. Spectral Validation Engine: A module that translates vague 

concepts like "Energetic" into concrete signal processing 

metrics (Centroid, RMS). 

3. Visualizable Decision Boundaries: Providing a clear 

geometric representation of where "moods" exist in the audio 

feature space.  

2. LITERATURE REVIEW  

The history of automated music is a dialogue between 

deterministic rules and stochastic probabilities. 

 

Early Stochastic and Rule-Based Systems: The automation of 

music dates back to the Illiac Suite (1957), where Hiller and 
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Isaacson utilized Markov Chains for probability-based 

sequencing [1]. This stochastic approach laid the foundation for 

rule-based composition, proving that statistical distributions 

could mimic musical style [6]. Nierhaus later categorized these 

approaches, noting that rule-based systems (Grammars) offer 

superior structural coherence compared to pure randomness [7]. 

 

 The Rise of Deep Learning: In modern contexts, Briot et al. [8] 

surveyed deep learning techniques, noting that while Recurrent 

Neural Networks (RNNs) and Long Short-Term Memory 

(LSTMs) units capture temporal dependencies effectively [9], 

they often fail to maintain long-term structural coherence 

without complex architectures like Transformers [10]. While 

models like Google's Music Transformer generate impressive 

piano pieces, they require massive datasets (e.g., the 

MAESTRO dataset) and significant training time, creating a 

barrier to entry for smaller, engineering-focused applications. 

 

Music Emotion Recognition (MER): Conversely, Music 

Information Retrieval (MIR) has focused on classification. 

Tzanetakis and Cook [11] established that feature sets including 

Timbre, Rhythm, and Pitch are sufficient for genre 

classification. Building on this, Kim et al. [12] reviewed Music 

Emotion Recognition (MER), highlighting that energy (RMS) 

and stress (tempo) are primary indicators of arousal in the 

Russell Circumplex Model of Affect [13]. 

 

Recent work in affective computing suggests that mapping low-

level features (like Zero-Crossing Rate) to high-level emotions 

can be achieved through deterministic thresholds without heavy 

training phases [14], [15]. Tools like Librosa [16] have 

democratized this analysis. However, few systems integrate 

generation and analysis. Pachet’s Continuator [17] explored 

interaction, but our work specifically targets the verification of 

mood using spectral morphology, distinguishing it from purely 

generative models. 

 

3. THEORITICAL FRAMEWORK 
This section details the mathematical models governing both the 

generation of notes and the analysis of waves. 

 

A. Mathematical Formulation of Melody Generation 

The generation engine utilizes a Constrained Random Walk. 

Unlike a pure random walk where Xt+1 = Xt +  ϵ, our 

system imposes hard constraints based on Western Music 

Theory. 

 

Let 𝑆 be the set of valid MIDI note numbers for a selected scale. 

For a C Major scale spanning two octaves:  

 

𝑆𝑚𝑎𝑗𝑜𝑟 =  {60, 62, 64, 65, 67, 69, 71, 72 … . . } 

The melody M is defined as a sequence of note events where 

represents the time step {0, 1…, L}. 

 

𝑛𝑡 ∈  𝑆 

 

To ensure musicality, the transition probability P(nt+1| nt) is 

not uniform. The system favours small intervals (steps) over 

large leaps, mimicking human vocal constraints. 

 

The temporal dimension is governed by the Tempo (𝑇𝑏𝑝𝑚). The 

duration of a quarter note Δt is calculated as:  

 

∆𝑡 =  
60

𝑇𝑏𝑝𝑚
     

 

B. Audio Synthesis and Signal Processing 

The symbolic MIDI data is rendered into a continuous 

waveform y(t) using FluidSynth. To analyze this signal, we 

process the time-domain signal into the frequency domain using 

the Short-Time Fourier Transform (STFT). 

 

The signal y(n) is windowed using a Hann window w(n) of 

length N:  

 

𝑋(𝑚, 𝑘) =  ∑ 𝑦(𝑛 +  𝑚𝐻)𝜔(𝑛)𝑒−𝑗2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

 

 

Where 𝑋(𝑚, 𝑘) is the magnitude of the  𝑘 − 𝑡ℎ frequency bin at 

time frame m. 

 

From this spectral representation, we extract the key features: 

Spectral Centroid (𝝁𝒎): Often referred to as the "center of 

mass" of the spectrum, this correlates with the perceived 

"brightness" of the sound.  

 

𝜇𝑠 =  
∑ 𝑓𝑘|𝑋(𝑘)|𝑘

∑ |𝑋(𝑘)|𝑘

 

 

Where 𝑓𝑘 is the frequency at bin k. Higher centroids are 

associated with energetic, happy, or aggressive moods. 

 

Root Mean Square (RMS) Energy: This represents the loudness 

or physical intensity of the signal over a frame of length N.  

 

𝑅𝑀𝑆 =  √
1

𝑁
∑|𝑦(𝑛)|2

𝑁−1

𝑛=0

 

 

Spectral Rolloff: The frequency below which 85% of the 

magnitude distribution is concentrated. This helps distinguish 

between harmonic sounds (low rolloff) and noisy/percussive 

sounds (high rolloff). 
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4. SYSTEM IMPLEMENTATION 
The framework is implemented in Python 3.11 utilizing a 

modular architecture. 

Algorithm 1: Melody Generation 

Input: scale_type, tempo, length 

Output: midi_file, wav_file 

1. Define Scale Set S based on scale_type 

2. Initialize MIDI object with tempo 

3. Select Instrument I from GM_Bank 

4. For t from 0 to length: 

5. Select note n from S using Uniform Distribution 

6. Define duration d = 60/tempo 

7. Append Note(n, velocity=100, start=t*d, end = (t + 1)*d) 

8. End Loop 

9. Write MIDI file 

10. Synthesize WAV using FluidSynth(SoundFont) 

In terms of software architecture, the core operational logic is 

fully encapsulated within two distinct and interacting class 

structures known as MusicGenerator and MoodDetector. A 

detailed diagram demonstrating the step-by-step control flow 

required for the successful generation of a melody is presented 

in Fig. 1. The execution phase initiates when the system 

initializes a new MIDI object, a critical step that is governed by 

specific user-defined constraints, including the musical Scale 

and Tempo. Following this initial configuration, the system 

enters a complex stochastic loop designed for the purpose of 

autonomous note selection. This iterative process relies on 

weighted probabilities to construct the melody line, the specific 

technical details and procedural steps of which are 

comprehensively documented in Algorithm 1. 

 

Fig. 1. Flowchart of the Deterministic Melody Generation 

Algorithm 

The Decision Matrix (Expert System) 

The core intelligence lies in the Rule-Based Classifier. Instead 

of training a black-box classifier, we define explicit decision 

boundaries based on psychoacoustic literature. 

We define the following predicates: 

IsFast(x)  ↔ Tempo(x) > 110 

IsBright(x)  ↔ Centroid(x) > 2000Hz 

IsLoud(x)  ↔ RMS(x) > 0.05 

The classification rules are: 

Class A (Energetic): IsFast(x) ∧  IsBright(x) ∧

 IsLoud(x) 

Class B (Calm):  ¬ IsFast(x)  ∧  ¬ IsBright(x) ∧

 ¬ IsLoud(x) 

Class C (Neutral): All other cases. 

5. EXPERIMENTAL RESULTS 
To validate the system, we performed a batch generation of 

100 samples (50 constrained to "Energetic" parameters, 50 to 

"Calm" parameters) and analyzed the resulting waveforms. 

 

Visual Analysis of Decision Boundaries— 

Fig. 2. visualizes the decision space. We projected the dataset 

onto a 2D plane defined by Tempo (X-axis) and Spectral 

Centroid (Y-axis). 

Observation: The scatter plot reveals two distinct, non-

overlapping clusters. The "Energetic" samples (Red) cluster in 

the upper-right quadrant, while the "Calm" samples (Blue) 

remain in the lower-left. This confirms that the generation rules 

successfully translate into distinct audio features. 
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Fig. 2. Mood Classification Decision Boundaries 

 

Multi-Metric Comparison 

Observation: The "Energetic" mood exhibits a broad footprint, 
maximizing all axes (Tempo, Centroid, Rolloff, RMS). The 
"Calm" mood shows a contracted footprint. This visual proof 
demonstrates that "Mood" is not a single feature, but a 
composite vector of multiple signal properties. Fig. 3. utilizes a 
Radar Chart to compare the feature "footprints" of the two 
moods. 

 
Fig. 3. Feature Footprint Comparison 

 

 

Quantitative Data 

The Table -1 presents the statistical values of the extracted 
features and the system achieved a classification accuracy of 
92% when validating the generated files against their intended 
mood labels. Errors primarily occurred in "Neutral" ranges 
where the random note selection inadvertently created dissonant 
or ambiguous spectral profiles. 

Table -1: AVERAGE FEATURE VALUE DETECTED BY 

MOOD 

 

Feature Calm 

(Mean) 

Energetic 

(Mean) 

Unit Standard 

Dev. 

Tempo 85.4 125.6 BPM ± 5.2 

Spectral 

Centroid 

1350.2 2450.8 Hz ± 150.4 

Rolloff 

Frequency 

2100.5 4800.2 Hz ± 210.8 

RMS 

Energy 

0.025 0.068 Amp ± 0.01 

 

6. DISCUSSION 
Rule-Based vs. Deep Learning: While Deep Learning models 
like LSTMs can generate more complex melodies with long-
term structure, they require significant computational resources 
(GPUs) and vast training datasets. Our Rule-Based approach 
runs on standard CPUs with negligible latency (< 2 seconds for 
generation and analysis). This makes it ideal for embedded 
systems, mobile applications, or game audio engines where 
efficiency is paramount. 

The Semantic Gap: One of the challenges in this research is 

bridging the "Semantic Gap"—the disconnect between low-

level features (numbers) and high-level concepts (emotions). 

Our results show that simple linear thresholds on Spectral 

Centroid and Tempo are surprisingly effective proxies for 

"Energy" and "Calmness." However, more complex emotions 

like "Nostalgia" or "Irony" likely require the non-linear 

capabilities of Neural Networks, marking the limit of this rule-

based framework. 

7. CONCLUSION AND FUTURE SCOPE 
This paper presented a comprehensive framework for 

deterministic music generation and analysis. By integrating 

algorithmic composition with spectral signal processing, we 

achieved a transparent system where the correlation between 

music theory inputs and audio outputs is verifiable. 

Future Scope: 

 

Machine Learning Integration: Future work involves 

replacing static thresholds with a Support Vector Machine 

(SVM) to learn mood boundaries dynamically from user 

feedback. 

 

Polyphonic Generation: Extending the generation rules to 

include chord progressions and multi-track arrangement. 

 

Real-Time Feedback Loop: Implementing a system where the 

analyzer adjusts the generator's parameters in real-time (e.g., if 

the song is too "dark," the system automatically shifts the scale 

or increases tempo). 
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