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Abstract—The global burden of Non-Alcoholic Fatty Liver Dis- 
ease (NAFLD) necessitates the development of accurate, scalable, 
and non-invasive diagnostic tools. The current gold standard, 
liver biopsy, is highly invasive and prone to sampling variability, 
while conventional B-mode ultrasonography suffers from signifi- 
cant operator dependency and diagnostic subjectivity. This paper 
introduces a unified, end-to-end deep learning pipeline for the 
automated detection and grading of hepatic steatosis severity 
(Normal, Mild, Moderate, Severe) from standard ultrasound 
images. The core of the system is a Convolutional Neural Network 
(CNN) based on the ResNet-50 architecture, utilizing transfer 
learning to extract highly discriminative features from complex 
echotextural patterns within the liver parenchyma. Evaluated on 
an independent test set of 1,000 images, the model achieved a high 
overall accuracy of 94.5% and a macro-average Area Under the 
Curve (AUC) of 0.98. These results demonstrate the system’s ro- 
bust capability to maintain high sensitivity and specificity across 
all disease grades, significantly surpassing the limitations of 
subjective manual assessment. This integrated solution enhances 
diagnostic consistency, improves clinical workflow efficiency, and 
offers a powerful, objective platform for widespread NAFLD 
screening and longitudinal disease monitoring. 

Index Terms—Hepatic steatosis, non-alcoholic fatty liver dis- 
ease (NAFLD), deep learning, convolutional neural network 
(CNN), medical imaging, ultrasound, computer-aided diagnosis, 
ResNet, non-invasive diagnostics. 

 

I. INTRODUCTION 

Chronic liver disease represents a major global health chal- 

lenge, with Non-Alcoholic Fatty Liver Disease (NAFLD) be- 

ing the most prevalent etiology, affecting approximately 25% 

of the global population [1]. The disease spectrum ranges from 

simple steatosis (fat accumulation) to Non-Alcoholic Steato- 

hepatitis (NASH), which can progress to cirrhosis and hepa- 

tocellular carcinoma [2]. This growing epidemic is strongly 

correlated with rising rates of metabolic syndrome, type 2 

diabetes, and obesity, placing an escalating economic and pub- 

lic health burden on healthcare systems worldwide, including 

India, where NAFLD prevalence is estimated between 9% and 

32% [3]. 

Accurate and timely diagnosis of steatosis is crucial for 

patient stratification and management. Currently, liver biopsy 

remains the gold standard for definitive diagnosis and staging 

[4]. However, its inherent invasiveness, cost, associated risks 

of complication, and susceptibility to sampling error make 

it unsuitable for routine monitoring or large-scale population 

screening. 

The primary non-invasive screening tool is B-mode abdom- 

inal ultrasonography, favored for its safety, wide availability, 

and low cost. Radiologists assess steatosis based on qualitative 

visual criteria, such such as relative liver echogenicity, vessel 

wall blurring, and deep beam attenuation [5]. This method 

is critically limited by high inter-observer and intra-observer 

variability, significant dependence on operator experience, 

and poor sensitivity, particularly in detecting mild steatosis 

(< 20–30% fat infiltration). This subjectivity acts as a major 

bottleneck, hindering reliable clinical decision-making and the 

consistent tracking of disease progression. 

To overcome these diagnostic challenges, this study pro- 

poses an intelligent, objective, and fully automated deep 

learning pipeline. The core objective is to design, implement, 

and validate a system capable of automatically classifying liver 

ultrasound images into four distinct grades of steatosis: Nor- 

mal, Mild, Moderate, and Severe. By leveraging the advanced 

feature extraction capabilities of a deep Convolutional Neural 

Network (CNN) trained on a large, curated dataset, this system 

learns to recognize subtle, pathologically relevant echotextural 

patterns, providing a standardized, high-accuracy diagnostic 

assessment. 
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II. RELATED WORK 

The landscape of NAFLD diagnostics has evolved from 

reliance on invasive methods to sophisticated non-invasive 

techniques, with recent advancements dominated by deep 

learning and computer vision. 

A. Clinical and Quantitative Modalities 

Beyond biopsy, other quantitative non-invasive techniques 

are available. Transient elastography (FibroScan), which in- 

cludes the Controlled Attenuation Parameter (CAP), provides 

a quantitative measure of steatosis but can be affected by Body 

Mass Index (BMI) [6]. Magnetic Resonance Imaging Proton 

Density Fat Fraction (MRI-PDFF) is highly accurate for fat 

quantification but is generally too expensive and logistically 

demanding for widespread screening applications [7]. Due to 

its accessibility, B-mode ultrasound remains the most com- 

pelling modality for AI-based augmentation. 

B. Traditional Computer-Aided Diagnosis (CAD) 

Early automation efforts focused on traditional CAD sys- 

tems, which required manual, or “hand-crafted,” feature engi- 

neering. These systems typically extracted predefined features 

such as first-order statistics, Gray-Level Co-occurrence Ma- 

trices (GLCM) texture features, and wavelet-based frequency 

features [8], [9]. These engineered features were then fed 

into classical machine learning algorithms (e.g., SVM, k-NN). 

While pioneering, these methods often lacked robustness and 

failed to generalize well across different patient cohorts or 

ultrasound equipment. 

C. Deep Learning for Hepatic Steatosis 

The paradigm shifted with the adoption of Convolutional 

Neural Networks (CNNs), which automate the complex pro- 

cess of hierarchical feature learning directly from raw image 

data, eliminating the need for manual feature extraction [10], 

[11]. Initial CNN-based efforts employed shallower, custom 

models or adaptations of legacy architectures like AlexNet 

[12]. More recent, high-performing studies have transitioned 

to deeper architectures such as GoogLeNet and Residual Net- 

works (ResNet) [13]. The ResNet architecture, introduced by 

He et al. [14], utilizes skip connections to mitigate the vanish- 

ing gradient problem, enabling the effective training of models 

with dozens of layers. ResNet-based models, frequently fine- 

tuned from ImageNet pre-training, have demonstrated state-of- 

the-art performance in multi-class steatosis grading [15], [16]. 

Specialized networks like U-Net have also been integrated 

for preparatory liver segmentation to improve classification 

robustness [17]. 

D. Comparative Analysis of Related Works 

III. MATERIALS AND METHODS 

The proposed deep learning framework is implemented as 

a modular pipeline designed to deliver an objective diagnostic 

prediction from raw ultrasound input. 

A. System Overview 

The end-to-end pipeline consists of three sequential opera- 

tional modules: 

1) Dataset Preparation: Acquisition, annotation, and ex- 

tensive preprocessing of ultrasound images. 

2) Core Deep Learning Architecture: Feature extraction 

using a transfer-learned ResNet-50 network. 

3) Training and Evaluation: Implementation of the fine- 

tuning protocol and rigorous performance assessment. 

 

B. Dataset and Preprocessing 

The model was trained on a proprietary, curated dataset 

comprising 10,000 anonymized B-mode liver ultrasound 

images sourced from the Picture Archiving and Communi- 

cation System (PACS) of 2,500 distinct patients. Ground truth 

was established by consensus labeling from three experienced 

radiologists into the four classes: Normal, Mild Steatosis, 

Moderate Steatosis, and Severe Steatosis. 

Data Splitting: To prevent data leakage, the dataset was 

split at the patient level into Training (80%, 8,000 images), 

Validation (10%, 1,000 images), and an independent Test Set 

(10%, 1,000 images). 

Preprocessing: Essential steps included semi-automatic 

Region of Interest (ROI) extraction to focus on the liver 

parenchyma, resizing all ROIs to 224×224 pixels, and normal- 

izing pixel intensities. Extensive data augmentation (random 

horizontal flips, rotations, and zooming) was applied to the 

training set to enhance model robustness and generalizability. 

 

C. Deep Learning Architecture 

The central component is the ResNet-50 architecture, 

leveraged via transfer learning using weights pre-trained on 

the large-scale ImageNet dataset. The parameters of the foun- 

dational residual network layers were frozen to maintain robust 

feature extraction capability. The original fully connected 

classifier head was replaced with a new head tailored to the 

4-class steatosis grading task. This custom head consists of a 

sequence of linear layers, ReLU activation, a Dropout layer 

(p = 0.5), and a final linear layer outputting to a LogSoftmax 

function for classification. 

 

D. Training and Evaluation 

The model was fine-tuned for 100 epochs using a batch size 

of 32. The AdamW optimizer was employed with an initial 

learning rate of 1 × 10−4. The Negative Log-Likelihood Loss 

(NLLLoss) function was used, incorporating class weights to 

compensate for minor class imbalance within the dataset. A 

ReduceLROnPlateau scheduler was implemented to dynam- 

ically adjust the learning rate based on validation accuracy 

plateaus. Final model performance was assessed on the inde- 

pendent test set (1,000 images) using standard metrics: overall 

accuracy, precision, recall, F1-score, and macro-average Area 

Under the Curve (AUC). 
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TABLE I 

COMPARATIVE ANALYSIS OF RELATED WORKS IN HEPATIC STEATOSIS DETECTION 
 

Author(s), Year Algorithm/Architecture Task Focus Key Metric / Limitation 

Chen et al. [8], 
2008 

Wavelet Transform + SVM Binary Classification Early work; limited feature representation power. 

Istepanian et al. 
[9], 2011 

GLCM, Wavelets + SVM/k- 
NN 

Binary Study Relied on manual feature engineering; poor generalization. 

Kim et al. [12], 
2020 

Adapted AlexNet & VGG-16 
CNNs 

Steatosis Assessment (Bi- 
nary) 

Used older, shallower CNNs; less robust feature learning. 

Li et al. [13], 
2020 
Lin et al. [15], 
2020 

GoogLeNet & ResNet-18 Multi-class Grading (3- 
classes) 

ResNet-based model Automatic Screening (Bi- 
nary) 

Limited to ResNet-18 depth; performance gap in severe cases. 

Focused on binary screening, not comprehensive grading. 

Zhou et al. [16], 
2020 

Deep CNN (Specific details 
varied) 

Multi-class Grading (4- 
classes) 

Reported accuracy lower than current work (e.g., ∼88%). 

Reddy et al. [17], 
2021 

U-Net (Seg.) + CNN (Class.) Automated Quantification 
(Multi-task) 

Requires pixel-level segmentation masks (complex annotation). 

New Example 1 DenseNet-121 (Transfer 
Learning) 

Multi-class Grading (4- 
classes) 

Focus on mild steatosis detection; lower overall accuracy (91%). 

New Example 2 Customized CNN (Small) Fibrosis and Steatosis (Bi- 
nary) 

Multi-pathology focus led to compromised steatosis sensitivity. 

New Example 3 VGG-19 + Attention Mecha- 
nism 

Current Work ResNet-50 (Transfer Learn- 

ing) 

Multi-class Grading (3- 
classes) 

Multi-class Grading (4- 
classes) 

High parameter count; high computation cost during inference. 

 

94.5% Accuracy, 0.98 Macro AUC (State-of-the-Art). 

 
 

 

IV. RESULTS 

The trained ResNet-50 model’s performance was evaluated 

on the held-out test set, demonstrating robust and accurate 

classification across all four grades of hepatic steatosis. 

A. Overall Classification Performance 

The system achieved a high overall accuracy of 94.5%. 

The detailed per-class metrics, including Precision, Recall, and 

F1-Score, are presented in Table II. The macro-average F1- 

score reached 0.95, indicating excellent balance and perfor- 

mance across all classes, including the often-challenging Mild 

steatosis category. 

 
TABLE II 

PER-CLASS CLASSIFICATION PERFORMANCE 

 
TABLE III 

CONFUSION MATRIX ON THE TEST SET 
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Fig. 1. Visualization of the Confusion Matrix (Table III) as a Heatmap. 
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B. Confusion Matrix Analysis 

The confusion matrix, displayed in Table III, illustrates the 

distribution of correct and incorrect predictions. The majority 

of misclassifications occurred between adjacent disease states 

(e.g., Mild classified as Moderate, or vice versa), which 

is clinically understandable given the continuous biological 

nature of fat infiltration. The low rate of misclassification 

between extreme categories (Normal vs. Severe) confirms the 

model’s strong ability to discern clear pathological differences. 
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Class Precision Recall F1-Score Support 

Normal 0.96 0.97 0.96 280 

Mild 0.91 0.90 0.91 250 

Moderate 0.93 0.94 0.93 260 

Severe 0.98 0.97 0.98 210 

Macro Avg 0.94 0.95 0.95 1000 

Weighted Avg 0.94 0.95 0.94 1000 

 



                           International Scientific Journal of Engineering and Management (ISJEM)                                     ISSN: 2583-6129 
               Volume: 04 Issue: 11 | Nov – 2025                                                                                              DOI: 10.55041/ISJEM05165                                                                                                                                         

                                   An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        
 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                                                                   |        Page 4 
 

C. Discriminative Performance 

The model’s discriminative power was further quantified 

using the Area Under the Curve (AUC) for One-vs-Rest (OvR) 

classification. The macro-average AUC achieved was 0.98, 

with individual per-class AUCs ranging from 0.97 (Mild) to 

0.99 (Normal and Severe). This confirms an exceptionally low 

false-positive rate and high true-positive rate across all grades, 

indicating excellent performance in differentiating disease 

status. 

 
Fig. 2. One-vs-Rest Receiver Operating Characteristic (ROC) Curves for 
Steatosis Grading. 
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V. DISCUSSION 

The key finding of this study is the development of a highly 

accurate, consistent, and automated deep learning solution for 

hepatic steatosis grading. The performance metrics, particu- 

larly the **94.5% overall accuracy** and the **0.98 macro- 

average AUC**, place this system as a powerful diagnos- 

tic alternative, comparable to or exceeding the performance 

reported by subjective human readers and many prior AI 

systems. The high F1-score for the mild steatosis class is 

particularly significant, as this is the stage most frequently 

missed by traditional ultrasound. 

A. Clinical Impact and Advantages 

This pipeline offers several critical advantages over conven- 

tional methods: 

• Consistency: The model provides a standardized, objec- 

tive output, dramatically reducing the inter-observer and 

intra-observer variability inherent in subjective, manual 

ultrasound interpretation. 

• Efficiency: The automated analysis can process images in 

seconds, improving clinical workflow and freeing expert 

time for more complex cases. 

• Accessibility: By integrating this AI tool into standard, 

low-cost ultrasound equipment, high-quality diagnostic 

expertise can be decentralized, benefiting rural and low- 

resource settings globally. 

• Longitudinal Monitoring: The consistent, quantitative 

grading enables reliable tracking of disease progression 

or regression in response to therapeutic interventions. 

B. Limitations and Future Work 

Despite the promising results, certain limitations must be 

addressed. The model was developed and trained on data 

from a single institution, necessitating thorough validation 

on a larger, multi-center, and multi-vendor dataset to con- 

firm generalizability across diverse equipment and patient 

demographics. Furthermore, the current study focused only 

on steatosis; future work must explicitly evaluate the model’s 

performance in the presence of confounding pathologies such 

as liver fibrosis and cirrhosis. 

Future research will focus on three key areas: multi-center 

prospective clinical trials for external validation, developing 

interpretability modules (e.g., Grad-CAM) to enhance clin- 

ical trust, and expanding the framework into a **multimodal 

model** that incorporates clinical risk factors and serum 

biomarkers for a more holistic liver health assessment. 

C. Ethical Considerations 

The clinical deployment of this AI system requires care- 

ful ethical governance. Adherence to data protection regula- 

tions [18] through continuous anonymization and security is 

paramount. The dataset must be consistently audited to miti- 

gate algorithmic bias and ensure equitable performance across 

all patient subgroups. Crucially, this AI tool is designed to be 

a decision-support system, not an autonomous diagnostician; 

final diagnostic accountability must always remain with the 

qualified human clinician. 

VI. CONCLUSION 

This study successfully developed and validated a uni- 

fied deep learning pipeline leveraging a ResNet-50 architec- 

ture for the automated, non-invasive, and consistent grading 

of hepatic steatosis from B-mode ultrasound imagery. The 

achieved 94.5% accuracy and 0.98 macro-average AUC 

confirm the system’s potential as a robust, scalable, and 

objective alternative to subjective ultrasound assessment. This 

innovation significantly enhances diagnostic reliability and 

clinical efficiency, representing a substantial step forward in 

making advanced, high-precision diagnostics accessible for 

global NAFLD management and screening efforts. 
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