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Abstract 

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia, accounting for about 60–

80% of cases worldwide. It is characterised by a gradual decline in cognitive functions such as memory, thinking, orientation, 

comprehension, and communication. The underlying pathology involves the buildup of beta-amyloid plaques and tau protein tangles 

in the brain, which cause neuronal damage and brain shrinkage over time. Clinically, symptoms range from mild forgetfulness to 

severe cognitive impairment, eventually impairing daily functioning. Globally, over 55 million people have dementia, with 

Alzheimer’s being the primary contributor. The societal and economic impacts are enormous, with dementia-related costs exceeding 

$1 trillion annually. A major challenge is that AD is often diagnosed only in later stages, after extensive neurodegeneration has 

occurred. Early detection is essential to slow progression, enhance quality of life, and optimise treatment options. 

Keywords – Alzheimer’s Disease (AD), Machine Learning (ML), Early Detection, Explainability, Ensemble Learning, Clinical Data, 

Diagnostic Framework. 

1. Introduction  

Alzheimer's Disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia, accounting for 

approximately 60–80% of cases worldwide (World Health Organization, 2025). It is characterized by a gradual decline in cognitive 

functions such as memory, thinking, orientation, comprehension, and communication. The underlying pathology involves the buildup 

of beta-amyloid plaques and tau protein tangles in the brain, which cause neuronal damage and brain shrinkage over time. Clinically, 

symptoms range from mild forgetfulness to severe cognitive impairment, eventually impairing daily functioning. 

Globally, over 55 million people have dementia, with Alzheimer's being the primary contributor. The societal and economic impacts 

are enormous, with dementia-related costs exceeding $1 trillion annually (Alzheimer's Disease International, 2023). A major challenge 

is that AD is often diagnosed only in later stages, after extensive neurodegeneration has occurred. Early detection is essential to slow 

progression, enhance quality of life, and optimize treatment options (Kavitha et al., 2022). 

Traditional diagnostic methods including magnetic resonance imaging (MRI), positron emission tomography (PET), 

cerebrospinal fluid (CSF) analysis, and neuropsychological testing are informative but often invasive, expensive, or unavailable in 

low-resource settings (Illakiya & Karthik, 2023). These approaches also demand substantial clinical expertise and infrastructure. 

Conversely, the expanding field of machine learning (ML) presents a promising, scalable, and non-invasive alternative for early 

diagnosis by analyzing routine clinical and behavioral data (Kavitha et al., 2022). 

In the last decade, ML models have been widely studied for their potential in early AD detection (Kavitha et al., 2022; Ortiz et al., 

2016). However, many depend heavily on imaging or genetic data and often lack transparency, making them less suitable for clinical 

use. While black-box models may achieve high accuracy, they do not reveal the reasoning behind their predictions—a critical aspect 

for clinical acceptance (Hamoud et al., 2025; Linardatos et al., 2020). 

This study introduces an explainable ML approach using structured clinical data. It evaluates five classifiers, including ensemble 

and deep learning models, emphasizing both predictive accuracy and interpretability through SHAP. 
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2. Related Work 

Recent years have seen extensive efforts to apply machine learning (ML) for predicting and diagnosing Alzheimer’s Disease (AD) 

(Kavitha et al., 2022; Sarma & Chatterjee, 2025). Much of this research has focused on neuroimaging modalities like MRI and PET 

scans, which offer detailed structural and functional insights into the brain. For example, Hosseini-Asl et al. (2016) used convolutional 

autoencoders to extract key features from MRI data, achieving competitive accuracy but requiring computationally intensive 

preprocessing. Ensemble methods such as Random Forests (Ortiz et al., 2016) and Gradient Boosting have shown strong 

classification performance in these imaging studies. Although deep neural networks (DNNs) are powerful, they often lack 

interpretability and demand large labelled datasets (Illakiya & Karthik, 2023). Hybrid models combining neuroimaging with 

biomarkers and clinical scores have improved diagnosis but remain less accessible due to their complexity and data costs (Ritter et 

al., 2015). 

In parallel, researchers have explored structured clinical data, beyond imaging, for early detection (Kavitha et al., 2022; Nallapu et 

al., 2024). Kim et al. (2021) demonstrated the predictive value of demographic and behavioral features using models like Support 

Vector Machines (SVM), Decision Trees, and Naïve Bayes applied to neuropsychological assessments. Studies have also examined 

modifiable risk factors—such as cardiovascular health, obesity, and social isolation—using indices like LIBRA and frameworks like 

In-MINDD. 

Despite these advances, there's a notable lack of focus on model transparency (Hamoud et al., 2025; Linardatos et al., 2020). Many 

existing studies prioritize accuracy over explainability, which is crucial for clinical adoption (Linardatos et al., 2020; Prokhorenkova 

et al., 2018). Limited use has been made of interpretability tools like SHAP that can offer feature-level insights. This study addresses 

these gaps by developing a comprehensive, explainable ML framework based on non-imaging clinical data. Using SHAP for 

interpretation and ensemble modeling, it emphasizes both predictive performance and model transparency, ensuring better 

applicability in real-world scenarios. 

 

3. Data and Methodology 

3.1 Dataset 

This study utilizes the Alzheimer’s disease dataset (Kharoua, 2024) publicly hosted on Kaggle. The dataset comprises 15,000+ patient 

records containing structured clinical and behavioural variables, including age, gender, Mini-Mental State Examination (MMSE) 

scores, memory complaint frequency, Activities of Daily Living (ADL) status, cognitive functioning, and physician observations. The 

target variable is a binary diagnosis indicating whether a subject is classified as cognitively healthy or potentially at risk for Alzheimer's 

Disease. 

The dataset was chosen for its rich variety of real-world attributes, its accessibility, and its relevance to non-invasive and scalable 

diagnostic tools. The balance between clinical and behavioural metrics makes it particularly suitable for training interpretable machine 

learning models without requiring expensive imaging modalities. 

3.2 Preprocessing 

Data preprocessing was a critical step in ensuring model robustness. The following operations were applied sequentially: 

• Missing Value Handling: Missing entries in numeric fields (e.g., MMSE scores, ADL scores) were imputed using 

median values to reduce bias from outliers. Categorical fields were imputed using the mode. 

• Encoding: Categorical variables such as gender, education level, and diagnosis status were transformed using One-

Hot Encoding to enable compatibility with tree-based models and logistic regression. 

• Feature Scaling: Continuous variables were standardised using StandardScaler to ensure uniform contribution 

across distance-based models. 

• Outlier Detection: Z-score analysis was employed to detect and optionally remove extreme values that could distort 

model training. 

• Target Definition: The diagnosis variable was mapped to binary labels, where '0' denoted no cognitive impairment 

and '1' denoted mild cognitive impairment or Alzheimer’s diagnosis. 

To assess feature interactions and potential multicollinearity, we visualised the Pearson correlation matrix across all selected clinical 

attributes (Figure 1). This heatmap not only reveals redundant variables but also supports better-informed feature selection for model 

training. 
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Figure 1. Feature Correlation Heatmap: Visual representation of Pearson correlation coefficients among selected clinical features. 

Strong positive correlations are shown in red and strong negative correlations in blue. This aids in identifying redundant variables and 

potential multicollinearity issues before model training. 

Note: ADL – Activities of Daily Living; MMSE – Mini-Mental State Examination; BMI – Body Mass Index. 

 

Visual representation of Pearson correlation coefficients among selected clinical features. Strong positive correlations are shown in 

red and strong negative correlations in blue. This aids in identifying redundant variables and potential multicollinearity issues before 

model training. 

Note: ADL – Activities of Daily Living; MMSE – Mini-Mental State Examination; BMI – Body Mass Index. 

The dataset was split into training (70%) and testing (30%) subsets using stratified sampling to preserve class balance. K-fold cross-

validation (k=5) was used within the training set for hyperparameter optimisation. 

3.3 Models Implemented 

We implemented five machine learning models to evaluate their performance and interpretability in the context of early Alzheimer’s 

prediction. Each algorithm is described below, including its working principle and key mathematical formulation: 

3.3.1 Logistic Regression 

Logistic regression is a fundamental linear classifier that estimates the probability of the default class (typically 1) using the sigmoid 

function (Hastie et al., 2001). This function transforms a linear combination of input features into a probability score between 0 and 

1, making it suitable for binary classification tasks. 

The probability of a positive outcome (y = 1) given input features x is defined as: 

P(y=1∣x)=11+exp(−(β0+β1x1+β2x2+⋯+βnxn)),P(y=1∣x)=1+exp(−(β0+β1x1+β2x2+⋯+βnxn))1, 
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where β0β0 represents the intercept and β1,…,βnβ1,…,βn are the learned coefficients (weights) for each feature x1,…,xnx1,…,xn, 

respectively. These coefficients indicate the impact of each feature on the probability of the outcome. 

3.3.2 Random Forest 

The random forest algorithm is a powerful ensemble learning method that constructs a multitude of decision trees at training time 

(Breiman, 2001). Each tree in the forest is trained on a different bootstrapped sample of the training data. For classification, the final 

prediction is determined by a majority vote among the individual trees. This ensemble approach significantly reduces overfitting and 

improves robustness compared to a single decision tree. 

The predicted output y^y^ for an input x is given by: 

y^=mode(T1(x),T2(x),…,Tk(x)),y^=mode(T1(x),T2(x),…,Tk(x)), 

where Tk(x)Tk(x) denotes the prediction of the k-th decision tree for the input x, and k is the total number of trees in the forest. 

3.3.3 XGBoost 

XGBoost (eXtreme Gradient Boosting) is an efficient and scalable gradient boosting framework renowned for its high performance 

(Chen & Guestrin, 2016). It iteratively builds an ensemble of weak learners (typically decision trees) by minimizing a regularized 

objective function through an additive modeling approach. The regularization term helps control model complexity and prevents 

overfitting. 

The predicted output y^iy^i for an instance i is the sum of predictions from K base functions, fkfk: 

y^i=∑k=1Kfk(xi),with fk∈F.y^i=k=1∑Kfk(xi),with fk∈F. 

The objective function to be minimized is: 

Objective=∑i=1nl(yi,y^i)+∑k=1KΩ(fk),Objective=i=1∑nl(yi,y^i)+k=1∑KΩ(fk), 

where l(yi,y^i)l(yi,y^i) represents the differentiable loss function measuring the difference between the true label yiyi and the predicted 

label y^iy^i, and Ω(fk)Ω(fk) is the regularization term that penalizes the complexity of the k-th base function fkfk. 

3.3.4 CatBoost 

CatBoost (Categorical Boosting) is an advanced gradient boosting algorithm specifically designed to handle categorical features 

natively and efficiently (Prokhorenkova et al., 2018). It builds upon the general gradient boosting framework but introduces key 

innovations to mitigate prediction shift and improve model generalization, particularly with categorical variables (Phani Praveen et 

al., 2025; Shukla et al., 2023). 

Like other gradient boosting methods, CatBoost aims to construct an additive model by iteratively adding new base learners (decision 

trees) that minimize an objective function. The general form of the prediction y^iy^i for an instance i after K iterations is: 

y^i=FK(xi)=FK−1(xi)+ηhK(xi),y^i=FK(xi)=FK−1(xi)+ηhK(xi), 

where FK−1(xi)FK−1(xi) is the prediction from the ensemble of the previous K − 1 trees, hK(xi)hK(xi) is the K-th base learner 

(decision tree) fitted to the negative gradient of the loss function, and ηη is the learning rate. 

The objective function minimized is similar to other gradient boosting algorithms: 

Objective=∑i=1nL(yi,y^i)+∑k=1KΩ(hk),Objective=i=1∑nL(yi,y^i)+k=1∑KΩ(hk), 

where L(yi,y^i)L(yi,y^i) is the loss function (e.g., Logloss for classification, RMSE for regression) measuring the discrepancy between 

the true value yiyi and the current prediction y^iy^i, and Ω(hk)Ω(hk) is a regularization term that penalizes the complexity of the k-th 

base learner hkhk. 

3.3.5 TabNet 

TabNet is a deep learning architecture uniquely tailored for tabular data (Arik & Pfister, 2021). Unlike traditional deep learning models 

that often struggle with the heterogeneous nature of tabular inputs, TabNet utilizes sparse attention mechanisms to selectively focus 

on relevant features at each decision step. This interpretability feature allows for insights into which features are most influential for 

a given prediction. 

The mask M[l]M[l] at decision step *l* is calculated as: 

M[l]=sparsemax(P[l]⊙f[l](x)),M[l]=sparsemax(P[l]⊙f[l](x)), 



                           International Scientific Journal of Engineering and Management (ISJEM)                                     ISSN: 2583-6129 
                                  Volume: 04 Issue: 07 | July – 2025                                                                                             DOI: 10.55041/ISJEM04812                                                                                                                                        

                                  An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        

 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                                                          |        Page 5 
 

where P[l]P[l] is the prior scale, f[l](x)f[l](x) is a learnable transformation function applied to the input x, and sparsemax is a sparse 

version of the softmax function that encourages sparsity in feature selection. 

Each model underwent hyperparameter tuning using randomized grid search and 5-fold cross-validation. Model selection was based 

on optimizing the F1-score and ROC-AUC. 

3.4 Explainability 

To promote clinical trust and transparency, we applied SHAP (SHapley Additive exPlanations) to all tree-based models (Lundberg & 

Lee, 2017). SHAP values quantify the contribution of each feature to individual predictions by assigning additive importance scores 

based on game theory. 

• Global Interpretability: SHAP summary plots were generated to visualize the overall impact, frequency, and 

direction of features across the test set. Features like Functional Assessment, Activities of Daily Living (ADL) status, Mini-

Mental State Examination (MMSE) scores, and memory complaints consistently emerged as the most influential. 

• Local Interpretability: Force plots and decision plots were used to interpret individual predictions, allowing 

practitioners to see how different feature values contributed to a specific patient classification. 

This interpretability component bridges the gap between model performance and real-world applicability, particularly in high-stakes 

healthcare settings (Kim et al., 2021). 

 

4.Result 

Figures 2 and 3 illustrate the ROC and Precision-Recall curves, respectively. These visualisations affirm the superior threshold 

performance of ensemble models like CatBoost and XGBoost, with AUCs exceeding 0.94. Notably, CatBoost maintains high precision 

even at increasing recall values, underscoring its robustness under class imbalance. 

Figure 4 displays SHAP summary plots, which interpret model behaviour by highlighting feature contributions. Functional 

Assessment, MMSE scores, ADL, and Memory Complaints consistently emerged as high-impact variables, confirming their clinical 

significance and supporting model transparency. 

To explore distributional shifts in critical features, Figures 5 and 6 present box plots and violin plots, respectively, showcasing the 

distribution of key features such as Functional Assessment, ADL, and Memory Complaints across diagnostic categories. The box plots 

highlight central tendencies and variances between groups, revealing consistently lower median values and wider interquartile ranges 

among Alzheimer’s diagnosed individuals. Violin plots enrich these insights by illustrating multimodal patterns, density variations, 

and outliers, offering an in-depth look at behavioural markers of cognitive decline. 

The confusion matrices in Figures 7a and 7b provide further insights into the classification capabilities of the top-performing models. 

CatBoost achieved near-perfect sensitivity and specificity, misclassifying only 21 out of 430 test samples. XGBoost displayed similar 

reliability, reinforcing the consistency of ensemble approaches. 

Table 1 summarises model performance. CatBoost achieved the best results (accuracy: 94.9%, F1: 0.95), followed by XGBoost and 

Random Forest. Logistic Regression underperformed with an F1-score of 0.82. Ensemble models demonstrated strong ROC-AUC 

scores (0.94+), validated by both ROC and precision-recall curves. 

 

Table 1. Model Performance Metrics 

Model Accuracy F1 Score Precision Recall ROC-AUC 

CatBoost 0.949 0.949 0.960 0.960 0.94 

XGBoost 0.948 0.952 0.940 0.950 0.95 

Random Forest 0.942 0.941 0.940 0.970 0.94 

TabNet 0.881 0.881 0.900 0.910 0.90 

Logistic Regression 0.814 0.817 0.910 0.790 0.88 
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Fgure 2. Receiver Operating Characteristic (ROC) curves comparing the classification performance of all models. 

 

 

 

 

Figure 3. Precision-Recall (PR) curves for all models.  

 

 

Figure 4. SHAP summary plot for the CatBoost model. Functional Assessment, ADL, and Memory Complaints emerge as dominant 

predictors. 
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Figure 5. Box plots: Showing the distribution of Functional Assessment, ADL scores, and Memory Complaints across diagnostic 

groups (0 = Healthy, 1 = Alzheimer's). The visual illustrates feature variance and central tendencies relevant to classification. 

   

Figure 6. Violin plots: Depicting the distribution density of Functional Assessment, ADL scores, and Memory Complaints by 

diagnostic category. These plots reveal underlying data spread and outlier behaviour within each class. 
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Figure 6a. Confusion Matrix for CatBoost Model 

 

 

 

 

Figure 6b. Confusion Matrix for XGBoost Model 

 

 

5. Discussion 

The performance of CatBoost observed in this study aligns with prior findings where gradient boosting methods have been effective 

for clinical prediction tasks (Ortiz et al., 2016; Chen & Guestrin, 2016). Its superior performance may be attributed to innovations in 
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handling categorical data and ordered boosting mechanisms (Prokhorenkova et al., 2018). In comparison, logistic regression showed 

limitations in modeling nonlinear relationships, a common drawback cited in clinical machine learning applications (Hastie et al., 

2001). The TabNet model, while appealing for its attention mechanisms, echoes findings by Arik and Pfister (2021), where 

performance depended heavily on hyperparameter tuning. 

Moreover, the use of SHapley Additive exPlanations (SHAP) values in this study reflects the emphasis placed in recent literature 

(Linardatos et al., 2020; Lundberg & Lee, 2017) on the need for transparency and interpretability in medical artificial intelligence 

(AI). Unlike several black-box approaches criticized for their opacity (Hamoud et al., 2025), this framework offers both local and 

global interpretability, fostering clinician trust. The diagnostic potential demonstrated using only structured clinical inputs is supported 

by recent studies emphasizing behavioral and cognitive features (Kavitha et al., 2022; Nallapu et al., 2024). In contrast to high-cost 

neuroimaging studies (Illakiya & Karthik, 2023), this method provides a cost-effective and scalable alternative aligned with healthcare 

system needs. 

Clinical Implications 

With its simplicity and explainability, this model could be adapted to real-world screening systems, particularly in resource-limited 

settings where imaging infrastructure is lacking. 

6. Conclusion 

In conclusion, this study proposes a clinically meaningful and technically robust machine learning framework for the early detection 

of Alzheimer’s Disease using structured, non-imaging clinical data. Among the models evaluated, CatBoost demonstrated superior 

predictive accuracy and interpretability, validated through SHAP analysis, which highlighted clinically significant features such as 

Functional Assessment, ADL scores, and Memory Complaints. The emphasis on explainability ensures transparency, which is vital 

for clinical adoption of AI-driven tools. Looking forward, expanding the dataset with longitudinal and multi-site records will be critical 

for improving generalizability. Evaluating algorithmic fairness across demographic factors such as age, gender, and ethnicity is equally 

important to prevent biased diagnostics. Integration with wearable sensor data could enable continuous, real-time risk assessment, 

while the deployment of a user-friendly, web-based prediction tool would increase clinical accessibility. Finally, extensive external 

validation on diverse populations will be essential to translate this framework from research into a dependable decision support system 

for early Alzheimer’s diagnosis. 
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