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Abstract 

 

The computational substrate of the 21st century is undergoing a radical phase transition. The deterministic certainty that 

defined the era of Moore’s Law—where performance gains were achieved through the reliable shrinking of transistors 

without a penalty in power density—has irrevocably collapsed. As the semiconductor industry confronts the breakdown 

of Dennard scaling and the physical limits of lithography, a new paradigm has emerged: Approximate Computing (AC). 

This architectural shift, necessitated by the voracious energy demands of generative artificial intelligence and high-

performance computing, deliberately trades bit-level precision for gains in energy efficiency and throughput. However, 

this transition from exactitude to approximation is not merely a technical optimization; it is a profound reordering of the 

sociotechnical contract between human operators and machine agents. 

This report, "Accountable Approximation," provides an exhaustive analysis of the implications of this shift. By 

synthesizing data from energy audits, hardware security research, legal theory, and the geometry of neural loss landscapes, 

we demonstrate that the introduction of stochastic error into the hardware layer possesses significant, yet largely 

unexamined, agency. We explore how quantization noise—the arithmetic distortion introduced by reducing numerical 

precision—interacts with the high-dimensional geometry of deep learning models to disproportionately erode the 

representation of minority data, effectively embedding bias into the silicon itself. Furthermore, we examine the security 

paradox where the "fog of error" sanctioned by approximation creates a camouflage for hardware Trojans, rendering 

traditional redundancy-based detection methods obsolete. 

Synthesizing the latest findings from the International Energy Agency (IEA), Google’s 2025 environmental reports, and 

cutting-edge research into "Fair-GPTQ" algorithms, this report argues that the sustainability of the AI revolution hinges 

on our ability to govern this new "technological unconscious." We propose a framework of Accountable Approximation 

that demands transparency in error budgets, rigorous auditing of the bias-variance trade-off in hardware, and a 

modernization of liability laws to address the non-deterministic nature of future computing systems. The era of the perfect 

machine is over; the era of the accountable machine must begin. 
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1. Introduction: The End of the Deterministic Era 

 

1.1 The Physical Limits of the Digital Age 

 

For over fifty years, the global digital economy was underwritten by a predictable contract with physics, colloquially 

known as Moore’s Law. This observation, made by Gordon Moore in 1965, posited that the number of transistors on a 

microchip would double approximately every two years. It was a prophecy of exponential growth that held true for 

decades, driving the revolution in personal computing, the internet, and mobile connectivity.1 However, the engine beneath 

Moore’s Law was not merely transistor density; it was a scaling behavior described by Robert Dennard in 1974. Dennard 

scaling stated that as transistors became smaller, their power density stayed constant, allowing engineers to increase clock 

speeds and performance without increasing the power budget of the chip.3 

The physics of this era could be summarized by the proportionality of dynamic power consumption ( ) to capacitance (

), voltage ( ), and frequency ( ): 

 
Under ideal scaling, if transistor dimensions were reduced by a factor  (where ), capacitance  would reduce by 

 and voltage  could be reduced by  to maintain constant electric field. This allowed frequency  to increase by 

 while keeping the power density ( ) constant.3 

That contract has been broken. Around 2006, Dennard scaling collapsed. As transistors shrank below 90 nanometers, 

leakage currents and thermal effects made it impossible to power all transistors on a chip simultaneously without 

exceeding the thermal design power—a phenomenon that gave rise to the era of "Dark Silicon." Today, we face the 

imminent flattening of Moore’s Law itself, with consensus estimates suggesting the economic and physical viability of 

strictly lithographic scaling will cease to be the primary driver of performance by roughly 2025.5 The breakdown is so 

severe that industry leaders like NVIDIA CEO Jensen Huang have declared Moore’s Law "dead," prompting fierce 

rebuttals from counterparts at Intel, illustrating the deep anxiety pervading the hardware sector.1 

This physical stalling occurs at the precise moment that humanity’s demand for computation has entered a hyper-

exponential phase. The rise of Large Language Models (LLMs) and generative AI has created a computational workload 

that doubles not every two years, but every few months. The training of a single state-of-the-art model requires energy 

expenditure comparable to the annual consumption of a small town, and the subsequent inference phase—the daily use of 

these models—threatens to consume terawatt-hours on a national scale.7 

1.2 The Turn to Approximation 

 

Faced with an immovable thermal ceiling and an unstoppable demand for intelligence, computer architects have been 

forced to abandon the ideal of exactness. The industry is pivoting toward Approximate Computing (AC). The core premise 

of AC is simple yet radical: many modern applications, particularly in AI, media processing, and data mining, are 

inherently error-resilient. A neural network does not need to know that a weight is exactly 0.123456789; it functions 

perfectly well—and often faster—if it assumes the weight is 0.12. 

By relaxing the requirement for strict Boolean correctness, engineers can achieve massive gains in efficiency. Techniques 

such as voltage over-scaling (running chips at lower voltages than is safe for perfect accuracy), truncation (chopping off 

the least significant bits of a calculation), and aggressive quantization (representing numbers with 4 bits instead of 32) 

allow for the reclamation of performance lost to the death of Dennard scaling.9 This shift is evident in the architecture of 

modern GPUs, such as NVIDIA’s Blackwell, which achieves its generational leaps in efficiency largely through the 

support of lower-precision number formats designed specifically for AI inference.11 
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1.3 The Thesis of Accountable Approximation 

 

However, the transition to approximate computing is not a value-neutral engineering decision. It introduces a probabilistic 

element into the heart of the digital stack. When a processor is allowed to "guess," the errors it produces are not random, 

benign noise. They are structured artifacts of the hardware design that interact with software and data in complex, non-

linear ways. 

This report posits that approximation grants hardware a form of "material agency".12 The silicon itself begins to make 

decisions about what information is preserved and what is discarded. If these decisions are left unexamined, they can 

amplify social biases, create unmonitorable security vulnerabilities, and create a "liability gap" where neither the software 

developer nor the hardware manufacturer can be held responsible for system failures. 

"Accountable Approximation" is a proposed framework for navigating this new reality. It argues that error-tolerant 

systems must be designed with the same rigor applied to safety-critical systems. We must understand the geometry of the 

errors we introduce, ensuring they do not disproportionately impact vulnerable populations. We must secure the "fog of 

error" to prevent malicious actors from hiding within it. And we must update our legal frameworks to assign responsibility 

in a world where computation is no longer guaranteed to be correct. 

 

2. The Thermodynamic Floor: Energy, Inference, and the Cost of Precision 

 

2.1 The Escalating Energy Appetite of AI 

 

To understand the inevitability of approximation, one must first confront the thermodynamic reality of modern AI. The 

energy consumption of the information technology sector is no longer a rounding error in global electricity usage; it is 

becoming a primary driver of grid demand. The International Energy Agency (IEA) projects that electricity demand from 

data centers, driven largely by AI, could double between 2022 and 2026, growing from 460 terawatt-hours (TWh) to over 

1,000 TWh—roughly equivalent to the entire electricity consumption of Japan.14 

This growth is bifurcated into two distinct phases: training and inference. While the public imagination focuses on the 

massive energy cost of training a model—a discrete event that is undeniably energy-intensive—it is the inference phase 

that poses the long-term sustainability challenge. 

 

2.1.1 The Training Burden 

 

The training of a foundation model is an industrial-scale energy event. Estimates for the training of GPT-3 place its 

consumption around 1,287 MWh, emitting over 550 metric tons of carbon dioxide equivalent (CO2e).8 To contextualize 

this, 1,287 MWh is enough energy to power approximately 120 average US households for a full year.17 

However, GPT-3 is now considered a legacy model. Its successor, GPT-4, is estimated to have consumed between 51,773 

and 62,319 MWh during training—a staggering 40-fold increase.18 This exponential rise in training costs follows a trend 

where the compute required for cutting-edge AI doubles every 3.4 months, far outstripping the historical 2-year doubling 

time of Moore’s Law.19 This divergence between the demand for compute and the efficiency of the underlying hardware 

creates an unsustainable trajectory that can only be flattened by radically improving the efficiency of the computation 

itself—hence, the move to approximation. 
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2.1.2 The Inference Tsunami 

 

While training is intense, it happens once. Inference happens billions of times a day. Inference refers to the process of the 

model generating a response to a user prompt. Every time a user asks ChatGPT a question, generates an image with 

Midjourney, or receives a recommendation from a streaming algorithm, inference is occurring. 

Recent data suggests that inference already accounts for the majority of AI’s lifecycle energy footprint, potentially up to 

90%.8 The energy cost per query varies wildly depending on the modality. A simple text-based query might consume 

around 0.047 kWh, while generating a single image can consume nearly 3 kWh—roughly the same amount of energy as 

fully charging a smartphone.20 When aggregated across hundreds of millions of daily active users, the energy demand 

becomes colossal. If every Google search performed today were transitioned to a generative AI interaction, the energy 

consumption would rival that of the entire nation of Ireland.19 

Google’s 2025 environmental reporting provides a granular look at this challenge. They report that the median energy 

consumption for a "Gemini Apps" text prompt is approximately 0.24 Watt-hours (Wh). Google frames this optimistically, 

equating it to "watching television for less than nine seconds".21 While this individual unit cost seems low, the aggregate 

scale is the defining factor. Trillions of "nine-second TV spots" amount to a massive continuous load on the grid. 

Furthermore, these figures often obscure the "embodied carbon"—the energy used to manufacture the chips themselves—

which is a significant portion of the total footprint.23 

 

2.2 Water: The Hidden Resource 

 

The thermodynamic cost of precision is not paid in electricity alone; it is also paid in water. Data centers generate immense 

heat, and removing that heat requires industrial-scale cooling systems that often rely on evaporative cooling. The training 

of GPT-3 is estimated to have consumed over 700,000 liters of clean freshwater for cooling, enough to fill two-thirds of 

an Olympic swimming pool.8 

As chip density increases to compensate for the slowing of Moore’s Law, the heat density of the hardware rises, 

necessitating even more aggressive cooling. Google reported replenishing 4.5 billion gallons of water in 2024 to offset 

this consumption, aiming for "water positivity," but the local impact on drought-stricken regions where data centers are 

often located remains a critical sociotechnical tension.24 Approximate computing offers a direct remediation here: by 

reducing the precision of calculations, the switching activity of the transistors decreases, generating less heat and directly 

reducing the water intensity of the compute.7 

2.3 The Role of Approximation in Sustainability 

 

The industry’s response to this energy and water crisis has been a decisive move toward specialized, approximate 

hardware. The efficiency gains reported by major players are inextricably linked to this shift. NVIDIA’s Blackwell 

platform, for instance, claims a 25x improvement in energy efficiency for LLM inference compared to previous 

generations.11 This leap is not due to a magical breakthrough in transistor physics; it is largely due to the adoption of 4-

bit floating-point arithmetic (FP4) and other reduced-precision formats. 

Similarly, Google cites a 30x improvement in the power efficiency of its Tensor Processing Units (TPUs).24 These gains 

are achieved by stripping away the "unnecessary" precision of 32-bit or 64-bit computing. The reasoning is that the 

statistical noise of a neural network allows it to absorb the errors of lower precision without breaking. However, as we 

will explore in subsequent sections, this "absorption" of error is not uniform, and the efficiency gained here is purchased 

with a currency of transparency and fairness. 
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3. The Geometry of Loss: Sharp Minima and the Physics of Quantization 

 

3.1 The Mathematical Definition of Quantization 

 

To understand why approximation is risky, we must look at the mathematics of quantization. In digital signal processing, 

quantization is the mapping of a continuous range of values to a finite set of discrete levels.25 When applied to a neural 

network, it involves taking the "weights"—the billions of parameters learned during training, usually represented as high-

precision floating-point numbers—and snapping them to the nearest value on a coarse grid. 

For a uniform quantization scheme with step size , a real-valued weight  is mapped to a quantized value : 

 
This process introduces "quantization noise" ( ), defined as the difference between the original signal and the quantized 

representation: . In audio, this noise sounds like a hiss or distortion overlying the music.26 In a neural network, 

this noise distorts the model's "understanding" of the world. 

 

3.2 Loss Landscapes and Hessian Spectra 

 

The impact of this noise depends entirely on the geometry of the model’s "loss landscape." The loss landscape is a 

visualization of how the model's error (loss, ) changes as its parameters ( ) change. It is a high-dimensional terrain of 

hills (high error) and valleys (low error). The goal of training is to find the deepest valley—the global minimum.27 

We can approximate the loss function around a minimum  using a second-order Taylor expansion: 

 

Here,  represents the perturbation vector caused by quantization noise. Since  is a minimum, the gradient  is 

zero. The increase in loss is therefore determined primarily by , the Hessian matrix of second-order derivatives (

).57 

● Flat Minima: Some valleys are wide and flat. In these regions, the eigenvalues ( ) of the Hessian  are small. If 

the model's parameters are in a flat minimum, pushing them slightly to the left or right (as quantization does) results 

in a negligible increase in loss ( ). These models are robust.29 

● Sharp Minima: Other valleys are narrow and steep—like a ravine. These regions are characterized by large 

maximum eigenvalues ( ) in the Hessian spectrum. If the model is balanced on the razor's edge of a sharp 

minimum, the term  becomes large, sending the error skyrocketing. These models are brittle.31 

3.3 The Volume Hypothesis and Generalization 

This geometric understanding links approximation to the fundamental theory of learning. The "Volume Hypothesis" 

suggests that flat minima occupy a larger volume in the parameter space and therefore represent solutions that generalize 

better to new data.27 Conversely, sharp minima often represent "overfitted" solutions that have memorized the training 

data but fail on the test data. 
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Crucially, quantization acts as a filter. It is physically impossible for a quantized model to reside in a sharp minimum 

because the "grid" of allowable values is too coarse to resolve the bottom of a narrow ravine. Therefore, approximate 

computing forces models to find flat minima. While this can theoretically improve generalization (by acting as a 

regularizer), it introduces a dangerous instability during the conversion process. If a model trained in high precision settles 

into a sharp minimum, attempting to quantize it for efficient inference will result in catastrophic accuracy degradation 

unless complex "fine-tuning" or "Hessian-aware" techniques are employed.29 

This is where the "accountability" gap opens. If a deployer uses a cheap, "post-training quantization" method that ignores 

the Hessian spectrum, they may degrade the model's performance in subtle, non-uniform ways. The model might still 

work for the "average" query (the flat part of the manifold) but fail catastrophically for "edge cases" (the sharp parts), 

which often correspond to minority data or complex reasoning tasks. 

 

4. The Mechanics of Approximation: How Hardware Guesses 

 

4.1 Beyond Software: Hardware-Level Approximation 

 

While quantization is often handled in software, true approximate computing modifies the hardware circuits themselves. 

To squeeze the last drops of efficiency out of the post-Dennard silicon, engineers are redesigning the fundamental logic 

gates that perform arithmetic. 

One common technique is the use of Approximate Adders. A standard adder (like a Ripple Carry Adder) calculates the 

sum of two numbers and propagates the "carry" bit all the way from the least significant bit to the most significant bit. 

This propagation takes time and energy. An approximate adder, such as the Lower-Part-OR Adder (LOA), simply ignores 

the carry propagation for the lower bits, using a faster, cheaper OR gate instead.33 

For an approximate adder, the output sum  deviates from the exact sum  by an error distance (ED): 

 
To evaluate the quality of these circuits, designers rely on the Mean Error Distance (MED) across all inputs : 

 
This means that for certain input combinations, the hardware will literally calculate the wrong answer.  might equal 

, but  might equal  due to a precision drop in the lower bits. This is not a bug; it is a design 

feature intended to save energy. 

4.2 Voltage Over-Scaling and Timing Errors 

 

Another technique is Voltage Over-Scaling (VOS). Digital circuits require a certain voltage to switch their transistors 

fast enough to meet the system clock. If you lower the voltage, you save quadratic amounts of energy (

), but the transistors switch slower. Eventually, they switch too slowly to finish the calculation 

before the clock cycles, resulting in a "timing error".34 

In an exact system, a timing error is a fatal crash. In an approximate system, it is treated as noise. The system is designed 

to accept that some percentage of operations will fail to complete, effectively truncating the calculation. This turns the 

processor into a stochastic machine: the output depends not just on the inputs, but on the physical temperature of the chip, 
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the minute variations in voltage from the power supply, and the specific "path delay" of the numbers being added. 

 

4.3 Quantization Formats: The Battle for Bits 

 

To manage this chaos, the industry has developed specialized data formats. We are moving away from the standard 32-

bit Floating Point (FP32) toward formats like BF16 (Brain Float 16), FP8, and even INT4 (4-bit Integer). 

Newer techniques like AWQ (Activation-aware Weight Quantization) and GGUF focus on identifying the "salient" 

weights—the 1% of parameters that are most critical for the model's accuracy—and keeping them in high precision, while 

crushing the rest of the model down to low precision.35 This creates a "mixed-precision" architecture where the hardware 

dynamically adjusts its exactitude based on the importance of the data it is processing. 

However, who decides what is "salient"? As we will see in the next section, the algorithms that determine which bits to 

keep and which to discard are often blind to sociological concepts of importance, leading to the emergence of "algorithmic 

bias in hardware." 

 

5. Algorithmic Bias in Hardware: The Sociotechnical Agency of Silicon 

 

5.1 The Myth of Neutral Compression 

 

There is a pervasive assumption in engineering that compression is content-neutral—that shrinking a file or a model 

removes "redundancy" without altering "meaning." In the context of AI quantization, this assumption is demonstrably 

false. Recent research has revealed that quantization does not degrade model performance uniformly; it disproportionately 

impacts the model's ability to process information related to underrepresented groups. 

This phenomenon stems from the statistical nature of quantization methods like GPTQ (Generative Pre-trained 

Transformer Quantization). These algorithms effectively optimize for the "average" case. They try to minimize the 

error across the entire dataset. Since the dataset is dominated by majority representations (e.g., Western cultural norms, 

English language syntax, white male faces), the quantization algorithm prioritizes preserving the weights that encode these 

majority features. The weights that encode "outlier" features—often corresponding to minority groups or rare linguistic 

patterns—are deemed statistically less significant and are the first to be "rounded away".36 

 

5.2 Case Study: Fair-GPTQ and the quantified Bias 

 

The "Fair-GPTQ" study provides empirical evidence of this "hardware gentrification." Researchers found that when 

standard quantization was applied to Large Language Models (reducing them to 4-bit or 2-bit precision), the "perplexity" 

(a measure of confusion) on minority dialects increased significantly more than on standard English. Furthermore, bias 

metrics regarding gender, race, and religion worsened. The model became more stereotypical because the nuanced, high-

dimensional representations required to understand context and avoid stereotypes were flattened by the quantization grid.36 

To address this, the researchers introduced Fair-GPTQ, a modification to the quantization algorithm that includes a 

fairness-aware regularization term. Standard GPTQ minimizes the squared error of the weights. Fair-GPTQ modifies this 
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objective function to explicitly penalize bias: 

 

Here,  is the full-precision weight matrix, and  is the quantized matrix. The terms  and  represent stereotyped 

and anti-stereotyped inputs, respectively. The parameter  controls the penalty for bias. This equation forces the algorithm 

to find a quantized weight configuration #  that not only preserves accuracy (the first term) but also minimizes the 

difference in how the model treats different demographic groups (the second term).37 

This creates a profound realization: we can no longer separate the hardware efficiency from the social outcome. The 

decision to use a standard quantization method versus a fairness-aware one is an ethical choice. If a deployer chooses the 

standard method to save 1% more energy or memory, they are actively choosing to degrade the experience for minority 

users. The "material agency" of the chip is thus realized—the hardware configuration itself dictates the fairness of the 

automated decision.12 

 

5.3 The Technological Unconscious 

 

This leads to the concept of the Technological Unconscious. Just as the human unconscious processes information below 

the level of awareness, the hardware layers of an AI system process data below the level of the software "consciousness." 

The "technological unconscious" of an approximate chip is "lossy." It is constantly forgetting information to save energy. 

If this forgetting is not audited, the hardware becomes a silent oppressor. A medical diagnostic AI might perform brilliantly 

in the lab (on high-precision hardware) but fail in a rural clinic where it is deployed on a low-power, heavily quantized 

mobile chip. The failure is not in the software code, but in the translation of that code into the "technological unconscious" 

of the approximate hardware.38 

 

6. The Security Frontier: Hardware Trojans and the Fog of Error 

 

6.1 The Vulnerability of Imprecision 

 

Security in computing has traditionally relied on the concept of "golden reference." You compare the output of your chip 

to the known correct output. If they differ, you have a problem—either a defect or a hack. 

In approximate computing, there is no golden reference. The output is expected to be wrong occasionally. This creates a 

massive vulnerability. It generates a "fog of error" in which malicious actors can operate with impunity. This is the domain 

of Hardware Trojans in Approximate Circuits.34 

 

6.2 The Mechanism of the Attack 

 

A Hardware Trojan is a malicious modification to a circuit, inserted by an untrusted foundry or a rogue designer. In an 

exact circuit, Trojans are hard to hide because their activation usually causes a noticeable error. In an approximate circuit, 

the adversary can design the Trojan to affect only the Least Significant Bits (LSBs)—the bits that are already noisy. 
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For example, an adversary could insert a Trojan into an approximate adder used in a neural network. The Trojan is 

designed to trigger only when a specific "key" pattern appears on the input bus. When triggered, it flips a bit in the output. 

Because the application (the neural net) is designed to tolerate LSB errors, this flip is indistinguishable from normal 

quantization noise to the system's error-checking logic. However, to the adversary, that flipped bit could be a leaked 

cryptographic key or a "backdoor" that forces the neural network to misclassify a specific input (e.g., ignoring a stop 

sign).33 

The attacker specifically targets "rare nodes" for the trigger to avoid detection during standard testing. The probability  

of a signal line switching can be modeled, and if it falls below a threshold ( ), it is a candidate for a Trojan trigger: 

 
This mathematical obscurity ensures the Trojan remains dormant during most tests, only activating under precise, 

malicious conditions. 

 

6.3 The Failure of Traditional Defenses 

 

Standard defense mechanisms like Triple Modular Redundancy (TMR)—running the calculation three times and voting 

on the result—fail completely in this context. 

1. Common Mode Failure: If the approximation logic is deterministic (e.g., an LOA adder), all three redundant 

copies will produce the same "wrong" answer, validating the error. 

2. Statistical Divergence: If the approximation is non-deterministic (e.g., voltage over-scaling), the three copies 

might legitimately produce three different answers. A voting system cannot distinguish between three honest 

approximate answers and one malicious Trojan answer.40 

Research shows that Majority Voting (MV) techniques are invalid when trusted chips are assembled with approximate 

components from multiple vendors.40 The inherent diversity of error profiles makes it impossible to establish a baseline 

of trust. 

6.4 The Need for Statistical Security 

 

Securing approximate hardware requires a paradigm shift from "logical security" to "statistical security." We cannot check 

for correctness; we must check for distributional anomalies. Security monitors must be embedded on the chip to track the 

statistical properties of the errors (mean, variance, skewness) and raise an alarm if the error distribution shifts in a way 

that suggests a Trojan activation.34 

To accurately model these expected error distributions, simple Gaussian models often fail because approximation errors 

can be multimodal (having multiple peaks). Advanced Gaussian Mixture Models (GMM) are required to characterize 

the "fingerprint" of the approximation noise: 

 
By continuously monitoring whether the observed errors fit this complex GMM distribution, the system can potentially 

detect the statistical anomaly introduced by a Trojan.52 However, this introduces a cruel irony: the overhead of these 

statistical monitors consumes energy, eating into the very efficiency gains that motivated the approximation in the first 

place. We are thus left with a trade-off: we can have ultra-efficient approximate computing, or we can have secure 

computing, but combining them requires complex, expensive, and currently immature technologies. 
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7. Legal and Liability Architectures for the Probabilistic Age 

 

7.1 The Liability Gap 

 

The introduction of probabilistic hardware fundamentally breaks existing product liability frameworks. Current law, such 

as the EU Product Liability Directive, is predicated on the notion of "defect." A product is defective if it does not provide 

the safety that a person is entitled to expect. 

But what is the "expected safety" of a chip designed to be 98% accurate? If a self-driving car crashes because its 

approximate perception chip missed an object, is the chip "defective"? The manufacturer will argue that the chip 

performed exactly as specified within its error budget. They will claim the failure was a statistical inevitability, akin to a 

"force majeure," rather than a design flaw.42 

This creates a Liability Gap. The software developer blames the hardware for the error. The hardware manufacturer 

blames the software developer for not making their model robust enough to handle the noise. The victim is left with no 

recourse. 

 

7.2 B2B vs. Consumer Protections 

 

The legal landscape is further complicated by the distinction between Business-to-Business (B2B) and Business-to-

Consumer (B2C) contexts. In B2B contracts, liability is often limited by extensive warranty disclaimers. A cloud provider 

(like AWS or Google Cloud) selling "Spot Instances" or "Approximate Compute Instances" will likely include clauses 

stating that the user accepts the risk of calculation errors in exchange for the lower price. 

However, when that computation affects a consumer—for example, a bank using that cloud instance to deny a loan—

consumer protection laws (like the UK Consumer Protection Act) may kick in.44 The consumer cannot sign away their 

right to fair treatment. If the approximation caused a discriminatory outcome (via the bias mechanisms discussed in 

Section 5), the company deploying the AI could be liable, even if they were unaware of the hardware-level distortion. 

7.3 The "Service vs. Product" Debate 

 

A critical legal ambiguity is whether AI and its underlying compute constitute a "product" or a "service." If AI is a service, 

strict liability rules often do not apply; the claimant must prove negligence (i.e., that the provider failed to take reasonable 

care). Proving negligence in the design of a probabilistic approximate circuit is incredibly difficult for a plaintiff who 

lacks access to the proprietary "error budget" documents of the chip manufacturer.42 

7.4 Proposed Legal Standards: The "Rebuttable Presumption" 

To address this, legal scholars and the European Commission are proposing a "Rebuttable Presumption of 

Defectiveness" for complex AI systems. This would shift the burden of proof. Instead of the victim having to prove the 

chip was defective, the manufacturer would have to prove that their approximation techniques did not cause the accident.42 

Under an "Accountable Approximation" framework, this would require manufacturers to maintain immutable logs of the 

"quantization noise levels" during critical decisions—a "black box" for the chip itself. If they cannot produce these logs 

to prove the hardware was operating within safe statistical bounds, they are presumed liable. 
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8. Future Trajectories and Implications 

 

8.1 Carbon Lock-in and the Infrastructure of AI 

 

As we build out the infrastructure for the AI age—data centers, cooling systems, dedicated power plants—we risk creating 

a Carbon Lock-in. By optimizing our entire digital ecosystem around the massive energy consumption of generative AI, 

we entrench these technologies. We are pouring concrete and silicon for a future that requires high-energy compute.46 

Approximate computing is a double-edged sword here. On one hand, it lowers the carbon intensity of each operation. On 

the other hand, Jevons Paradox suggests that as compute becomes cheaper and more efficient, we will simply consume 

more of it. The efficiency gains from approximation might simply fuel larger models and more ubiquitous inference, 

leading to a net increase in total environmental impact.47 

 

8.2 Neurotechnology and the Ultimate Approximation 

 

The principles of accountable approximation will soon extend beyond the data center to the human body. The rise of 

Brain-Computer Interfaces (BCIs) and neurotechnology relies on implantable chips that must operate under extreme 

thermal and power constraints (you cannot heat up brain tissue). These chips will necessarily rely on heavy approximation 

and compressive sensing.48 

If we do not solve the problems of bias and security in approximate hardware now, we will be implanting these 

vulnerabilities directly into the human nervous system. A "quantization error" in a BCI could mean a loss of agency over 

one's own limbs, or a misinterpretation of neural intent. The "material agency" of the chip becomes indistinguishable from 

the biological agency of the human. 

 

8.3 Conclusion: The Imperative of Auditability 

 

The era of the "black box" must end. As we transition to a probabilistic computing paradigm, we must adopt a new 

standard of Accountable Approximation. This requires: 

1. Transparency: Error budgets and quantization policies must be public and auditable. 

2. Fairness: Hardware must be tested for demographic bias, not just signal-to-noise ratio. 

3. Forensics: Systems must be able to reconstruct the "state of the error" after a failure. 

Only by illuminating the "technological unconscious" of our hardware can we ensure that the post-Moore's Law world is 

sustainable, secure, and just. 
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