
 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01469

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Automating Deployments in Azure using Resource Manager Templates (ARM)

Anil Kumar Manukonda

E-mail: anil30494@gmail.com

Abstract

Azure users provision cloud infrastructure through Infrastructure-as-Code (IaC) which ensures consistency in

deployments. This study demonstrates the method of automating Microsoft Azure deployments by utilizing native

Arm templates which serve as infrastructure-as-code solutions in Azure. This paper examines IaC principles in

DevOps and ARM template development history alongside automated methods to deploy Azure resources. This

section explores both the structure of ARM templates including parameters variables resources and outputs and

shows how deployments are automated through Azure CLI along with Continuous Integration and Continuous

Deployment pipelines. We present specific technical examples which use JSON templates to create virtual networks

and storage accounts alongside role-based access deployments. ARM templates prove to be superior to manual

provisioning by accelerating deployment times while minimizing errors and increasing scalability. This paper

examines ARM templates alongside Terraform and Azure Bicep while evaluating their differences between

learning approach and tooling complexity and multi-cloud capability. This paper examines template complexity

and debugging challenges while proposing developments including enhanced tools and artificial intelligence

solutions for deployment planning. The paper demonstrates ARM templates maximize Azure automation

capabilities but recommends specific use cases based on workload requirements.

Keywords: Azure Resource Manager, ARM

Templates, Infrastructure as Code (IaC), Azure CLI,

Continuous Deployment, Azure DevOps, CI/CD

Pipelines, JSON Templates, Bicep, Virtual Network

Deployment, Storage Account Automation, Role-

based Access Control (RBAC), Declarative

Infrastructure, Azure Policy, Resource Provisioning,

Automation, Template Linking, Modular Templates,

Azure Bicep, HashiCorp Terraform, Pulumi, Multi-

cloud Infrastructure, Cost Optimization, Deployment

Orchestration, What-if Analysis, Deployment

Validation, Version Control, DevOps, Azure Portal,

Template Parameters, Error Handling, AI-assisted

IaC, Governance, Cloud Scalability, State

Management, Idempotency

Introduction

In modern DevOps deployments infrastructure

serves as an essential component of lifecycle

development that operates through automated code-

based mechanisms instead of hand-driven

procedures. Through Infrastructure-as-Code (IaC)

developers define infrastructure with machine-

readable configuration files to automate both

environment creation and termination. Through IaC

operations teams unite with developers to create

infrastructure definitions which can be managed

under version control for instant deployment of

standard environments between development stages

and production. The managed method decreases

manual configuration requirements thus

minimizing both scale-dependent errors and process

duration.

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01469

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

ARM Templates operate as Microsoft's

declarative infrastructure-as-code solution

specifically built for Azure deployments. ARM

templates came with the 2014 Azure Resource

Manager launch to replace “Classic” Azure

deployments and utilize JSON for describing Azure

resource definitions. The desired infrastructure state

appears in ARM templates through resource

definitions which describe cloud objects (VMs and

networks and databases) with their respective

properties but omit instructions for resource

generation. Azure's Resource Manager service

manages the deployment sequence of resources

while automatically resolving dependencies

between them. ARM templates enable Azure

environments to establish repeatable deployment

consistency thus meeting core requirements for

DevOps CI/CD workflows.

The implementation of automation stands as a

critical element for implementing effective cloud

operations within Azure. Agile and cloud-native

teams need to deploy intricate stacks (web apps,

databases, networks, etc.) both intermittently and

reliably. The deployment of Azure resources

through manual methods is limited to poor

scalability and error-proneness. Using ARM

templates for automation generates benefits of fast

deployment and consistent results while enabling

version control of infrastructure side-by-side with

application code. Multiple components of a web

application environment containing an App Service

for web applications alongside SQL databases in

conjunction with VNet networking constructs and

security rules can be specified through templates for

single-step deployment. The deployment of

network infrastructures (virtual networks, subnets,

and network security groups) along with security

configurations (Azure Policy assignments and role-

based access control roles) can be choreographed

through templates across subscriptions. These

practical uses emphasize why automation methods

matter to organizations. The deployment of multi-

tier web applications and the establishment of hub-

and-spoke virtual networks with routing

configurations and runtime security policies across

resources becomes possible through template

deployment methods executed through CLI or

CI/CD pipelines. This method removes repeated

manual work and guarantees that the identical

settings produce each environment (dev, test, prod)

[2].

We examine the historical background and

architectural structure of ARM templates in

addition to workflow methods and practical use

cases together with their resulting implications in

the sections below. The research includes

comparisons of ARM templates to other

Infrastructure as Code (IaC) solutions along with an

evaluation of existing challenges and upcoming

advancements.

Background

Before resource management through

Microsoft Azure operated under a "Classic"

deployment model (Azure Service Manager) that

managed resources one by one. In 2014 Azure

brought the Azure Resource Manager (ARM)

together with resource groups to introduce its

contemporary deployment framework. ARM

delivers Azure with a single management

framework while using JSON templates as the

language for defining infrastructure. The

configuration of multiple Azure resources within a

single deployment unit exists through ARM

templates that function as JSON files. Users define

what resources need to get created rather than

describing how the creation process should work

through this declarative method.

The development of ARM templates

originated from requirements to achieve

deployment consistency and repeatability. ARM

templates deliver essential capabilities through

JSON-based elements that perform the following

functions: Users obtain lifecycle management

through resource grouping in addition to deploying

dependent resources in synchronized environments

while benefiting from Azure RBAC and tagging

implementation for governance control. The

Microsoft team expanded ARM template

capabilities by introducing additional resource

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01469

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

support and extending template language functions

beyond string and array operations up to

conditionals and loops through copy functionality.

ARM templates became the core component of

Azure automation strategies when organizations

started treating infrastructure deployment through

code. The ARM JSON code could be checked into

source control systems where organizations would

deploy it during application releases to synchronize

infrastructure adjustments with software

deployments. The new method outperformed

traditional manual portal configuration by

eliminating configuration errors and drift problems

[2]. ARM templates enable idempotent

deployments because Azure will update the

environment to match the template repeatedly

without creating redundant resources. Robust

automation depends heavily on this essential

property.

The process of manually creating raw JSON

ARM templates proved to be verbose while also

presenting user-unfriendly features. The Azure

Bicep platform emerged following community

requests as it provided better template abstractions

over ARM templates during 2020. Bicep provides a

domain-specific language which simplifies

complex JSON expressions yet produces equivalent

ARM JSON templates. The core deployment format

for Azure remains ARM JSON templates even

though Azure Bicep templates have emerged [7].

Any practitioner working with Azure must have a

solid understanding of ARM templates.

The use of ARM templates has evolved into

Azure IaC's established best practice standard. All

deployments made through templates must pass

through Azure Resource Manager's control plane

system. A detailed examination of template

structures accompanies an overview of practical

deployment workflow operations in the following

sections.

Architecture & Workflow

ARM Template Structure: Typically, an ARM

template is a JSON document with several top-level

sections: $schema, contentVersion, parameters,

variables, functions, resources, outputs. Here is the

simplified skeleton of an ARM template file

displaying these sections:

Code 1: Structure of an Azure Resource Manager

(ARM) Template

Each section serves a purpose:

• $schema: URL of the JSON schema where

the provisions about the ARM template

language are specified. This assists tooling in

validating the template. For instance, when

using the 2019-04-01 schema URL, which is

typically used when making resource group

deployments, as demonstrated above.

• contentVersion: A template user-defined

version (e.g., "1.0.0.0"). It doesn’t affect

deployment behavior, but it may be used for

versioning your templates.

• parameters: Enter values that can be

accepted by the template at the time of

deployment. Parameters make templates

reusable by externalizing the values that are

specific to given environments (e.g., names

of resources, their sizes etc.). The name

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01469

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

parameter distinguishes parameter, the type

parameter identifies whether it's a string, an

integer, a bool, an array, object, secureString,

etc., and optional is the provider of a

defaultValue and some metadata/description.

• variables: Local values calculated using

parameters or constants that can be reused in

the template. According to variables, one

avoids repetition, and complex expressions

are made easier. They are not externally

provided; they are calculated once during

deployment.

• functions: Local values calculated with

parameters or constants that can be used to

reuse within the template. With regards to

variables, there is no repetition, and the

simple expressions are made easier as well.

They are not externally provided; they are

computed once upon deployment.

• resources: A collection of objects that

describe an Azure resource to deploy (or

update). An object of a resource contains a

resource type (e.g.,

“Microsoft.Compute/virtualMachines”),

apiVersion, an indication of the REST API

version to utilize for the specified object of a

resource, name, location, and a block of

properties with the type-specific settings. It

can also contain dependencies, tags and child

resources. The template may have several

resources and by default Azure Resource

Manager will try and create them in parallel

as much as it is possible while serializing

those that have specific dependencies on

other ones.

• outputs: Values to be returned from the

deployment when the resources are all

provisioned. The outputs can reference

already deployed resources (for instance, you

can output an ID of generated resource or

connection string). These outputs may be

utilized by deployment scripts, greater

templates provide they are deploying to, or

may be plugging into other templates in the

case of linking deployments.

Sample Template (VM Deployment): For instance,

we can examine a template to deploy an Azure Web

App (App Service) or Virtual Machine. We describe

a VM example to shorten for brevity. VM

deployment usually uses several resources, such as a

network interface, a VM, disks, etc., while ARM

template can explicitly define all needed fragments.

For instance, a stripped-down VM template’s

resources may include:

• A virtual network (to connect the VM to a

network).

• A subnet within that VNet.

• The VM should have a public IP address.

• A network interface connecting the subnet

and IP.

• The virtual machine resource itself which has

properties such as VM size, image, OS

settings, admin credentials and etc, and the

dependency on the NIC (the VM also

demands the NIC ready).

Each of these would be a template’s resource

object, and the VM resource’s dependsOn would

include the NIC resource. Parameters could be used

for a name of the VM, admin username, or size of a

VM (e.g., Standard_DS1_v2). Because of space, we

do not include a full VM template here, but the

important aspect is that ARM templates allow

defining complex multi-resource deployments from a

single file and Azure Resource Manager arrange

creating items in the correct sequence.

Deployment Workflow via Azure CLI: Once you

have an ARM template and an optional parameters

file or in-line parameters value, the template can be

deployed using different tools. A popular way of

doing it is through the Azure CLI. The flow of

deployment is as follows:

1. Invoke Deployment Command: Utilize the

command azure cli az deployment group

create (for resource group scope

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01469

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

deployments) with the target resource group,

utilizing the template file, and also parameter

values. For example:

Code 2: Azure CLI Command to Deploy ARM

Template to a Resource Group

With this CLI command, the template (and

parameters) is packaged and a deployment request is

sent to Azure Resource Manager.

2. Authentication and Validation: The CLI

(already authenticated through az login or

other means) invokes the ARM API. Azure

Resource Manager (the control plane)

validates the request (using Azure AD

credentials), and validates whether the user

or service principal has the right to deploy to

given resource group. Then ARM carries out

a syntax and schema validation of the

template. If there are errors (such as unknown

resource types or malformations of JSON),

deployment is refused prior to any changes.

3. Resource Manager Orchestration: On

validation, the Azure Resource Manager goes

ahead and creates the resources mentioned in

the template. ARM determines the correct

order because of dependencies. It will

arrange the deployment provided they are

done so that dependents are likely to be

developed in order but independent it can be

developed in parallel. This implies that the

speedy deployment as compared with step

manual process because Azure can spin up

many assets at the same time possible. All

Azure resource providers (Compute,

Network, Storage, etc.) are responsible for

resource creation calls. Figure 1 illustrates

this concept: no matter whether they are done

through the CLI, PowerShell, or the portal,

azure’s Azure Resource Manager takes all of

them in which then communicates with the

resource providers to deliver the services

themselves.

Figure 1: Azure Resource Manager (ARM) sits

between client tools (Portal, CLI, PowerShell, SDKs)

and the Azure services. It authenticates and

authorizes requests (through Azure AD) and then

forwards them to the correct resource providers.

This pervasive layer of management guarantees that

the deployments through ARM template or other

methodologies result in similar outcomes.

4. Deployment Monitoring: The CLI command

will stream progress to the console. Azure

Resource Manager logs a deployment record

in the chosen resource group. You can check

the deployment status (e.g., using az

deployment group show). If there are errors

while deploying (say, one resource fails to

create), ARM shall stop or roll back to

increment or complete mode and return the

error details.

5. Completion: In Azure CLI, a summary will

be displayed on success, and any output

which has been defined in the template will

be shown. The resources are provisioned in

Azure now. In the entire process, including

the template submission and the processes it

is followed up with, deployed infrastructure

can occur within minutes, and furthermore, it

could be applied again in another resource

group or subscription using the same CLI

command, merely by changing parameters.

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01469

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

This workflow illustrates one of the most

significant benefits of ARM templates because One

CLI command for example can deploy multiple

interconnected resources with one declarative

specification while one might need to click through

the Azure Portal or specify multiple imperative

commands to deploy.

Deployment Workflow via Azure DevOps (CI/CD

Pipeline): In enterprise scenarios ARM templates

deployments are commonly incorporated in CI/CD

pipelines using Azure DevOps or GitHub Actions.

The flow with Azure DevOps (using Azure Pipelines)

consists of:

1. Source Control: ARM templates (JSON

files), are present in source repository (e.g.,

Azure Repos or GitHub). When there are any

changes made on templates, it causes a

pipeline.

2. Pipeline Trigger: The continuous integration

pipeline could lint or validate a template

(such as the usage of the ARM Template

Toolkit – arm-ttk – validating best practices).

Then, a release pipeline or a stage in the

pipeline is accountable for deployment to

Azure.

3. Azure Resource Manager Deployment

Task: Azure DevOps has integrated tasks for

ARM template deployment. In a pipeline

YAML or classic release, the Azure

Resource Manager Template Deployment

can be utilized. This task needs a service

connection (service principal credentials) to

Azure. This service principal is then used by

the pipeline to authenticate to the Azure after

which it will run an ARM deployment (as the

CLI command underneath). This task

receives the template and parameters files

from the source repo.

4. Orchestration and Deployment: Azure

Resource Manager takes the deployment

from the pipeline and goes to the step of

provisioning the resource, as with a manual

invocation of CLI. As far as ARM is

concerned, the fact that the request came

from a pipeline does not make any difference,

the validation and the orchestration work the

same way.

5. Continuous Deployment and Iteration: The

pipeline can be configured to run in various

environments (e.g., Dev, QA, Prod) with

some parameter-fashion files for each

environment to provide environment-specific

values (e.g., names or sizes). Once deployed,

tests may take place (integration tests on the

newly deployed infrastructure), and if the

tests pass, the pipeline can also promote the

same template into the next environment or

region etc. If an update to a resource is

required later, a modification of the template

in code is done, and the pipeline is provided

more resources again, ARM can make

incremental changes to the existing

resources. The pipeline in Azure DevOps

provides traceability – each run is noted and

any ARM deployment error would be seen in

the pipeline logs.

A similar strategy can be applied using the

official GitHub actions with Azure ARM Deploy

action or the Azure CLI action. The high-level

architecture for CI/CD with ARM templates is

displayed in Figure. 2.

Figure 2: CI/CD Pipeline using ARM Templates

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01469

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 7

Imagine that a developer commits code and an

ARM template into a Git repository; a CI pipeline

provisions the app and an Azure Pipeline CD stage

utilizing an ARM template deploys azure resources

(App Service, DB etc.) using a service principal

connection. The ARM template deployment stage

communicates with Azure Resource Manager, which

is responsible for creating or modifying the resources

within the Azure subscription. The application code

is then deployed by the pipeline to those provisioned

resources.

With the use of these workflows, ARM

templates bring infrastructure-as-code in real life:

application changes including code and infrastructure

changes undergo the same review and deployment

process. Cloud-based Storage in Azure is integrated

with Azure’s logging and auditing. In the Azure

Portal, it is possible to check the history for the

deployment of each resource group, it is possible to

see which template and parameters debuted, at which

time, and by what identity. This is one of the benefits

of ARM – the Azure platform remembers the

deployments of the template, which facilitates the

troubleshooting and carrying out of compliance.

 Implementation & Use Cases

We now give concrete examples of ARM

templates in action after a discussion of ARM

template structure and deployment flows. Examples

below include but not limited to the most common

use cases: networking, storage, and access control.

Each dropped snippet is an abridged JSON template

(part of said template), with inline comments for

clarification.

Example 1: Virtual Network and Subnets

Establishing a virtual network (VNet) is very

commonly the first step before the creation of cloud

infrastructure for an application. An ARM template

snippet to deploy an Azure VNet with two subnets is

below. We parameterize the VNet name and location

to achieve the reuse capability.

Code 3: ARM Template Example for Deploying an

Azure Virtual Network with Subnets

Explanation: Our two parameters are vnetName and

location. The location default value refers to an ARM

template function resourceGroup(). location to

default to the same location as the resource group

(making the template easy to reuse in any region).

There is one entry in resources array: a

Microsoft.Network/virtualNetworks resource (under

the version 2021 API). The name of the Vnet is set

based on vnetName parameter. In the properties, we

give addressSpace (the IP range block for the VNet),

as well as an array of two subnets. Every subnet has

a name and address prefix. In a full deployment, one

may also provide a Microsoft.Network/network

Security Groups resource, and may associate it to

subnets, or define other network properties, but that

is not the core that this simple example is about.

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01469

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 8

When this template is used, it will create a virtual

network called “MyVNet” and two subnets. Through

changing the parameter values, we would be able to

deploy several VNets (for example – one per

environment) from same template, naming them

differently or from different regions.

Example 2: Storage Account

Azure Storage Accounts are a basic resource for

storing of data (blobs, files, queues, tables). Some of

common template patterns are illustrated by them:

with a generated name and giving SKU (pricing tier).

Follow is an example of how one can deploy a storage

account:

Code 4: ARM Template for Deploying an Azure

Storage Account

Explanation: The storageAccountName is a parameter

due to the fact that the storage accounts must be unique

across all of Azure. We leave the user to enter a name

that would fit Azure’s requirements (therefore the

minLength/maxLength and a description). The resource

has the type of Microsoft.Storage/storageAccounts. We

set kind: StorageV2 for a general-purpose v2 account.

The sku is configured to Standard_LRS (locally-

redundant storage, standard performance). The SKU tier

“Standard” is supplied by the name but given for clarity.

We rely on the resource group’s location to deploy the

storage account in the same region. We could add tags

or other settings (enabling blob public access or default

network rule sets, for instance) by either extending the

properties or adding child resources (blobServices, for

example). This template would create a new storage

account. On practice, one might “mix” this with other

resources. for instance, a build-deploy template that is

provisioned that may contain storage account as well as

an App Service, as well as, write out a storage account

connection string for the app to consume.

Example 3: Role Assignment (Access Control)

Infrastructure as code is more than just

deployable resource(s) such as: compute or network;

it can also create security and access policies. It is

handy to use ARM templates to deploy Azure RBAC

role assignments for automating governance.

Following is an example of resource group template

assignment of the Reader role to a user for a resource

group:

Code 5: ARM Template for Assigning Reader Role

in Azure

Explanation: Reader role that comes within Azure

has a definite GUID of its role definition Id

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01469

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 9

(Acdd72a7-3385-48ef-bd42-f606fba81ae7) built in.

We use the well known GUID in roleDefinitionId,

and we have the whole resource ID by using the

subscriptionResourceId function (which appends the

subscription ID automatically). The principalId refers

to the object ID of the user or service-principal which

will be assigned the Reader-role – passed as

ownerObjectId parameter to the template. The name

of the role assignment resource must be unique and

by convention we usually use a GUID made from

stable identifiers. Here we use the ARM function

guid(resourceGroup().id, 'ReaderAssignment') to

generate a deterministic GUID from the resource

group’s id and a string; This avoids rerunning the

template from trying to create duplicate assignments

(same GUID will be calculated and ARM will know

the assignment resource already exists).

When deployed to a resource group, this

template (using the appropriate objectId parameter)

will assign that principal the Reader role on the

resource group. This approach is handy for

automating the provisioning of access control – say

you provision a new application environment, you

could automatically pass the dev team’s Azure AD

group contributor role on the resource group, etc, all

this through templates. It’s more secure and less error

prone than clicking in the portal, particularly when

repeating across many environments.

Parameterization and Linking Templates: The

above shows parameterization from inside single

templates. ARM templates also support linked, or

nested, templates, which supports modular

deployments. As an example, one template can

reference another template (stored externally such as

within storage account or GitHub) via the

Microsoft.Resources/deployments by using a

templateLink or inline template definition. This

enables splitting a huge deployment to smaller more

focused templates (e.g. one template for “network

infrastructure”, one for “app infrastructure”, and one

for “database”) and then re-assembling them by

linking. When working with linked templates, the

sub-templates have to exist at a URI (public GitHub

URL, or Azure Storage SAS URL, etc.). This comes

at the cost of increased complexity as a price for

better organization. Alternatively, templates nested

(embedding template JSON in the parent template)

can also be used for modularity without references to

other files outside of templates. In practice, numerous

Azure architects use either linked templates or

address complexity with the use of tools such as

Bicep or Terraform (to be discussed later) for better

modularization. Now, ARM templates do support

these scenarios, natively — parameters can actually

be passed to the child templates from the parent ones,

making for a value re-use.

In conclusion, above are the implementation

examples on how ARM templates capture different

Azure deployment scenarios in code. By running

these templates (manually or via pipelines) one can

automate the provisioning not of merely virtual

machines and networks, but resignation of higher-

level constructs such as the entire app environment

and their surrounding security constructs.

Results & Discussion

Automating Azure deployments with ARM

templates yields significant improvements in

consistency and efficiency. We compare manual and

ARM-based deployments, present empirical and

hypothetical results on deployment speed and cost,

and discuss the benefits and limitations observed.

ARM Templates vs. Manual Deployment

Deployment Time: One of the obvious advantages of

IaC automation is faster deployments. The manual

resource deployment (e.g., clicking through the

Azure Portal or imperative CLI commands for each

resource), one-at-a-time, is slow and ordered. Each

resource can be set up separately and the human

operator must wait for each step. With ARM

templates, Azure can parallelly deploy a lot of

resources as long as their dependencies have been

met. This translates to a complex environment that

may take hours to setup manually can be deployed

within minutes using a template. As well, once a

template is written, deploying it into another

environment (set up another identical test

environment, for example) is simply a matter of

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01469

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 10

running the deployment again, maybe with a different

parameter file. Figure 3 represents the deployment

time of one iteration of a hypothetical scenario. First,

creation and deployment of an ARM template

requires some effort, (approximately 40mins) when

compared to 60mins to write and deploy the same

template through manual means. The ARM

deployment literally becomes one command and

when used in subsequent iterations (deploying to new

environment or repeating the deployment – e.g. 10

minutes vs. 60 minutes per each manual approach).

Figure 3: Deployment time per iteration for a

complex environment – manual vs. ARM template.

After the initial template authoring, reusing the

ARM template drastically cuts provisioning time in

later iterations. Manual deployments consistently

take longer due to step-by-step setup for each

environment (hypothetical example).

This speed advantage is reflected in industry

practice. For example, such usage of IaC involves

spinning up test environments demand basis and

tearing them down, which brings agility. The ability

of Azure Resource Manager to perform the parallel

deployments makes this process further faster.

Error Rate: Manual processes introduce errors into

the field – the engineers might not configure the

setting correctly, or miss a step and the result will be

inconsistencies (e.g., the staging environment was

forgotten in the config/setup and therefore differs

from production). Through ARM templates, the

deployment process has been automated and

repeatable thus significantly lowering such human

errors. The template succeeds or fails entirely, which

means if it works, it should work again the next (in

case the input parameters are right). As AWS says (in

relation to IaC in general): “Manual configuration is

error-prone…. By comparison; IaC minimizes errors

and facilitates error checking” [2]. Validation is part

of ARM templates – if you specify an incorrect

property the deployment should fail fast. Even though

a failed deployment is never a good thing, it is usually

better than a silent misconfiguration that occurs with

a manual set up. Teams have come to a higher level

of confidence in the setup of their infrastructure with

templates due to the fact that every change is tracked

and intentional and mistakes are caught before they

are deployed through code review processes.

Scalability and Consistency: Manual deployment

simply fails to scale when scaling up to multiple

environments or complex systems. IaC glows in such

situations by enabling easy replication of

environments. For instance, in the case where an

organization would need to deploy the same set of

resources with each new customer or region, a

parameterized ARM template could be deployed

multiple times with various parameters, and the

identical stacks would be created. This was

conventionally a very painful task to complete

manually. As mentioned within the context of general

IaC, one can “use IaC to duplicate the exact same

environment and quickly make the new deployment

operational. IaC eradicates the redundant manual

steps and checklists that were necessary in the past.”

[2]. In Azure ARMA Templates facilitate this kind of

scalability – you can launch multiple resource groups

with the same infrastructure definition

simultaneously. Consistency is thus enforced: each

deployment based from the same template produces

identical resource configuration (unless inputs are

different). Table 1 summarizes these comparisons:

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01469

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 11

Table 1. Manual Deployment vs. ARM Template

Deployment

In practice, implementation of ARM templates

can significantly reduce the time needed to provision

infrastructure for the new projects as well as eliminate

the “works on my machine” syndrome, as

infrastructure variances result in application

problems. By introducing ARM templates to CI/CD,

teams get ongoing release of infrastructure – e.g. a

change to a template (changing VM size, adding new

resource) is code reviewed, and put through the

pipeline of care, just like application code, thus

making the updates traceable and controlled.

Impact on Deployment Speed and Cost

Putting aside the qualitative gains, there are

quantitative benefits, including frequency of

deployment and cloud cost. More times it is deployed

as the process become automated (it’s easier and safer

to automate). This will lead to more iterative

improvement processes and rapid value delivery.

Cost optimization is also one of the considerations;

despite the fact that the main goal is speed and error

minimization:

Cost Optimization: ARM templates can, in several

ways, indirectly result in ease of optimizing cost.

First, templates render use of best practice such as

right sizing of resource and absent or lack of

deployment of unnecessary components possible.

Infrastructure is therefore code and engineers can

then more easily review and discuss the need for each

resource within a template (as in code review) which

(it is hoped) will return an over-provisioned SKU

before the cost is actually spent. Second there is

automation possibility exists to tear down and

recreate environments on demand rather than

resources running (and anyway paying costs) in

anticipation for the manual effort to put them back

together. For example, if a dev/test environment is

described by a template, it might be automatically

predictable in the morning and automatically

destroyed at night, and that can save hundreds of

hours of cloud runtime cost. This is not mechanizable

to do manually but ease of doing it for an automated

template deployment in a scheduled pipeline.

Also ARM templates also fit nicely together

with Azure’s governance tools, including tags and

Azure Policy. Showback/chargeback is possible with

the help of tags applied using template (e.g., tagging

of resources with project or environment ID’s). ARM

itself is a part of Azure’s cost governance, by

standardizing setups, not ending up in “snowflake”

installations that lead to nasty surprises. As outlined

by Infracost, the (FinOps tool vendor) ARM delivers

a consistent layer that is supportive of standardized

resource deployments, policy adherence or better

visibility of the infrastructure that is all important for

cloud cost optimization. In other words, there is ‘less

work’ by every resource deploying through ARM

(with known templates) to be able to guarantee that it

conforms to cost saving configurations (for example

using reserved instance, dev environments would use

lower cost SKUs, etc.).

To understand in a very simple manner what a

cost weighing exercise may look like consider a

situation where manual deployment could leave some

inefficiencies (say default SKUs or services left

active longer) and where on the hand codified

deployment could have used optimal SKUs and

turned services off not required off hours. Figure 4

shows a supposition difference in the monthly cost:

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01469

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 12

Figure 4: Hypothetical cost comparison for an

application infrastructure deployed manually vs. via

ARM templates. In this scenario, the ARM template

deployment uses optimized resource choices

(Standard tier, minimal sizing for non-prod,

automated schedules), costing less per month than

the manually deployed counterpart. Tags and

policies applied through ARM also avoid

unexpected costs.

In this instance, 20 % of the costs were saved by

the approach delineated by ARM. It is natural,

however, that IaC itself does not ensure cost savings

– but it does provide mechanisms (repeatability,

parameterization, policy integration) that enable the

simplification of the roll out of cost controls. For

instance, someone may be able to add to a template a

policy assignment that blocks deployment of

expensive VM sizes, or simply ensure that all dev

resources are S, not M by default. Such consistency

is hard to impose on using ad-hoc approach.

Limitations and Challenges (Discussion): Despite the

profit that the ARM templates bring, the users have

met some challenges including:

• Verbosity and Complexity: ARM JSON

syntax can be quite verbose with large

numbers of deployments. Managing and

creating a large JSON file requiring complex

nesting is risky. Even once using Visual

Studio Code extensions and tooling, many

found the learning curve of getting to grips

with the functions and syntax of the ARM

template to be steep. This was a major

contributing factor to Azure Bicep’s

development, since Bicep provides a more

concise syntax, yet compiles down to ARM

JSON. For instance, an item that is 200 lines

of JSON is written in 50 lines of Bicep. In

pure ARM JSON complex expressions

(string concatenations for names or

conditions) are very hard to look at and

debug.

• Debugging and Error Handling: When a

template deployment of an ARM fails,

sometimes the error messages from Azure

can be confusing. For example, an error can

state that a specific resource provisioning

failed but cannot clearly state which template

line it resulted from. There is no interactive

template debugger – error output during

deployment, unless – Activity logs in Azure

Portal. Utilities such as ARM-TTK will pick

up some things if you use them properly

before deployment (e.g., naming

conventions, property best practices), but it

doesn’t validate the logic. The appearance of

the what-if deployment preview goes some

way – Azure’s what-if operation is able to

demonstrate which resources would be

created/modified/deleted by the template

deployment without doing actual changes.

This is like Terraform’s “plan” step.

However not all failures of what-if can be

caught – for example if the template refers in

a place where there is no resource – then

what-if will flag it, but unfortunate for the

logic not accurate slightly (say a string

concatenation led to a name that isn’t valid),

you may only learn about it only on actual

deployment. To put it briefly, testing ARM

templates is difficult; there is no dry run built

in that guarantees success so you often must

deploy to a test resource group to fully test

out a complex template.

• Lack of Native Modular Structure in JSON:

As talked about, you can reference templates,

but that requires hosting the sub-templates

and introduces external dependencies. The

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01469

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 13

lack on flat JSON structure lacks the concept

of modular includes (outside of it utilising

nested deployment resources). Consequently,

decomposing a solution into reusable

components is not a straight forward process

in raw ARM. It’s again rectified by Bicep,

using modules (even you can call one bicep

file from another easily), but in plain arm

json, one either evolves into maintaining one

giant file or manages a set of templates

manually.

• State and Idempotency Issues: ARM

deployments are also implicitly idempotent,

and there is no need to track separate state

files (Azure understands how it has the

resources). Generally this is good, but one

limitation is that in the case one needs to, say,

destroy resources, ARM templates at

resource group scope don’t have a way to

directly “delete everything not in this

template” except in Complete mode, which

can be dangerous if not careful. In complete

mode, it will delete the resources in the target

scope that are not defined in the template,

which will make the real state on the exact

(same) copy of the template. Terraform users

occasionally wonder why in ARM templates

there’s no simple delete workflow – you

utilize either Azure CLI/PowerShell to delete

resources, or you go with complete mode

templates or Azure Blueprints for cleanup.

Also, some sophisticated scenarios (e.g

creating an resource, retrieving its output,

base on that decision, another resource within

the same template) can’t be done in one ARM

template – you may have to chain

deployments or use scripts that a general-

purpose language (or Pulumi) could manage

that logic.

• Testing and Simulation: However, there is

no “official unit test” framework for ARM

templates except by deploying them and

trying to get them to work. As infrastructure

code, this is area of growth – there are some

third-party tools that enable local simulation

at least, or verification of templates to the

Azure schemata. What-if by Microsoft is

useful but sometimes not 100% true for

complex changes. For this reason,

practitioners tend to keep separate test Azure

subscriptions or resource groups with which

to regularly test deployments (sometimes

automated nightly deployments to check that

templates still work as Azure evolves).

One mitigation on error handling is, of course, to

divide deployments into smaller units e.g. deploy the

network first and then VMs rather than one massive

template so that debugging can be done in more

isolated segments. Azure also supports deployment

calls both incremental mode (the default) and

complete mode and this is variable with the

installation process. However, normally incremental

mode is safer for updates (won’t modify existing

resources not in the template) but if you remove

resource from the template it will not be removed

from Azure. Such nuances have to be harnessed as

part of governance processes.

These restrictions notwithstanding, many Azure

practitioners do manage huge infrastructures with the

templates but still resorting (now often) to Bicep: for

authoring. The constraints have driven alternatives

and enhancements (which will be discussed next) but

there is a distinct impression that for Azure-centric

deployments, ARM templates offer a degree of native

integration (deployment history in Azure Portal, no

external state management, immediacy of new Azure

services) which third party tools cannot possibly

match.

Challenges & Alternatives

Although ARM templates are powerful in terms

of Azure automation, engineers have identified some

alternatives to cover the challenges of these ones:

Challenges Recap: It tends to be burdensome to

debug large JSON templates and to deal with

complex deployments. As the infrastructure and the

teams grow, it is error prone to maintain dozens of

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01469

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 14

JSON files with thousands of lines. In addition,

various organizations might choose to use a single

IaC tool on several clouds while the counterpart of

ARM templates, which is Azure-specific.

Alternative IaC Tools:

• HashiCorp Terraform: An immensely

popular open source IaC tool, the tool

describes the infrastructure using its

exclusive language HCL (HashiCorp

Configuration Language). Terraform is not

cloud-agnostic – one Terraform deployment

can be used to provision Azure, AWS, GCP,

etc., with a plugin architecture of providers.

A lot of organizations prefer Terraform due

to multiple-cloud or homogeneity reasons.

When comparing with ARM: Terraform has

a more extensive language for abstractions

(modules, loops, conditional resources), a

vibrant ecosystem and matured and a plan

command that explains what will change,

prior to applying. However, Terraform

demands management of state (which is

typically done in a backend such as Azure

Storage or Terraform Cloud), which adds its

own complexity. Terraform also, sometimes,

falls short in supporting the latest Azure

features since the Azure provider needs an

update. On the other side, ARM templates

can take any new Azure resource/property as

soon as it is released in the Azure REST API

without a need to have an update on plugin.

The learning curve of Terraform is moderate

– all one needs to learn HCL and the

Terraform CLI, and HCL is usually

considered closer to concise than raw JSON.

• Pulumi: Members of a brand new entrant that

allows you to code infrastructure code in

generic programming languages

(TypeScript, Python, C#, Go, among others).

Pulumi, then, provisions resources through

cloud SDKs. For instance, using Pulumi, one

could write a Python script that will create an

Azure VNet and VM courtesy of Pulumi’s

Azure Native provider (which behind the

scenes uses Azure’s REST API directly). It

gives us the entire strength of programming

(loops, conditions, complex logic, external

package importations) to IaC. It’s very

flexible and easy to integrate with existing

developer workflows (because you can use

the same language as your app). However, it

demands that developers must learn both

programming language and cloud SDKs.

Pulumi operates with state like Terraform. It

is a suitable one for strong software

engineering background teams, that want to

treat infrastructure as software.

• Azure Bicep: As mentioned Bicep is

basically “ARM Templates 2.0” in terms of

authoring experience. It was created by

Microsoft to make ARM template creation

easier. Bicep has a criptic syntax and closer

to C# or JavaScript without the JSON quotes

and braces overhead. It supports modules,

loops, conditions, full support for all the

Azure resource types (again, because it

directly maps to ARM). One large advantage

– the lack of a state file to manage (it uses

Azure’s inherent state), and that is one less

thing to be concerned about with Terraform

[7]. Bicep files are transpiled into ARM

JSON at deployment time (either when using

the command line interface, or

programmatically when deploying a .bicep

file via the Azure CLI/PowerShell).

Therefore, you receive the advantages of a

cleaner syntax, but continue utilizing the

powerful ARM engine for deployment.

Bicep is Azure-specific (unlike non-Azure

resources it cannot deploy), but for the teams

using Azure, it has become much more

popular than raw ARM JSON now. Bicep has

a relatively easy learning curve for those that

are already familiar with ARM concepts –

many can learn it faster than learning

Terraform, in part because Bicep is designed

to feel natural to Azure users.

• AWS CloudFormation (for context):

CloudFormaion (JSON/YAML based) is

AWS’s equivalent to ARM templates.

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01469

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 15

Although not relevant to Azure, it’s

interesting to note that the industry trend

began when such template-driven IaC came

in (CloudFormation pre-dates ARM

templates by a couple years). Azure ARM is

for Azure what similar in spirit is. Later,

came Terraform to standardize cloud IaC and

now each cloud owns its DSLs (Azure’s

Bicep, AWS CDK etc.) trying to learn from

it.

For Azure deployments, most of the major

decision points narrow down to ARM/Bicep vs

Terraform (Pulumi is on the rise, but less common).

Table 2 makes comparisons between ARM templates,

terraform, and Bicep against a few dimensions.

Table 2. Comparison of ARM Templates (JSON),

Azure Bicep, and HashiCorp Terraform for Azure

IaC

The considerations in practice may boil down to these

considerations.

• If an organization is Azure-only and uses

official tooling – Bicep (and thus ARM) is a

wonderful choice – without external

dependencies, build on Azure’s native

deployment engine.

• If the organization has multi-cloud needs or

existing Terraform tendencies, Terraform

presents one workflow to rule them all at the

cost of inserting another layer on top of

Azure.

• Even some teams use a mix: For example,

use Bicep/ARM for some things, and

terraform for others, although that requires

careful coordination to prevent conflicts.

It should be noted though that these tools are not

mutually exclusive with ARM templates – Bicep

compiles to ARM templates and Terraform’s Azure

provider finally invokes the Azure Resource

Manager’s APIs (i.e. just like an ARM template

deployment but in a procedural fashion). The Azure

Native provider by Pulumi also relies, under the hood,

directly on ARM. So, ARM (as platform capability)

is always on the game. these tools just constitute a

different authoring or orchestrating experience.

Emerging Trends – AI and Advanced Tooling: In

terms of the future, we observe attempts to make

further cloud automation simpler. For instance,

projects, such as IaC from higher level designs and

natural language, are being explored. One could

picture an AI powered service where you specify the

infrastructure (or it monitors your running infra) and

it creates an ARM template or a Bicep file for you.

Even Microsoft’s own Azure Quickstart Center and

template exporters can deconstruct templates from

resources already present (the “export template”

capability of the Azure Portal supports resource

groups). In the future AI could help to optimize these

templates – for example suggest more optimal

configurations or detect anomalies in template

definition before deployment. Coupling ARM

deployments with AI planning can, for example,

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01469

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 16

imply the identification of an appropriate SKU by

virtue of past use or advice on the addition of an auto

scaling configuration, for example. Such AI

integrations may, while speculative, reduce the

manual effort in writing IaC and planning capacity

further. Azure’s deployment what-if analysis is

already a step towards wiser deployment planning

(basically the platform is “predicting ahead” of what

will change). We may be winners in terms of more

automated rollback strategies or self-healing

deployments which in case a deployment fails, the

system may analyze and correct (if you tried a

deployment and for whatever reason the deployment

failed, the system may have attempted to analyze and

correct the issue). as future improvements.

 Conclusion

Cloud architects and DevOps engineers are

offered clear benefits when automating

deployments in Azure through the use of ARM

templates. With the introduction of Infrastructure-

as-Code using ARM templates, teams get

consistent, repeatable and auditable infrastructure

deployment. This paper described how ARM

templates, as Azure’s native IaC solution, provide

the possibility of the entire cloud environment

(compute, networking, storage, security) definition

via declarative JSON files which can be under

version control and within CI/CD pipelines. We

showed how using ARM templates results in faster

time to deploy, less error, simpler scalability in

comparison with manual provisioning, that fits

DevOps objectives of agility and reliability [2].

They are particularly suitable for Azure-native

workloads – the cases where all that’s needed are in

Azure and full use of the Azure Resource Manager

can be made. They shine when you need to launch

complex Azure services (anything from a simple

web app to a full AKS cluster with supporting

resources) and desire first-party support and on-

demandness (e.g., ability to deploy any new Azure

service the day it is launched). ARM templates

make sure that all these resources are deployed as a

single unit and that they are managed by Azure’s

access and control policies. Moreover, deployment

history and what-if analysis are some of the features

that ensure that ARM is a strong option for

enterprise deployments.

However, we also thought that ARM JSON, in

its raw form, has its drawbacks – majorly verbosity

and user un-friendliness. Azure Bicep provides a

welcome and useful improvement for

organizations/projects that are pain points in that by

making template authorship simpler while still

using ARM underneath. Where Azure forms part of

a bigger multi-cloud strategy or a more standardized

IaC tool is desired then third party solutions such as

Terraform or Pulumi may be opted for, as an

either/or or complementary to ARM-based

templates. Each comes however with trade offs such

as in complexity, flexibility and the support

ecosystem.

After all, ARM templates (which are further

reflected in Bicep) is a strong tool for Azure

automation. They make possible a DevOps-centric

infrastructure lifecycle: from design (in code), to

continuous deployment (through pipelines), to

maintenance (with incremental updates and

tracking) even up to message (in complete mode or

with scripts). In addition to acceleration and

standardization of deployment, benefits of using

ARM templates would include more appropriate

coordination of infrastructure changes with

software development process (in review and

testing). For any Azure project of average or above-

average complexity, we suggest using ARM

templates or Bicep, and we advise treating the IaC

as seriously as application code.

For future improvements, we foresee even

more intimate integration of ARM deployments

with intelligent tooling. Types of service like what-

if in constitutes ongoing investment into project

bicep by Microsoft and shows the path to more

accessible and secure azure iac. There could be

thoughts of AI assisted template authoring, or more

advanced deployment orchestrators which can test

and check the change before going live (further

reducing risk). Perhaps, gradually, a manual change

management could evolve into an automated

version of such a process. In addition, options to

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01469

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 17

simulate deployments in offline or improved error

diagnostics would significantly improve the flow of

the ARM template workflow.

Ultimately, the ability to automate Azure

deployments through use of Azure Resource

Manager templates is a best practice for the cloud

architecture and DevOps engineers who are out to

create reliable and scalable cloud infrastructure

management. It uses all the power of the platform

offered by Azure while maintaining order using

code. Having a wide selection of IaC tools to choose

from nowadays, teams can be flexible as to which

approach suits them best, but broad knowledge of

ARM templates serves a fundament on which other

tools are placed. Organizations can deploy software

and infrastructure changes faster with greater

confidence while using IaC on Azure, which is a

competitive advantage in the cloud-driven world.

References

1. S. Kuehn, “An Intricate Look at ARM

Templates – Part 1 – Background and

History,” Aug. 2019. Referred From:

https://www.refactored.pro/blog/2019/8/15/a

rm-templates-part-1

2. Amazon Web Services, “What is

Infrastructure as Code? – IaC Explained,”

AWS whitepaper, 2023. Referred from:

https://aws.amazon.com/what-

is/iac/#:~:text=Reduce%20configuration%2

0errors

3. Element Digital, “Infrastructure as Code vs

Manual Deployment: Why IaC Isn’t Always

the Answer,” Element Digital Blog, 2023.

[Online]. Available: elementdigital.com.au.

4. Spacelift, “What is an Azure ARM

Template? Overview, Tutorial & Examples,”

Spacelift Blog, 2024. Referred from:

https://spacelift.io/blog/arm-template

5. E. Borzenin, “ARM template design choices

and deployment time,” Infrastructure as

Code – Borzenin Blog, August 17, 2020.

Referred from: https://borzenin.com/arm-

templates-deployment-time/

6. Microsoft Azure, “Comparing Terraform

and Bicep,” Microsoft Docs – Azure

DevOps/Infrastructure, Mar. 2023. Referred

from: https://learn.microsoft.com/en-

us/azure/developer/terraform/comparing-

terraform-and-bicep?tabs=comparing-bicep-

terraform-integration-features

7. Reddit user discussion, “Bicep vs

Terraform,” r/Azure on Reddit, 2022.

Referred from:

https://www.reddit.com/r/AZURE/comment

s/yoy1in/bicep_vs_terraform/?rdt=37514#:~

:text=The%20biggest%20advantage%20of

%20Bicep,the%20current%20resources%2C

%20to

