
 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01502

. An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Automating Deployments in Azure using Resource Manager Templates

(ARM)

Anil Kumar Manukonda

E-mail: anil30494@gmail.com

Abstract

Azure users provision cloud infrastructure through Infrastructure-as-Code (IaC) which ensures consistency in

deployments. This study demonstrates the method of automating Microsoft Azure deployments by utilizing native

Arm templates which serve as infrastructure-as-code solutions in Azure. This paper examines IaC principles in

DevOps and ARM template development history alongside automated methods to deploy Azure resources. This

section explores both the structure of ARM templates including parameters variables resources and outputs and

shows how deployments are automated through Azure CLI along with Continuous Integration and Continuous

Deployment pipelines. We present specific technical examples which use JSON templates to create virtual

networks and storage accounts alongside role-based access deployments. ARM templates prove to be superior to

manual provisioning by accelerating deployment times while minimizing errors and increasing scalability. This

paper examines ARM templates alongside Terraform and Azure Bicep while evaluating their differences between

learning approach and tooling complexity and multi-cloud capability. This paper examines template complexity

and debugging challenges while proposing developments including enhanced tools and artificial intelligence

solutions for deployment planning. The paper demonstrates ARM templates maximize Azure automation

capabilities but recommends specific use cases based on workload requirements.

Keywords: Azure Resource Manager, ARM

Templates, Infrastructure as Code (IaC), Azure CLI,

Continuous Deployment, Azure DevOps, CI/CD

Pipelines, JSON Templates, Bicep, Virtual Network

Deployment, Storage Account Automation, Role-

based Access Control (RBAC), Declarative

Infrastructure, Azure Policy, Resource Provisioning,

Automation, Template Linking, Modular Templates,

Azure Bicep, HashiCorp Terraform, Pulumi, Multi-

cloud Infrastructure, Cost Optimization,

Deployment Orchestration, What-if Analysis,

Deployment Validation, Version Control, DevOps,

Azure Portal, Template Parameters, Error Handling,

AI-assisted IaC, Governance, Cloud Scalability,

State Management, Idempotency

Introduction

In modern DevOps deployments infrastructure

serves as an essential component of lifecycle

development that operates through automated code-

based mechanisms instead of hand-driven

procedures. Through Infrastructure-as-Code (IaC)

developers define infrastructure with machine-

readable configuration files to automate both

environment creation and termination. Through IaC

operations teams unite with developers to create

infrastructure definitions which can be managed

under version control for instant deployment of

standard environments between development stages

and production. The managed method decreases

manual configuration requirements thus minimizing

both scale-dependent errors and process duration.

ARM Templates operate as Microsoft's declarative

infrastructure-as-code solution specifically built for

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01502

. An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

Azure deployments. ARM templates came with the

2014 Azure Resource Manager launch to replace

“Classic” Azure deployments and utilize JSON for

describing Azure resource definitions. The desired

infrastructure state appears in ARM templates

through resource definitions which describe cloud

objects (VMs and networks and databases) with their

respective properties but omit instructions for

resource generation. Azure's Resource Manager

service manages the deployment sequence of

resources while automatically resolving

dependencies between them. ARM templates enable

Azure environments to establish repeatable

deployment consistency thus meeting core

requirements for DevOps CI/CD workflows.

The implementation of automation stands as a

critical element for implementing effective cloud

operations within Azure. Agile and cloud-native

teams need to deploy intricate stacks (web apps,

databases, networks, etc.) both intermittently and

reliably. The deployment of Azure resources through

manual methods is limited to poor scalability and

error-proneness. Using ARM templates for

automation generates benefits of fast deployment

and consistent results while enabling version control

of infrastructure side-by-side with application code.

Multiple components of a web application

environment containing an App Service for web

applications alongside SQL databases in conjunction

with VNet networking constructs and security rules

can be specified through templates for single-step

deployment. The deployment of network

infrastructures (virtual networks, subnets, and

network security groups) along with security

configurations (Azure Policy assignments and role-

based access control roles) can be choreographed

through templates across subscriptions. These

practical uses emphasize why automation methods

matter to organizations. The deployment of multi-

tier web applications and the establishment of hub-

and-spoke virtual networks with routing

configurations and runtime security policies across

resources becomes possible through template

deployment methods executed through CLI or

CI/CD pipelines. This method removes repeated

manual work and guarantees that the identical

settings produce each environment (dev, test, prod)

[2].

We examine the historical background and

architectural structure of ARM templates in addition

to workflow methods and practical use cases

together with their resulting implications in the

sections below. The research includes comparisons

of ARM templates to other Infrastructure as Code

(IaC) solutions along with an evaluation of existing

challenges and upcoming advancements.

Background

Before resource management through Microsoft

Azure operated under a "Classic" deployment model

(Azure Service Manager) that managed resources

one by one. In 2014 Azure brought the Azure

Resource Manager (ARM) together with resource

groups to introduce its contemporary deployment

framework. ARM delivers Azure with a single

management framework while using JSON

templates as the language for defining infrastructure.

The configuration of multiple Azure resources

within a single deployment unit exists through ARM

templates that function as JSON files. Users define

what resources need to get created rather than

describing how the creation process should work

through this declarative method.

The development of ARM templates originated from

requirements to achieve deployment consistency and

repeatability. ARM templates deliver essential

capabilities through JSON-based elements that

perform the following functions: Users obtain

lifecycle management through resource grouping in

addition to deploying dependent resources in

synchronized environments while benefiting from

Azure RBAC and tagging implementation for

governance control. The Microsoft team expanded

ARM template capabilities by introducing additional

resource support and extending template language

functions beyond string and array operations up to

conditionals and loops through copy functionality.

ARM templates became the core component of

Azure automation strategies when organizations

started treating infrastructure deployment through

code. The ARM JSON code could be checked into

source control systems where organizations would

deploy it during application releases to synchronize

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01502

. An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

infrastructure adjustments with software

deployments. The new method outperformed

traditional manual portal configuration by

eliminating configuration errors and drift problems

[2]. ARM templates enable idempotent deployments

because Azure will update the environment to match

the template repeatedly without creating redundant

resources. Robust automation depends heavily on

this essential property.

The process of manually creating raw JSON ARM

templates proved to be verbose while also presenting

user-unfriendly features. The Azure Bicep platform

emerged following community requests as it

provided better template abstractions over ARM

templates during 2020. Bicep provides a domain-

specific language which simplifies complex JSON

expressions yet produces equivalent ARM JSON

templates. The core deployment format for Azure

remains ARM JSON templates even though Azure

Bicep templates have emerged [7]. Any practitioner

working with Azure must have a solid understanding

of ARM templates.

The use of ARM templates has evolved into Azure

IaC's established best practice standard. All

deployments made through templates must pass

through Azure Resource Manager's control plane

system. A detailed examination of template

structures accompanies an overview of practical

deployment workflow operations in the following

sections.

Architecture & Workflow

ARM Template Structure: Typically, an ARM

template is a JSON document with several top-level

sections: $schema, contentVersion, parameters,

variables, functions, resources, outputs. Here is the

simplified skeleton of an ARM template file

displaying these sections:

Code 1: Structure of an Azure Resource Manager

(ARM) Template

Each section serves a purpose:

• $schema: URL of the JSON schema where

the provisions about the ARM template language are

specified. This assists tooling in validating the

template. For instance, when using the 2019-04-01

schema URL, which is typically used when making

resource group deployments, as demonstrated above.

• contentVersion: A template user-defined

version (e.g., "1.0.0.0"). It doesn’t affect deployment

behavior, but it may be used for versioning your

templates.

• parameters: Enter values that can be

accepted by the template at the time of deployment.

Parameters make templates reusable by

externalizing the values that are specific to given

environments (e.g., names of resources, their sizes

etc.). The name parameter distinguishes parameter,

the type parameter identifies whether it's a string, an

integer, a bool, an array, object, secureString, etc.,

and optional is the provider of a defaultValue and

some metadata/description.

• variables: Local values calculated using

parameters or constants that can be reused in the

template. According to variables, one avoids

repetition, and complex expressions are made easier.

They are not externally provided; they are calculated

once during deployment.

• functions: Local values calculated with

parameters or constants that can be used to reuse

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01502

. An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

within the template. With regards to variables, there

is no repetition, and the simple expressions are made

easier as well. They are not externally provided; they

are computed once upon deployment.

• resources: A collection of objects that

describe an Azure resource to deploy (or update). An

object of a resource contains a resource type (e.g.,

“Microsoft.Compute/virtualMachines”),

apiVersion, an indication of the REST API version

to utilize for the specified object of a resource, name,

location, and a block of properties with the type-

specific settings. It can also contain dependencies,

tags and child resources. The template may have

several resources and by default Azure Resource

Manager will try and create them in parallel as much

as it is possible while serializing those that have

specific dependencies on other ones.

• outputs: Values to be returned from the

deployment when the resources are all provisioned.

The outputs can reference already deployed

resources (for instance, you can output an ID of

generated resource or connection string). These

outputs may be utilized by deployment scripts,

greater templates provide they are deploying to, or

may be plugging into other templates in the case of

linking deployments.

Sample Template (VM Deployment): For instance,

we can examine a template to deploy an Azure Web

App (App Service) or Virtual Machine. We describe

a VM example to shorten for brevity. VM

deployment usually uses several resources, such as a

network interface, a VM, disks, etc., while ARM

template can explicitly define all needed fragments.

For instance, a stripped-down VM template’s

resources may include:

• A virtual network (to connect the VM to a

network).

• A subnet within that VNet.

• The VM should have a public IP address.

• A network interface connecting the subnet

and IP.

• The virtual machine resource itself which

has properties such as VM size, image, OS settings,

admin credentials and etc, and the dependency on the

NIC (the VM also demands the NIC ready).

Each of these would be a template’s resource object,

and the VM resource’s dependsOn would include the

NIC resource. Parameters could be used for a name

of the VM, admin username, or size of a VM (e.g.,

Standard_DS1_v2). Because of space, we do not

include a full VM template here, but the important

aspect is that ARM templates allow defining

complex multi-resource deployments from a single

file and Azure Resource Manager arrange creating

items in the correct sequence.

Deployment Workflow via Azure CLI: Once you

have an ARM template and an optional parameters

file or in-line parameters value, the template can be

deployed using different tools. A popular way of

doing it is through the Azure CLI. The flow of

deployment is as follows:

1. Invoke Deployment Command: Utilize the

command azure cli az deployment group create (for

resource group scope deployments) with the target

resource group, utilizing the template file, and also

parameter values. For example:

Code 2: Azure CLI Command to Deploy ARM

Template to a Resource Group

With this CLI command, the template (and

parameters) is packaged and a deployment request is

sent to Azure Resource Manager.

2. Authentication and Validation: The CLI

(already authenticated through az login or other

means) invokes the ARM API. Azure Resource

Manager (the control plane) validates the request

(using Azure AD credentials), and validates whether

the user or service principal has the right to deploy

to given resource group. Then ARM carries out a

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01502

. An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

syntax and schema validation of the template. If

there are errors (such as unknown resource types or

malformations of JSON), deployment is refused

prior to any changes.

3. Resource Manager Orchestration: On

validation, the Azure Resource Manager goes ahead

and creates the resources mentioned in the template.

ARM determines the correct order because of

dependencies. It will arrange the deployment

provided they are done so that dependents are likely

to be developed in order but independent it can be

developed in parallel. This implies that the speedy

deployment as compared with step manual process

because Azure can spin up many assets at the same

time possible. All Azure resource providers

(Compute, Network, Storage, etc.) are responsible

for resource creation calls. Figure 1 illustrates this

concept: no matter whether they are done through the

CLI, PowerShell, or the portal, azure’s Azure

Resource Manager takes all of them in which then

communicates with the resource providers to deliver

the services themselves.

Figure 1: Azure Resource Manager (ARM) sits

between client tools (Portal, CLI, PowerShell,

SDKs) and the Azure services. It authenticates and

authorizes requests (through Azure AD) and then

forwards them to the correct resource providers.

This pervasive layer of management guarantees

that the deployments through ARM template or

other methodologies result in similar outcomes.

4. Deployment Monitoring: The CLI

command will stream progress to the console. Azure

Resource Manager logs a deployment record in the

chosen resource group. You can check the

deployment status (e.g., using az deployment group

show). If there are errors while deploying (say, one

resource fails to create), ARM shall stop or roll back

to increment or complete mode and return the error

details.

5. Completion: In Azure CLI, a summary will

be displayed on success, and any output which has

been defined in the template will be shown. The

resources are provisioned in Azure now. In the entire

process, including the template submission and the

processes it is followed up with, deployed

infrastructure can occur within minutes, and

furthermore, it could be applied again in another

resource group or subscription using the same CLI

command, merely by changing parameters.

This workflow illustrates one of the most significant

benefits of ARM templates because One CLI

command for example can deploy multiple

interconnected resources with one declarative

specification while one might need to click through

the Azure Portal or specify multiple imperative

commands to deploy.

Deployment Workflow via Azure DevOps (CI/CD

Pipeline): In enterprise scenarios ARM templates

deployments are commonly incorporated in CI/CD

pipelines using Azure DevOps or GitHub Actions.

The flow with Azure DevOps (using Azure

Pipelines) consists of:

1. Source Control: ARM templates (JSON

files), are present in source repository (e.g., Azure

Repos or GitHub). When there are any changes made

on templates, it causes a pipeline.

2. Pipeline Trigger: The continuous

integration pipeline could lint or validate a template

(such as the usage of the ARM Template Toolkit –

arm-ttk – validating best practices). Then, a release

pipeline or a stage in the pipeline is accountable for

deployment to Azure.

3. Azure Resource Manager Deployment

Task: Azure DevOps has integrated tasks for ARM

template deployment. In a pipeline YAML or classic

release, the Azure Resource Manager Template

Deployment can be utilized. This task needs a

service connection (service principal credentials) to

Azure. This service principal is then used by the

pipeline to authenticate to the Azure after which it

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01502

. An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

will run an ARM deployment (as the CLI command

underneath). This task receives the template and

parameters files from the source repo.

4. Orchestration and Deployment: Azure

Resource Manager takes the deployment from the

pipeline and goes to the step of provisioning the

resource, as with a manual invocation of CLI. As far

as ARM is concerned, the fact that the request came

from a pipeline does not make any difference, the

validation and the orchestration work the same way.

5. Continuous Deployment and Iteration: The

pipeline can be configured to run in various

environments (e.g., Dev, QA, Prod) with some

parameter-fashion files for each environment to

provide environment-specific values (e.g., names or

sizes). Once deployed, tests may take place

(integration tests on the newly deployed

infrastructure), and if the tests pass, the pipeline can

also promote the same template into the next

environment or region etc. If an update to a resource

is required later, a modification of the template in

code is done, and the pipeline is provided more

resources again, ARM can make incremental

changes to the existing resources. The pipeline in

Azure DevOps provides traceability – each run is

noted and any ARM deployment error would be seen

in the pipeline logs.

A similar strategy can be applied using the official

GitHub actions with Azure ARM Deploy action or

the Azure CLI action. The high-level architecture for

CI/CD with ARM templates is displayed in Figure.

2.

Figure 2: CI/CD Pipeline using ARM Templates

Imagine that a developer commits code and an ARM

template into a Git repository; a CI pipeline

provisions the app and an Azure Pipeline CD stage

utilizing an ARM template deploys azure resources

(App Service, DB etc.) using a service principal

connection. The ARM template deployment stage

communicates with Azure Resource Manager, which

is responsible for creating or modifying the

resources within the Azure subscription. The

application code is then deployed by the pipeline to

those provisioned resources.

With the use of these workflows, ARM templates

bring infrastructure-as-code in real life: application

changes including code and infrastructure changes

undergo the same review and deployment process.

Cloud-based Storage in Azure is integrated with

Azure’s logging and auditing. In the Azure Portal, it

is possible to check the history for the deployment of

each resource group, it is possible to see which

template and parameters debuted, at which time, and

by what identity. This is one of the benefits of ARM

– the Azure platform remembers the deployments of

the template, which facilitates the troubleshooting

and carrying out of compliance.

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01502

. An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 7

 Implementation & Use Cases

We now give concrete examples of ARM templates

in action after a discussion of ARM template

structure and deployment flows. Examples below

include but not limited to the most common use

cases: networking, storage, and access control. Each

dropped snippet is an abridged JSON template (part

of said template), with inline comments for

clarification.

Example 1: Virtual Network and Subnets

Establishing a virtual network (VNet) is very

commonly the first step before the creation of cloud

infrastructure for an application. An ARM template

snippet to deploy an Azure VNet with two subnets is

below. We parameterize the VNet name and location

to achieve the reuse capability.

Code 3: ARM Template Example for Deploying an

Azure Virtual Network with Subnets

Explanation: Our two parameters are vnetName and

location. The location default value refers to an

ARM template function resourceGroup(). location to

default to the same location as the resource group

(making the template easy to reuse in any region).

There is one entry in resources array: a

Microsoft.Network/virtualNetworks resource (under

the version 2021 API). The name of the Vnet is set

based on vnetName parameter. In the properties, we

give addressSpace (the IP range block for the VNet),

as well as an array of two subnets. Every subnet has

a name and address prefix. In a full deployment, one

may also provide a

Microsoft.Network/networkSecurityGroups

resource, and may associate it to subnets, or define

other network properties, but that is not the core that

this simple example is about.

When this template is used, it will create a virtual

network called “MyVNet” and two subnets. Through

changing the parameter values, we would be able to

deploy several VNets (for example – one per

environment) from same template, naming them

differently or from different regions.

Example 2: Storage Account

Azure Storage Accounts are a basic resource for

storing of data (blobs, files, queues, tables). Some of

common template patterns are illustrated by them:

with a generated name and giving SKU (pricing tier).

Follow is an example of how one can deploy a

storage account:

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01502

. An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 8

Code 4: ARM Template for Deploying an Azure

Storage Account

Explanation: The storageAccountName is a

parameter due to the fact that the storage accounts must

be unique across all of Azure. We leave the user to

enter a name that would fit Azure’s requirements

(therefore the minLength/maxLength and a

description). The resource has the type of

Microsoft.Storage/storageAccounts. We set kind:

StorageV2 for a general-purpose v2 account. The sku

is configured to Standard_LRS (locally-redundant

storage, standard performance). The SKU tier

“Standard” is supplied by the name but given for

clarity. We rely on the resource group’s location to

deploy the storage account in the same region. We

could add tags or other settings (enabling blob public

access or default network rule sets, for instance) by

either extending the properties or adding child

resources (blobServices, for example). This template

would create a new storage account. On practice, one

might “mix” this with other resources. for instance, a

build-deploy template that is provisioned that may

contain storage account as well as an App Service, as

well as, write out a storage account connection string

for the app to consume.

Example 3: Role Assignment (Access Control)

Infrastructure as code is more than just deployable

resource(s) such as: compute or network; it can also

create security and access policies. It is handy to use

ARM templates to deploy Azure RBAC role

assignments for automating governance. Following

is an example of resource group template assignment

of the Reader role to a user for a resource group:

Code 5: ARM Template for Assigning Reader Role

in Azure

Explanation: Reader role that comes within Azure

has a definite GUID of its role definition Id

(Acdd72a7-3385-48ef-bd42-f606fba81ae7) built in.

We use the well known GUID in roleDefinitionId,

and we have the whole resource ID by using the

subscriptionResourceId function (which appends the

subscription ID automatically). The principalId

refers to the object ID of the user or service-principal

which will be assigned the Reader-role – passed as

ownerObjectId parameter to the template. The name

of the role assignment resource must be unique and

by convention we usually use a GUID made from

stable identifiers. Here we use the ARM function

guid(resourceGroup().id, 'ReaderAssignment') to

generate a deterministic GUID from the resource

group’s id and a string; This avoids rerunning the

template from trying to create duplicate assignments

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01502

. An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 9

(same GUID will be calculated and ARM will know

the assignment resource already exists).

When deployed to a resource group, this template

(using the appropriate objectId parameter) will

assign that principal the Reader role on the resource

group. This approach is handy for automating the

provisioning of access control – say you provision a

new application environment, you could

automatically pass the dev team’s Azure AD group

contributor role on the resource group, etc, all this

through templates. It’s more secure and less error

prone than clicking in the portal, particularly when

repeating across many environments.

Parameterization and Linking Templates: The

above shows parameterization from inside single

templates. ARM templates also support linked, or

nested, templates, which supports modular

deployments. As an example, one template can

reference another template (stored externally such as

within storage account or GitHub) via the

Microsoft.Resources/deployments by using a

templateLink or inline template definition. This

enables splitting a huge deployment to smaller more

focused templates (e.g. one template for “network

infrastructure”, one for “app infrastructure”, and one

for “database”) and then re-assembling them by

linking. When working with linked templates, the

sub-templates have to exist at a URI (public GitHub

URL, or Azure Storage SAS URL, etc.). This comes

at the cost of increased complexity as a price for

better organization. Alternatively, templates nested

(embedding template JSON in the parent template)

can also be used for modularity without references to

other files outside of templates. In practice,

numerous Azure architects use either linked

templates or address complexity with the use of tools

such as Bicep or Terraform (to be discussed later) for

better modularization. Now, ARM templates do

support these scenarios, natively — parameters can

actually be passed to the child templates from the

parent ones, making for a value re-use.

In conclusion, above are the implementation

examples on how ARM templates capture different

Azure deployment scenarios in code. By running

these templates (manually or via pipelines) one can

automate the provisioning not of merely virtual

machines and networks, but resignation of higher-

level constructs such as the entire app environment

and their surrounding security constructs.

 Results & Discussion

Automating Azure deployments with ARM

templates yields significant improvements in

consistency and efficiency. We compare manual and

ARM-based deployments, present empirical and

hypothetical results on deployment speed and cost,

and discuss the benefits and limitations observed.

ARM Templates vs. Manual Deployment

Deployment Time: One of the obvious advantages

of IaC automation is faster deployments. The manual

resource deployment (e.g., clicking through the

Azure Portal or imperative CLI commands for each

resource), one-at-a-time, is slow and ordered. Each

resource can be set up separately and the human

operator must wait for each step. With ARM

templates, Azure can parallelly deploy a lot of

resources as long as their dependencies have been

met. This translates to a complex environment that

may take hours to setup manually can be deployed

within minutes using a template. As well, once a

template is written, deploying it into another

environment (set up another identical test

environment, for example) is simply a matter of

running the deployment again, maybe with a

different parameter file. Figure 3 represents the

deployment time of one iteration of a hypothetical

scenario. First, creation and deployment of an ARM

template requires some effort, (approximately

40mins) when compared to 60mins to write and

deploy the same template through manual means.

The ARM deployment literally becomes one

command and when used in subsequent iterations

(deploying to new environment or repeating the

deployment – e.g. 10 minutes vs. 60 minutes per

each manual approach).

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01502

. An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 10

Figure 3: Deployment time per iteration for a

complex environment – manual vs. ARM template.

After the initial template authoring, reusing the

ARM template drastically cuts provisioning time in

later iterations. Manual deployments consistently

take longer due to step-by-step setup for each

environment (hypothetical example).

This speed advantage is reflected in industry

practice. For example, such usage of IaC involves

spinning up test environments demand basis and

tearing them down, which brings agility. The ability

of Azure Resource Manager to perform the parallel

deployments makes this process further faster.

Error Rate: Manual processes introduce errors into

the field – the engineers might not configure the

setting correctly, or miss a step and the result will be

inconsistencies (e.g., the staging environment was

forgotten in the config/setup and therefore differs

from production). Through ARM templates, the

deployment process has been automated and

repeatable thus significantly lowering such human

errors. The template succeeds or fails entirely, which

means if it works, it should work again the next (in

case the input parameters are right). As AWS says

(in relation to IaC in general): “Manual

configuration is error-prone…. By comparison; IaC

minimizes errors and facilitates error checking” [2].

Validation is part of ARM templates – if you specify

an incorrect property the deployment should fail fast.

Even though a failed deployment is never a good

thing, it is usually better than a silent

misconfiguration that occurs with a manual set up.

Teams have come to a higher level of confidence in

the setup of their infrastructure with templates due to

the fact that every change is tracked and intentional

and mistakes are caught before they are deployed

through code review processes.

Scalability and Consistency: Manual deployment

simply fails to scale when scaling up to multiple

environments or complex systems. IaC glows in such

situations by enabling easy replication of

environments. For instance, in the case where an

organization would need to deploy the same set of

resources with each new customer or region, a

parameterized ARM template could be deployed

multiple times with various parameters, and the

identical stacks would be created. This was

conventionally a very painful task to complete

manually. As mentioned within the context of

general IaC, one can “use IaC to duplicate the exact

same environment and quickly make the new

deployment operational. IaC eradicates the

redundant manual steps and checklists that were

necessary in the past.” [2]. In Azure ARMA

Templates facilitate this kind of scalability – you can

launch multiple resource groups with the same

infrastructure definition simultaneously.

Consistency is thus enforced: each deployment

based from the same template produces identical

resource configuration (unless inputs are different).

Table 1 summarizes these comparisons:

Table 1. Manual Deployment vs. ARM Template

Deployment

In practice, implementation of ARM templates can

significantly reduce the time needed to provision

infrastructure for the new projects as well as

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01502

. An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 11

eliminate the “works on my machine” syndrome, as

infrastructure variances result in application

problems. By introducing ARM templates to CI/CD,

teams get ongoing release of infrastructure – e.g. a

change to a template (changing VM size, adding new

resource) is code reviewed, and put through the

pipeline of care, just like application code, thus

making the updates traceable and controlled.

Impact on Deployment Speed and Cost

Putting aside the qualitative gains, there are

quantitative benefits, including frequency of

deployment and cloud cost. More times it is

deployed as the process become automated (it’s

easier and safer to automate). This will lead to more

iterative improvement processes and rapid value

delivery. Cost optimization is also one of the

considerations; despite the fact that the main goal is

speed and error minimization:

Cost Optimization: ARM templates can, in several

ways, indirectly result in ease of optimizing cost.

First, templates render use of best practice such as

right sizing of resource and absent or lack of

deployment of unnecessary components possible.

Infrastructure is therefore code and engineers can

then more easily review and discuss the need for

each resource within a template (as in code review)

which (it is hoped) will return an over-provisioned

SKU before the cost is actually spent. Second there

is automation possibility exists to tear down and

recreate environments on demand rather than

resources running (and anyway paying costs) in

anticipation for the manual effort to put them back

together. For example, if a dev/test environment is

described by a template, it might be automatically

predictable in the morning and automatically

destroyed at night, and that can save hundreds of

hours of cloud runtime cost. This is not

mechanizable to do manually but ease of doing it for

an automated template deployment in a scheduled

pipeline.

Also ARM templates also fit nicely together with

Azure’s governance tools, including tags and Azure

Policy. Showback/chargeback is possible with the

help of tags applied using template (e.g., tagging of

resources with project or environment ID’s). ARM

itself is a part of Azure’s cost governance, by

standardizing setups, not ending up in “snowflake”

installations that lead to nasty surprises. As outlined

by Infracost, the (FinOps tool vendor) ARM delivers

a consistent layer that is supportive of standardized

resource deployments, policy adherence or better

visibility of the infrastructure that is all important for

cloud cost optimization. In other words, there is ‘less

work’ by every resource deploying through ARM

(with known templates) to be able to guarantee that

it conforms to cost saving configurations (for

example using reserved instance, dev environments

would use lower cost SKUs, etc.).

To understand in a very simple manner what a cost

weighing exercise may look like consider a situation

where manual deployment could leave some

inefficiencies (say default SKUs or services left

active longer) and where on the hand codified

deployment could have used optimal SKUs and

turned services off not required off hours. Figure 4

shows a supposition difference in the monthly cost:

Figure 4: Hypothetical cost comparison for an

application infrastructure deployed manually vs.

via ARM templates. In this scenario, the ARM

template deployment uses optimized resource

choices (Standard tier, minimal sizing for non-prod,

automated schedules), costing less per month than

the manually deployed counterpart. Tags and

policies applied through ARM also avoid

unexpected costs.

In this instance, 20 % of the costs were saved by the

approach delineated by ARM. It is natural, however,

that IaC itself does not ensure cost savings – but it

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01502

. An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 12

does provide mechanisms (repeatability,

parameterization, policy integration) that enable the

simplification of the roll out of cost controls. For

instance, someone may be able to add to a template

a policy assignment that blocks deployment of

expensive VM sizes, or simply ensure that all dev

resources are S, not M by default. Such consistency

is hard to impose on using ad-hoc approach.

Limitations and Challenges (Discussion): Despite

the profit that the ARM templates bring, the users

have met some challenges including:

• Verbosity and Complexity: ARM JSON

syntax can be quite verbose with large numbers of

deployments. Managing and creating a large JSON

file requiring complex nesting is risky. Even once

using Visual Studio Code extensions and tooling,

many found the learning curve of getting to grips

with the functions and syntax of the ARM template

to be steep. This was a major contributing factor to

Azure Bicep’s development, since Bicep provides a

more concise syntax, yet compiles down to ARM

JSON. For instance, an item that is 200 lines of

JSON is written in 50 lines of Bicep. In pure ARM

JSON complex expressions (string concatenations

for names or conditions) are very hard to look at and

debug.

• Debugging and Error Handling: When a

template deployment of an ARM fails, sometimes

the error messages from Azure can be confusing. For

example, an error can state that a specific resource

provisioning failed but cannot clearly state which

template line it resulted from. There is no interactive

template debugger – error output during deployment,

unless – Activity logs in Azure Portal. Utilities such

as ARM-TTK will pick up some things if you use

them properly before deployment (e.g., naming

conventions, property best practices), but it doesn’t

validate the logic. The appearance of the what-if

deployment preview goes some way – Azure’s what-

if operation is able to demonstrate which resources

would be created/modified/deleted by the template

deployment without doing actual changes. This is

like Terraform’s “plan” step. However not all

failures of what-if can be caught – for example if the

template refers in a place where there is no resource

– then what-if will flag it, but unfortunate for the

logic not accurate slightly (say a string concatenation

led to a name that isn’t valid), you may only learn

about it only on actual deployment. To put it briefly,

testing ARM templates is difficult; there is no dry

run built in that guarantees success so you often must

deploy to a test resource group to fully test out a

complex template.

• Lack of Native Modular Structure in

JSON: As talked about, you can reference templates,

but that requires hosting the sub-templates and

introduces external dependencies. The lack on flat

JSON structure lacks the concept of modular

includes (outside of it utilising nested deployment

resources). Consequently, decomposing a solution

into reusable components is not a straight forward

process in raw ARM. It’s again rectified by Bicep,

using modules (even you can call one bicep file from

another easily), but in plain arm json, one either

evolves into maintaining one giant file or manages a

set of templates manually.

• State and Idempotency Issues: ARM

deployments are also implicitly idempotent, and

there is no need to track separate state files (Azure

understands how it has the resources). Generally this

is good, but one limitation is that in the case one

needs to, say, destroy resources, ARM templates at

resource group scope don’t have a way to directly

“delete everything not in this template” except in

Complete mode, which can be dangerous if not

careful. In complete mode, it will delete the

resources in the target scope that are not defined in

the template, which will make the real state on the

exact (same) copy of the template. Terraform users

occasionally wonder why in ARM templates there’s

no simple delete workflow – you utilize either Azure

CLI/PowerShell to delete resources, or you go with

complete mode templates or Azure Blueprints for

cleanup. Also, some sophisticated scenarios (e.g

creating an resource, retrieving its output, base on

that decision, another resource within the same

template) can’t be done in one ARM template – you

may have to chain deployments or use scripts that a

general-purpose language (or Pulumi) could manage

that logic.

• Testing and Simulation: However, there is

no “official unit test” framework for ARM templates

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01502

. An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 13

except by deploying them and trying to get them to

work. As infrastructure code, this is area of growth –

there are some third-party tools that enable local

simulation at least, or verification of templates to the

Azure schemata. What-if by Microsoft is useful but

sometimes not 100% true for complex changes. For

this reason, practitioners tend to keep separate test

Azure subscriptions or resource groups with which

to regularly test deployments (sometimes automated

nightly deployments to check that templates still

work as Azure evolves).

One mitigation on error handling is, of course, to

divide deployments into smaller units e.g. deploy the

network first and then VMs rather than one massive

template so that debugging can be done in more

isolated segments. Azure also supports deployment

calls both incremental mode (the default) and

complete mode and this is variable with the

installation process. However, normally incremental

mode is safer for updates (won’t modify existing

resources not in the template) but if you remove

resource from the template it will not be removed

from Azure. Such nuances have to be harnessed as

part of governance processes.

These restrictions notwithstanding, many Azure

practitioners do manage huge infrastructures with

the templates but still resorting (now often) to Bicep:

for authoring. The constraints have driven

alternatives and enhancements (which will be

discussed next) but there is a distinct impression that

for Azure-centric deployments, ARM templates

offer a degree of native integration (deployment

history in Azure Portal, no external state

management, immediacy of new Azure services)

which third party tools cannot possibly match.

Challenges & Alternatives

Although ARM templates are powerful in terms of

Azure automation, engineers have identified some

alternatives to cover the challenges of these ones:

Challenges Recap: It tends to be burdensome to

debug large JSON templates and to deal with

complex deployments. As the infrastructure and the

teams grow, it is error prone to maintain dozens of

JSON files with thousands of lines. In addition,

various organizations might choose to use a single

IaC tool on several clouds while the counterpart of

ARM templates, which is Azure-specific.

Alternative IaC Tools:

• HashiCorp Terraform: An immensely

popular open source IaC tool, the tool describes the

infrastructure using its exclusive language HCL

(HashiCorp Configuration Language). Terraform is

not cloud-agnostic – one Terraform deployment can

be used to provision Azure, AWS, GCP, etc., with a

plugin architecture of providers. A lot of

organizations prefer Terraform due to multiple-

cloud or homogeneity reasons. When comparing

with ARM: Terraform has a more extensive

language for abstractions (modules, loops,

conditional resources), a vibrant ecosystem and

matured and a plan command that explains what will

change, prior to applying. However, Terraform

demands management of state (which is typically

done in a backend such as Azure Storage or

Terraform Cloud), which adds its own complexity.

Terraform also, sometimes, falls short in supporting

the latest Azure features since the Azure provider

needs an update. On the other side, ARM templates

can take any new Azure resource/property as soon as

it is released in the Azure REST API without a need

to have an update on plugin. The learning curve of

Terraform is moderate – all one needs to learn HCL

and the Terraform CLI, and HCL is usually

considered closer to concise than raw JSON.

• Pulumi: Members of a brand new entrant

that allows you to code infrastructure code in generic

programming languages (TypeScript, Python, C#,

Go, among others). Pulumi, then, provisions

resources through cloud SDKs. For instance, using

Pulumi, one could write a Python script that will

create an Azure VNet and VM courtesy of Pulumi’s

Azure Native provider (which behind the scenes uses

Azure’s REST API directly). It gives us the entire

strength of programming (loops, conditions,

complex logic, external package importations) to

IaC. It’s very flexible and easy to integrate with

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01502

. An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 14

existing developer workflows (because you can use

the same language as your app). However, it

demands that developers must learn both

programming language and cloud SDKs. Pulumi

operates with state like Terraform. It is a suitable one

for strong software engineering background teams,

that want to treat infrastructure as software.

• Azure Bicep: As mentioned Bicep is

basically “ARM Templates 2.0” in terms of

authoring experience. It was created by Microsoft to

make ARM template creation easier. Bicep has a

criptic syntax and closer to C# or JavaScript without

the JSON quotes and braces overhead. It supports

modules, loops, conditions, full support for all the

Azure resource types (again, because it directly maps

to ARM). One large advantage – the lack of a state

file to manage (it uses Azure’s inherent state), and

that is one less thing to be concerned about with

Terraform [7]. Bicep files are transpiled into ARM

JSON at deployment time (either when using the

command line interface, or programmatically when

deploying a .bicep file via the Azure

CLI/PowerShell). Therefore, you receive the

advantages of a cleaner syntax, but continue utilizing

the powerful ARM engine for deployment. Bicep is

Azure-specific (unlike non-Azure resources it

cannot deploy), but for the teams using Azure, it has

become much more popular than raw ARM JSON

now. Bicep has a relatively easy learning curve for

those that are already familiar with ARM concepts –

many can learn it faster than learning Terraform, in

part because Bicep is designed to feel natural to

Azure users.

• AWS CloudFormation (for context):

CloudFormaion (JSON/YAML based) is AWS’s

equivalent to ARM templates. Although not relevant

to Azure, it’s interesting to note that the industry

trend began when such template-driven IaC came in

(CloudFormation pre-dates ARM templates by a

couple years). Azure ARM is for Azure what similar

in spirit is. Later, came Terraform to standardize

cloud IaC and now each cloud owns its DSLs

(Azure’s Bicep, AWS CDK etc.) trying to learn from

it.

For Azure deployments, most of the major decision

points narrow down to ARM/Bicep vs Terraform

(Pulumi is on the rise, but less common). Table 2

makes comparisons between ARM templates,

terraform, and Bicep against a few dimensions.

Table 2. Comparison of ARM Templates (JSON),

Azure Bicep, and HashiCorp Terraform for Azure

IaC

The considerations in practice may boil down to

these considerations.

• If an organization is Azure-only and uses

official tooling – Bicep (and thus ARM) is a

wonderful choice – without external dependencies,

build on Azure’s native deployment engine.

• If the organization has multi-cloud needs or

existing Terraform tendencies, Terraform presents

one workflow to rule them all at the cost of inserting

another layer on top of Azure.

• Even some teams use a mix: For example,

use Bicep/ARM for some things, and terraform for

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01502

. An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 15

others, although that requires careful coordination to

prevent conflicts.

It should be noted though that these tools are not

mutually exclusive with ARM templates – Bicep

compiles to ARM templates and Terraform’s Azure

provider finally invokes the Azure Resource

Manager’s APIs (i.e. just like an ARM template

deployment but in a procedural fashion). The Azure

Native provider by Pulumi also relies, under the

hood, directly on ARM. So, ARM (as platform

capability) is always on the game. these tools just

constitute a different authoring or orchestrating

experience.

Emerging Trends – AI and Advanced Tooling: In

terms of the future, we observe attempts to make

further cloud automation simpler. For instance,

projects, such as IaC from higher level designs and

natural language, are being explored. One could

picture an AI powered service where you specify the

infrastructure (or it monitors your running infra) and

it creates an ARM template or a Bicep file for you.

Even Microsoft’s own Azure Quickstart Center and

template exporters can deconstruct templates from

resources already present (the “export template”

capability of the Azure Portal supports resource

groups). In the future AI could help to optimize these

templates – for example suggest more optimal

configurations or detect anomalies in template

definition before deployment. Coupling ARM

deployments with AI planning can, for example,

imply the identification of an appropriate SKU by

virtue of past use or advice on the addition of an auto

scaling configuration, for example. Such AI

integrations may, while speculative, reduce the

manual effort in writing IaC and planning capacity

further. Azure’s deployment what-if analysis is

already a step towards wiser deployment planning

(basically the platform is “predicting ahead” of what

will change). We may be winners in terms of more

automated rollback strategies or self-healing

deployments which in case a deployment fails, the

system may analyze and correct (if you tried a

deployment and for whatever reason the deployment

failed, the system may have attempted to analyze and

correct the issue). as future improvements.

 Conclusion

Cloud architects and DevOps engineers are offered

clear benefits when automating deployments in

Azure through the use of ARM templates. With the

introduction of Infrastructure-as-Code using ARM

templates, teams get consistent, repeatable and

auditable infrastructure deployment. This paper

described how ARM templates, as Azure’s native

IaC solution, provide the possibility of the entire

cloud environment (compute, networking, storage,

security) definition via declarative JSON files which

can be under version control and within CI/CD

pipelines. We showed how using ARM templates

results in faster time to deploy, less error, simpler

scalability in comparison with manual provisioning,

that fits DevOps objectives of agility and reliability

[2].

They are particularly suitable for Azure-native

workloads – the cases where all that’s needed are in

Azure and full use of the Azure Resource Manager

can be made. They shine when you need to launch

complex Azure services (anything from a simple

web app to a full AKS cluster with supporting

resources) and desire first-party support and on-

demandness (e.g., ability to deploy any new Azure

service the day it is launched). ARM templates make

sure that all these resources are deployed as a single

unit and that they are managed by Azure’s access and

control policies. Moreover, deployment history and

what-if analysis are some of the features that ensure

that ARM is a strong option for enterprise

deployments.

However, we also thought that ARM JSON, in its

raw form, has its drawbacks – majorly verbosity and

user un-friendliness. Azure Bicep provides a

welcome and useful improvement for

organizations/projects that are pain points in that by

making template authorship simpler while still using

ARM underneath. Where Azure forms part of a

bigger multi-cloud strategy or a more standardized

IaC tool is desired then third party solutions such as

Terraform or Pulumi may be opted for, as an

either/or or complementary to ARM-based

templates. Each comes however with trade offs such

as in complexity, flexibility and the support

ecosystem.

 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 03 Issue: 04 | April – 2024 DOI: 10.55041/ISJEM01502

. An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 16

After all, ARM templates (which are further

reflected in Bicep) is a strong tool for Azure

automation. They make possible a DevOps-centric

infrastructure lifecycle: from design (in code), to

continuous deployment (through pipelines), to

maintenance (with incremental updates and

tracking) even up to message (in complete mode or

with scripts). In addition to acceleration and

standardization of deployment, benefits of using

ARM templates would include more appropriate

coordination of infrastructure changes with software

development process (in review and testing). For any

Azure project of average or above-average

complexity, we suggest using ARM templates or

Bicep, and we advise treating the IaC as seriously as

application code.

For future improvements, we foresee even more

intimate integration of ARM deployments with

intelligent tooling. Types of service like what-if in

constitutes ongoing investment into project bicep by

Microsoft and shows the path to more accessible and

secure azure iac. There could be thoughts of AI

assisted template authoring, or more advanced

deployment orchestrators which can test and check

the change before going live (further reducing risk).

Perhaps, gradually, a manual change management

could evolve into an automated version of such a

process. In addition, options to simulate

deployments in offline or improved error diagnostics

would significantly improve the flow of the ARM

template workflow.

Ultimately, the ability to automate Azure

deployments through use of Azure Resource

Manager templates is a best practice for the cloud

architecture and DevOps engineers who are out to

create reliable and scalable cloud infrastructure

management. It uses all the power of the platform

offered by Azure while maintaining order using

code. Having a wide selection of IaC tools to choose

from nowadays, teams can be flexible as to which

approach suits them best, but broad knowledge of

ARM templates serves a fundament on which other

tools are placed. Organizations can deploy software

and infrastructure changes faster with greater

confidence while using IaC on Azure, which is a

competitive advantage in the cloud-driven world.

References

1. S. Kuehn, “An Intricate Look at ARM

Templates – Part 1 – Background and History,”

Aug. 2019. Referred From:

https://www.refactored.pro/blog/2019/8/15/arm-

templates-part-1

2. Amazon Web Services, “What is

Infrastructure as Code? – IaC Explained,” AWS

whitepaper, 2023. Referred from:

https://aws.amazon.com/what-

is/iac/#:~:text=Reduce%20configuration%20errors

3. Element Digital, “Infrastructure as Code vs

Manual Deployment: Why IaC Isn’t Always the

Answer,” Element Digital Blog, 2023. [Online].

Available: elementdigital.com.au.

4. Spacelift, “What is an Azure ARM

Template? Overview, Tutorial & Examples,”

Spacelift Blog, 2024. Referred from:

https://spacelift.io/blog/arm-template

5. E. Borzenin, “ARM template design

choices and deployment time,” Infrastructure as

Code – Borzenin Blog, August 17, 2020. Referred

from: https://borzenin.com/arm-templates-

deployment-time/

6. Microsoft Azure, “Comparing Terraform

and Bicep,” Microsoft Docs – Azure

DevOps/Infrastructure, Mar. 2023. Referred from:

https://learn.microsoft.com/en-

us/azure/developer/terraform/comparing-terraform-

and-bicep?tabs=comparing-bicep-terraform-

integration-features

7. Reddit user discussion, “Bicep vs

Terraform,” r/Azure on Reddit, 2022. Referred

from:

https://www.reddit.com/r/AZURE/comments/yoy1i

n/bicep_vs_terraform/?rdt=37514#:~:text=The%20

biggest%20advantage%20of%20Bicep,the%20curr

ent%20resources%2C%20to

