Bipolar Vague α Generalized Connectedness in Topological Spaces

F. Prishka¹ and Dr. L. Mariapresenti²

¹Research Scholar, Department of Mathematics, Nirmala College for Women, Redfield's, Coimbatore, Tamil Nadu, India.

²Assistant Professor, Department of Mathematics, Nirmala College for Women, Redfield's, Coimbatore, Tamil Nadu, India.

Email¹: <u>prishkamaths@gmail.com</u> and Email²: <u>presentimaria88@gmail.com</u>

Abstract: In this paper, we have introduced the basic concepts of bipolar vague α generalized connected space, bipolar vague α generalized super connected space and bipolar vague α generalized extremally disconnected space and discussed some of their properties.

Keywords: Bipolar vague topology, bipolar vague α generalized closed set, bipolar vague α generalized continuous mapping, bipolar vague α generalized connected space, bipolar vague α generalized super connected space and bipolar vague α generalized extremally disconnected space.

1. Introduction

Fuzzy set was introduced by L.A.Zadeh [15] in 1965. The concept of fuzzy topology was introduced by C.L.Chang [3] in 1968. The generalized closed sets in general topology were first introduced by N.Levine [11] in 1970. K.Atanassov [2] in 1986 introduced the concept of intuitionistic fuzzy sets. The notion of vague set theory was introduced by W.L.Gau and D.J.Buehrer [8] in 1993. D.Coker [6] in 1997 introduced intuitionistic fuzzy topological spaces. On Connectedness in intuitionistic fuzzy special topological spaces was introduced by Ozcag and Coker [12] in 1998. Bipolar- valued fuzzy sets, which was introduced by K.M.Lee [10] in 2000 is an extension of fuzzy sets whose membership degree range is enlarged from the interval [0, 1] to [-1,1]. A new class of generalized bipolar vague sets was introduced by S.Cicily Flora and I.Arockiarani [4] in 2016. We have introduced bipolar vague α generalized closed sets [13] in 2024. In this paper, we have introduced bipolar vague α generalized connected space, bipolar vague α generalized super connected space and bipolar vague α generalized extremally disconnected space and discussed some of their properties.

2. Preliminaries

Here in this paper the bipolar vague topological spaces are denoted by (X, BV_{τ}) . Also, the bipolar vague interior, bipolar vague closure of a bipolar vague set A are denoted by BVInt(A) and BVCl(A). The complement of a bipolar vague set A is denoted by A^c and the empty set and whole sets are denoted by 0_{\sim} and 1_{\sim} respectively.

Definition 2.1: [10] Let X be the universe. Then a bipolar valued fuzzy sets, A on X is defined by positive membership function μ_A^+ , that is μ_A^+ : X \to [0,1], and a negative membership function μ_A^- , that is μ_A^- : X \to [-1,0]. $A = \{ \langle x, \mu_A^+(x), \mu_A^-(x) \rangle : x \in X \}.$ For the sake of simplicity, we shall use the symbol

Definition 2.2: [10] Let A and B be two bipolar valued fuzzy sets then their union, intersection and complement are defined as follows:

(i)
$$\mu_{A \cup B}^+ = \max \{\mu_A^+(x), \mu_B^+ x\}$$

(ii)
$$\mu_{A \cup B}^- = \min \{ \mu_A^-(x), \mu_B^- x \}$$

$$(iii)\mu_{A\cap B}^+ = \min \{\mu_A^+(x), \mu_B^+x\}$$

$$(iv)\mu_{A\cap B}^- = \max \{\mu_A^-(x), \mu_B^- x\}$$

(v)
$$\mu_{A^c}^+(x) = 1 - \mu_A^+(x)$$
 and $\mu_{A^c}^-(x) = -1 - \mu_A^-(x)$ for all $x \in X$.

Definition 2.3: [8] A vague set A in the universe of discourse U is a pair of (t_A, f_A) where t_A : $U \rightarrow [0,1], f_A: U \rightarrow [0,1]$ are the mapping such that $t_A + f_A \leq 1$ for all $u \in U$. The function t_A and t_A are called true membership function and false membership function respectively. The interval $[t_A, 1 - f_A]$ is called the $v_{\Delta}(u) = [t_{\Delta}(u), 1 - f(u)].$ vague value of u in A, and denoted by $v_A(u)$, that is

Definition 2.4: [8] Let A be a non-empty set and the vague set A and B in the form

=
$$\{\langle x, t_A(x), 1 - f_A(x) \rangle : x \in X \}$$
, B = $\{\langle x, t_B(x), 1 - f_B(x) \rangle : x \in X \}$. Then

(i)
$$A \subseteq B$$
 if and only if $t_A(x) \le t_B(x)$ and $1 - f_A(x) \le 1 - f_B(x)$

(ii) A U B =
$$\left\{ \left\langle \max\left(t_A(x), t_B(x)\right), \frac{\max\left(1 - f_A(x), 1 - f_B(x)\right)\right\rangle}{x} \in X \right\}$$
.

(iii)
$$A \cap B = \left\{ \left\langle \min\left(t_A(x), t_B(x)\right), \frac{\min\left(1 - f_A(x), 1 - f_B(x)\right)\right\rangle}{x} \in X \right\}.$$

(iv)
$$A^c = \{\langle x, f_A(x), 1 - t_A(x) \rangle : x \in X \}.$$

Definition 2.5: [1] Let X be the universe of discourse. A bipolar-valued vague set A in X is an object having the form $A = \{\langle x, [t_A^+(x), 1 - f_A^+(x)], [-1 - f_A^-(x), t_A^-(x)] \rangle : x \in X \}$ where $[t_A^+, 1 - f_A^+] : X \to [0,1]$ and $[-1 - f_A^-, t_A^-] : X \rightarrow [-1,0]$ are the mapping such that $t_A^+(x) + f_A^+(x) \le 1$ and $-1 \le t_A^- + f_A^-$. The positive membership degree $[t_A^+(x), 1 - f_A^+(x)]$ denotes the satisfaction region of an element x to the property corresponding to a bipolar-valued set A and the negative membership degree $[-1 - f_A^-(x), t_A^-(x)]$ denotes the satisfaction region of x to some implicit counter property of A. For a sake of simplicity, we shall use the notion of bipolar vague set $v_A^+ = [t_A^+, 1 - f_A^+]$ and $v_A^- = [-1 - f_A^-, t_A^-]$.

Definition 2.6: [5] A bipolar vague set $A = [\nu_A^+, \nu_A^-]$ of a set U with $\nu_A^+ = 0$ implies that $t_A^+ = 0$, $1 - f_{A}^{+} =$ 0 and $v_A^-=0$ implies that $t_A^-=0$, $-1-f_A^-=0$ for all $x \in U$ is called zero bipolar vague set and it is denoted by 0.

Α

Definition 2.7: [5] A bipolar vague set $A = [v_A^+, v_A^-]$ of a set U with $v_A^+ = 1$ implies that $t_A^+ = 1$, $f_A^+=1$ and $v_A^-=-1$ implies that $t_A^-=-1$, $-1-f_A^-=-1$ for all $x \in U$ is called unit bipolar vague set and it is denoted by 1.

Definition 2.8: [4] Let A = $\langle x, [t_A^+, 1 - f_A^+], [-1 - f_A^-, t_A^-] \rangle$ and $\langle x, [t_B^+, 1 - f_B^+], [-1 - f_B^-, t_B^-] \rangle$ be two bipolar vague sets then their union, intersection and complement are defined as follows:

(i)
$$A \cup B = \left\{ \langle x, [t_{A \cup B}^+(x), 1 - f_{A \cup B}^+(x)], \frac{[-1 - f_{A \cup B}^-(x), t_{A \cup B}^-(x)] \rangle}{x} \in X \right\}$$
 where $t_{A \cup B}^+(x) = \max \{t_A^+(x), t_B^+(x)\}, t_{A \cup B}^-(x) = \min \{t_A^-(x), t_B^-(x)\}$ and $1 - f_{A \cup B}^+(x) = \max \{1 - f_A^+(x), 1 - f_B^+(x)\},$ $-1 - f_{A \cup B}^-(x) = \min \{-1 - f_A^-(x), -1 - f_B^-(x)\}.$
(ii) $A \cap B = \left\{ \langle x, [t_{A \cap B}^+(x), 1 - f_{A \cap B}^+(x)], \frac{[-1 - f_{A \cap B}^-(x), t_{A \cap B}^-(x)] \rangle}{x} \in X \right\}$ where $t_{A \cap B}^+(x) = \min \{t_A^+(x), t_B^+(x)\}, t_{A \cap B}^-(x) = \max \{t_A^-(x), t_B^-(x)\}$ and $1 - f_{A \cap B}^+(x) = \min \{1 - f_A^+(x), 1 - f_B^+(x)\},$ $-1 - f_{A \cup B}^-(x) = \max \{-1 - f_A^-(x), -1 - f_B^-(x)\}.$
(iii) $A^c = \{\langle x, [f_A^+(x), 1 - t_A^+(x)], [-1 - t_A^-(x), f_A^-(x)] \rangle / x \in X \}.$

Definition 2.9: [4] Let A and B be two bipolar vague sets defined over a universe of discourse X. We say that $A \subseteq B$ if and only if $t_A^+(x) \le t_B^+(x)$, $1 - f_A^+(x) \le 1 - f_B^+(x)$ and $t_A^-(x) \ge t_B^-(x)$, $-1 - f_A^-(x) \ge 1$ $f_R^-(x)$ for all $x \in X$.

Definition 2.10: [4] A bipolar vague topology (BVT) on a non-empty set X is a family BV_{τ} of bipolar vague set in X satisfying the following axioms:

- (i) $0_{\sim}, 1_{\sim} \in BV_{\tau}$
- (ii) $G_1 \cap G_2 \in BV_\tau$, for any $G_1, G_2 \in BV_\tau$
- (iii) \cup $G_i \in BV_{\tau}$, for any arbitrary family $\{G_i : G_i \in BV_{\tau}, I \in I\}$.

In this case the pair (X, BV_{τ}) is called a bipolar vague topological space and any bipolar vague set (BVS) in BV_{τ} is known as bipolar vague open set in X. The complement A^c of a bipolar vague open set (BVOS) A in a bipolar vague topological space (X, BV_{τ}) is called a bipolar vague closed set (BVCS) in X.

Definition 2.11: [4] Let (X, BV_{τ}) be a bipolar vague topological space A = $\langle x, [t_A^+, 1 - f_A^+], [-1 - f_A^-, t_A^-] \rangle$ be a bipolar vague set in X. Then the bipolar vague interior and bipolar vague closure of A are defined by,

 $BVInt(A) = \bigcup \{G: G \text{ is a bipolar vague open set in } X \text{ and } G \subseteq A\},$

 $BVCl(A) = \bigcap \{K: K \text{ is a bipolar vague closed set in } X \text{ and } A \subseteq K\}.$

Note that BVCl(A) is a bipolar vague closed set and BVInt(A) is a bipolar vague open set in X. Further,

- (i) A is a bipolar vague closed set in X if and only if BVCl(A) = A,
- (ii) A is a bipolar vague open set in X if and only if BVInt(A) = A.

Definition 2.12: [4] Let (X, BV_T) be a bipolar vague topological space. A bipolar vague set A in (X, BV_T) is said to be a generalized bipolar vague closed set if $BVCl(A) \subseteq G$ whenever $A \subseteq G$ and G is bipolar vague open. The complement of a generalized bipolar vague closed set is generalized bipolar vague open set.

Definition 2.13: [4] Let (X, BV_{τ}) be a bipolar vague topological space and A be a bipolar vague set in X. Then the generalized bipolar vague closure and generalized bipolar vague interior of A are defined by,

 $GBVCl(A) = \bigcap \{G: G \text{ is a generalized bipolar vague closed set in } X \text{ and } A \subseteq G\},$

 $GBInt(A) = \bigcup \{G: G \text{ is a generalized bipolar vague open set in } X \text{ and } A \supseteq G\}.$

Definition 2.14: [13] A bipolar vague set A of a bipolar vague topological space X, is said to be

- (i) a bipolar vague α -open set if $A \subseteq BVInt(BVCl(BVInt(A)))$
- (ii) a bipolar vague pre-open set if $A \subseteq BVInt(BVCl(A))$
- (iii)a bipolar vague semi-open set if $A \subseteq BVCl(BVInt(A))$
- (iv)a bipolar vague semi- α -open set if $A \subseteq BVCl(\alpha BVInt(A))$
- (v) a bipolar vague regular-open set BVInt(BVCl(A)) = A
- (vi)a bipolar vague β -open set $A \subseteq BVCl(BVInt(BVCl(A)))$.

Definition 2.15: [13] A bipolar vague set A of a bipolar vague topological space X, is said to be

- (i) a bipolar vague α -closed set if BVCl(BVInt(BVCl(A))) \subseteq A
- (ii) a bipolar vague pre-closed set if $BVCl(BVInt(A)) \subseteq A$
- (iii) a bipolar vague semi-closed set if $BVInt(BVCl(A)) \subseteq A$
- (iv)a bipolar vague semi- α -closed set if BVInt(α BVCl(A)) \subseteq A
- (v) a bipolar vague regular-closed set if BVCl(BVInt(A)) = A
- (vi)a bipolar vague β -closed set if BVInt(BVCl(BVInt(A))) \subseteq A.

Definition 2.16: [13] Let A be a bipolar vague set of a bipolar vague topological space (X, BV_{τ}) . Then the bipolar vague α interior and bipolar vague α closure are defined as

 $BV_{\alpha}Int(A) = \bigcup \{G: G \text{ is a bipolar vague } \alpha\text{-open set in } X \text{ and } G \subseteq A\},$

 $BV_{\alpha}Cl(A) = \bigcap \{K: K \text{ is a bipolar vague } \alpha\text{-closed set in } X \text{ and } A \subseteq K\}.$

ISSN: 2583-6129 DOI: 10.55041/ISJEM05017

An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

Definition 2.17: [13] A bipolar vague set A in a bipolar vague topological space X, is said to be a bipolar vague α generalized closed set if $BV_{\alpha}Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a bipolar vague open set in X. The complement A^c of a bipolar vague α generalized closed set A is a bipolar vague α generalized open set in X.

Definition 2.18: [4] Let (X, BV_{τ}) and (Y, BV_{σ}) be two bipolar vague topological spaces and φ : $X \rightarrow Y$ be a function. Then φ is said to be bipolar vague continuous if and only if the preimage of each bipolar vague open set in Y is a bipolar vague open set in X.

Definition 2.19: [4] A map $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ is said to be generalized bipolar vague continuous if the inverse image of every bipolar vague open set in (Y, BV_{σ}) is a generalized vague open set in (X, BV_{τ}) .

Definition 2.20: [4] Let f be a mapping from a bipolar vague topological space (X, BV_{τ}) into a bipolar vague topological space (Y, BV_{σ}) . Then f is said to be a bipolar vague generalized irresolute mapping if the inverse image of every bipolar vague generalized closed set in (Y, BV_{σ}) is a bipolar vague generalized closed set in (X, BV_{τ}) .

Definition 2.21: [14] Let (X, BV_{τ}) and (Y, BV_{σ}) be two bipolar vague topological spaces. Then the mapping f: $(X, BV_{\tau}) \rightarrow (Y, BV_{\sigma})$ is called

- (i) a bipolar vague α continuous if the inverse image of every bipolar vague closed set in (Y, BV_{σ}) is a bipolar vague α -closed set in (X, BV_{τ}) .
- (ii) a bipolar vague pre continuous if the inverse image of every bipolar vague closed set in (Y, BV_{σ}) is a bipolar vague pre-closed set in (X, BV_{τ}) .
- (iii) a bipolar vague semi continuous if the inverse image of every bipolar vague closed set in (Y, BV_{σ}) is a bipolar vague semi-closed set in (X, BV_{τ}) .

Definition 2.22: [14] Let (X, BV_{τ}) and (Y, BV_{σ}) be two bipolar vague topological spaces. A mapping $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ is called a bipolar vague α generalized continuous mapping if $f^{-1}(B)$ is a bipolar vague α generalized closed set in (X, BV_{τ}) for every bipolar vague closed set B of (Y, BV_{σ}) .

Definition 2.23: [14] A mapping $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ is called a bipolar vague α generalized irresolute mapping if $f^{-1}(A)$ is a bipolar vague α generalized closed set in (X, BV_{τ}) for every bipolar vague α generalized closed set A of (Y, BV_{σ}) .

Definition 2.24: [14] A bipolar vague topological space (X, BV_{τ}) is said to be bipolar vague αa $T_{1/2}(BV_{\alpha\alpha}T_{1/2})$ space if every bipolar vague α generalized closed set in X is a bipolar vague closed set in X.

Definition 2.25: [14] A bipolar vague topological space (X, BV_{τ}) is said to be bipolar vague αb $T_{1/2}(BV_{\alpha b}T_{1/2})$ space if every bipolar vague α generalized closed set in X is a bipolar vague generalized closed set in X.

3. Bipolar Vague α Generalized Connectedness in Topological Spaces

In this section we have introduced bipolar vague α generalized connected space, bipolar vague α generalized super connected space and bipolar vague α generalized extremally disconnected space and we have investigated some of their properties.

Definition 3.1: A bipolar vague topological space (X, BV_T) is said to be a bipolar vague C5-connected space if the only bipolar vague sets which are both a bipolar vague open and a bipolar vague closed set are 0_{∞} and 1_{\sim} .

Definition 3.2: A bipolar vague topological space (X, BV_{τ}) is said to be a bipolar vague GOconnected space if the only bipolar vague sets which are both a bipolar vague generalized open set and a bipolar vague generalized closed set are 0_{\sim} and 1_{\sim} .

Definition 3.3: A bipolar vague topological space (X, BV_{τ}) is said to be a bipolar vague α generalized connected space if the only bipolar vague sets which are both bipolar vague α generalized open set and bipolar vague α generalized closed set are 0_{\sim} and 1_{\sim} .

Proposition 3.4: Every bipolar vague α generalized connected space is a bipolar vague C5connected space but not conversely in general.

Proof: Let (X, BV_{τ}) be a bipolar vague α generalized connected space. Suppose (X, BV_{τ}) is not a bipolar vague C5-connected space, then there exists a proper bipolar vague set A which is both bipolar vague open and bipolar vague closed in (X, BV_{τ}) . That is A is both a bipolar vague α generalized open set and a bipolar vague α generalized closed set in (X, BV_{τ}) . This implies that (X, BV_{τ}) is not a bipolar vague α generalized connected space. This is a contradiction. Therefore (X, BV_{τ}) is a bipolar vague C5-connected space.

Example 3.5: Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, A, B, 1_{\sim}\}$ where $A = \langle x, [0.5, 0.6] [-0.6, -0.6], [0.6, 0.9] [-0.6, -0.5] \rangle$ and B = $\langle x, [0.4, 0.5] [-0.5, -0.5], [0.4, 0.6] [-0.5, -0.4] \rangle$. Then τ is a bipolar vague topology. Let M = $\langle x, [0.5, -0.5], [0.4, 0.6], [0.5, -0.5] \rangle$. 0.6] [-0.5, -0.4], [0.4, 0.5] [-0.4, -0.3]) be any bipolar vague set in X. Here (X, BV_{τ}) is a bipolar vague C5connected space but not a bipolar vague α generalized connected space, since the bipolar vague set M = $\langle x, [0.5,$ 0.6] [-0.5, -0.4], [0.4, 0.5] [-0.4, -0.3] is both a bipolar vague α generalized open and a bipolar vague α generalized closed set in (X, BV_τ) as $M \subseteq A$ where A is a bipolar vague open set in X. Now $BV_\alpha Cl(M) = M \cup M$ $B^c = B^c \subseteq A$.

Proposition 3.6: Every bipolar vague α generalized connected space is a bipolar vague GOconnected space but not conversely in general.

Proof: Let (X, BV_{τ}) be a bipolar vague α generalized connected space. Suppose (X, BV_{τ}) is not a bipolar vague GO-connected space, then there exists a proper bipolar vague set A which is both a bipolar vague generalized open set and a bipolar vague generalized closed set in (X, BV_{τ}) . That is A is both a bipolar vague α generalized open set and a bipolar vague α generalized closed set in (X, BV_{τ}) . This implies that (X, BV_{τ}) is not a bipolar

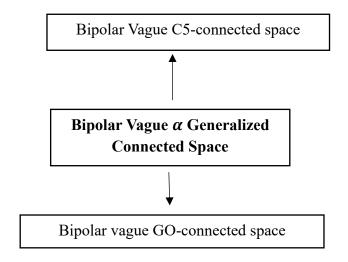
ISSN: 2583-6129

DOI: 10.55041/ISJEM05017

vague α generalized connected space. This is a contradiction to our hypothesis. Therefore (X, BV_{τ}) is a bipolar vague GO-connected space.

Example 3.7: Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, A, B, 1_{\sim}\}$ where $A = \langle x, [0.5, 0.6] [-0.6, -0.6], [0.6, 0.9] [-0.6, -0.5] \rangle$ and B = $\langle x, [0.4, 0.5] [-0.5, -0.5], [0.4, 0.6] [-0.5, -0.4] \rangle$. Then τ is a bipolar vague topology. Let M = $\langle x, [0.5, -0.5], [0.4, 0.6], [0.5, -0.5] \rangle$. 0.6] [-0.5, -0.4], [0.4, 0.5] [-0.4, -0.3] be any bipolar vague set in X. Here (X, BV_τ) is a bipolar vague GOconnected space but not a bipolar vague α generalized connected space, since the bipolar vague set M = $\langle x, [0.5,$ 0.6] [-0.5, -0.4], [0.4, 0.5] [-0.4, -0.3] is both a bipolar vague α generalized open and a bipolar vague α generalized closed set in (X, BV_τ) as $M \subseteq A$ where A is a bipolar vague open set in X. Now $BV_\alpha Cl(M) = M \cup$ $B^c = B^c \subseteq A$.

The relation between various types of bipolar vague connectedness is given in the following diagram:



Proposition 3.8: A bipolar vague topological space (X, BV_{τ}) is a bipolar vague α generalized connected space if and only if there exists no non-zero bipolar vague α generalized open sets A and B in (X, BV_{τ}) such that A = B^c.

Proof:

Necessity: Let A and B be two bipolar vague α generalized open sets in (X, BV_{τ}) such that $A \neq 0_{\sim}$, $B \neq 0_{\sim}$ and $A = B^{c}$. Therefore, B^{c} is a bipolar vague α generalized closed set. Since $B \neq 0_{\sim}$, $A = B^c \neq 1_{\sim}$. This implies A is a proper bipolar vague set which is both bipolar vague α generalized open set and a bipolar vague α generalized closed set in (X, BV_{τ}) . Hence (X, BV_{τ}) is not a bipolar vague α generalized connected space. But this is a contradiction to our hypothesis. Thus, there exist no non-zero bipolar vague α generalized open sets A and B in (X, BV_{τ}) such that $A = B^{c}$.

Sufficiency: Let A be both a bipolar vague α generalized open set and bipolar vague α generalized closed set in (X, BV_{τ}) such that $1_{\sim} \neq A \neq 0_{\sim}$. Now let B = A^c. Then B is a bipolar vague α generalized open set and B \neq 1_{\sim} . This implies $B^c = A \neq 0_{\sim}$, which is a contradiction to our hypothesis. Therefore (X, BV_{τ}) is a bipolar vague α generalized connected space.

Proposition 3.9: If $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ is a bipolar vague α generalized continuous mapping and (X, BV_{τ}) is a bipolar vague α generalized connected space, then (Y, BV_{σ}) is a bipolar vague C5-connected space. **Proof:** Let (X, BV_{τ}) be a bipolar vague α generalized connected space. Suppose (Y, BV_{σ}) is not a bipolar vague C5-connected space, then there exists a proper bipolar vague set A which is both bipolar vague open set and bipolar vague closed set in (Y, BV_{σ}) . Since f is a bipolar vague α generalized continuous mapping, $f^{-1}(A)$ is both a bipolar vague α generalized open set and a bipolar vague α generalized closed set in (X, BV_{τ}) . But this is a contradiction to hypothesis. Hence (Y, BV_{σ}) is a bipolar vague C5-connected space.

Proposition 3.10: If $f:(X, BV_{\tau}) \to (Y, BV_{\sigma})$ is a bipolar vague α generalized irresolute surjection mapping and (X, BV_{τ}) is a bipolar vague α generalized connected space, then (Y, BV_{σ}) is also a bipolar vague α generalized connected space.

Proof: Suppose (Y, BV_{σ}) is not a bipolar vague α generalized connected space, then there exists a proper bipolar vague set B which is both bipolar vague α generalized open set and bipolar vague α generalized closed set in (Y, BV_{σ}) . Since f is a bipolar vague α generalized irresolute mapping, $f^{-1}(B)$ is both a bipolar vague α generalized open set and bipolar vague α generalized closed set in (X, BV_{τ}) . But this is a contradiction to hypothesis. Hence (Y, BV_{σ}) is a bipolar vague α generalized connected space.

Proposition 3.11: A bipolar vague topological space (X, BV_{τ}) is a bipolar vague α generalized connected space if and only if there exists no non-zero bipolar vague α generalized open sets A and B in (X, BV_{τ}) such that B = A^{c} , $B = (BV_{\alpha}Cl(A))^{c}$ and $A = (BV_{\alpha}Cl(B))^{c}$.

Proof:

Necessity: Assume that there exist bipolar vague sets A and B such that $A \neq 0_{\sim} \neq B$, $B = A^c$, B = $(BV_{\alpha}Cl(A))^{c}$ and $A = (BV_{\alpha}Cl(B))^{c}$. Since $(BV_{\alpha}Cl(A))^{c}$ and $(BV_{\alpha}Cl(B))^{c}$ are bipolar vague α generalized open sets in (X, BV_{τ}) , A and B are bipolar vague α generalized open sets in (X, BV_{τ}) . This implies (X, BV_{τ}) is not a bipolar vague α generalized connected space, which is a contradiction. Therefore, there exists no non-zero bipolar vague α generalized open sets A and B in (X, BV_{τ}) such that $B = A^{c}, B = (BV_{\alpha}Cl(A))^{c}$ and $A = (BV_{\alpha}Cl(B))^{c}$

Sufficiency: Let A be both a bipolar vague α generalized open set and bipolar vague α generalized closed set in (X, BV_{τ}) such that $1_{\sim} \neq A \neq 0_{\sim}$. Now by taking $B = A^{c}$, we obtain a contradiction to our hypothesis. Hence (X, BV_{τ}) is a bipolar vague α generalized connected space.

Proposition 3.12: Let (X, BV_{τ}) be a $BV_{\alpha\alpha}T_{1/2}$ space, then the following are equivalent.

- (X, BV_{τ}) is a bipolar vague α generalized connected space. (i)
- (ii) (X, BV_{τ}) is a bipolar vague GO-connected space.
- (X, BV_{τ}) is a bipolar vague C5-connected space.

Proof: (i) \Rightarrow (ii) is obvious from Proposition 3.6.

(ii) \Rightarrow (iii) is obvious.

ISSN: 2583-6129 DOI: 10.55041/ISJEM05017

(iii) \Rightarrow (i) Let (X, BV_{τ}) be a bipolar vague C5-connected space. Suppose (X, BV_{τ}) is not a bipolar vague α generalized connected space, then there exists a proper bipolar vague set A in (X, BV_{τ}) which is both a bipolar vague α generalized open set and a bipolar vague α generalized closed set in (X, BV_{τ}) . But since (X, BV_{τ}) BV_{τ}) is a $BV_{\alpha\alpha}T_{1/2}$ space, A is both bipolar vague open set and bipolar vague closed set in (X, BV_{τ}) . This implies

that (X, BV_{τ}) is not a bipolar vague C5-connected space, which is a contradiction to our hypothesis. Therefore (X, BV_{τ}) is a bipolar vague α generalized connected space.

Definition 3.13: Two bipolar vague sets A and B are said to be q-coincident (AqB in short) if and only if there exits an element $x \in X$ such that $v_A^+(x) > v_B^-(x)$ or $v_A^-(x) < v_B^+(x)$.

Definition 3.14: A bipolar vague topological space (X, BV_{τ}) is a bipolar vague C5-connected between two bipolar vague sets A and B if there is no bipolar vague open set E in (X, BV_{τ}) such that $A \subseteq E$ and Eq^cB .

Definition 3.15: A bipolar vague topological space (X, BV_{τ}) is called bipolar vague α generalized connected between two bipolar vague sets A and B if there is no bipolar vague α generalized open set E in (X, BV_{τ}) such that $A \subseteq E$ and Eq^cB .

Example 3.16: Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, A, 1_{\sim}\}$ be a bipolar vague topology on X, where $A = \langle x, [0.5, 0.5] \rangle$ 0.5] [-0.5, -0.5], [0.4, 0.4] [-0.4, -0.4]. Then bipolar vague topological space (X, BV₇) is a bipolar vague α generalized connected between the two bipolar vague sets $M = \langle x, [0.3, 0.3] [-0.3, -0.3], [0.2, 0.2] [-0.2, -0.2] \rangle$ and N = $\langle x, [0.2, 0.2] [-0.2, -0.2], [0.2, 0.2] [-0.2, -0.2] \rangle$ as there exists no bipolar vague α generalized open set E such that $M \subseteq E$ and Eq^cN .

Proposition 3.17: If a bipolar vague topological space (X, BV_{τ}) is a bipolar vague α generalized connected between the two bipolar vague sets A and B, then it is a bipolar vague C5-connected between two bipolar vague sets A and B but the converse my not be true in general.

Proof: Suppose (X, BV_{τ}) is not a bipolar vague C5-connected between A and B, then there exists a bipolar vague open set E in (X, BV_{τ}) such that $A \subseteq E$ and Eq^cB. Since every bipolar vague open set is a bipolar vague α generalized open set, there exists a bipolar vague α generalized open set E in (X, BV_{τ}) such that $A \subseteq E$ and Eq^cB. This implies (X, BV_{τ}) is not a bipolar vague α generalized connected between A and B, a contradiction to our hypothesis. Therefore (X, BV_{τ}) is a bipolar vague C5-connected between A and B.

Example 3.18: Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, A, 1_{\sim}\}$ be a bipolar vague topology on X, where $A = \langle x, [0.5, 0.5] \rangle$ [0.4] [-0.4, -0.5], [0.5, 0.6] [-0.6, -0.5]. Then bipolar vague topological space (X, BV_τ) is a bipolar vague C5connected between the two bipolar vague sets $M = \langle x, [0.3, 0.2] [-0.2, -0.3], [0.7, 0.6] [-0.6, -0.7] \rangle$ and $N = \langle x, (0.3, 0.2) [-0.2, -0.3], [0.7, 0.6] [-0.6, -0.7] \rangle$ [0.6, 0.6] [-0.2, -0.2], [0.2, 0.2] [-0.2, -0.2]. But (X, BV_τ) is not a bipolar vague α generalized connected between M and N, since the bipolar vague set $E = \langle x, [0.3, 0.3] [-0.3, -0.3], [0.7, 0.7] [-0.7, -0.7] \rangle$ is a bipolar vague α generalized open set in X such that $M \subseteq E$ and $E \subseteq N^c$.

ISSN: 2583-6129 DOI: 10.55041/ISJEM05017

An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

Proposition 3.19: A bipolar vague topological space (X, BV_{τ}) is a bipolar vague α generalized connected between two bipolar vague sets A and B if and only if there is no bipolar vague α generalized open set and bipolar vague α generalized closed set E in (X, BV_{τ}) such that $A \subseteq E \subseteq B^{c}$.

Proof:

Necessity: Let (X, BV_{τ}) be a bipolar vague α generalized connected between two bipolar vague sets A and B. Suppose that there exists a bipolar vague α generalized open set and a bipolar vague α generalized closed set E in (X, BV_{τ}) such that $A \subseteq E \subseteq B^c$, then Eq^cB and $A \subseteq E$. This implies (X, BV_{τ}) is not a bipolar vague α generalized connected between A and B, by

Definition 3.15. It is a contradiction to our hypothesis. Therefore, there is no bipolar vague α generalized open set and bipolar vague α generalized closed set E in (X, BV_{τ}) such that $A \subseteq E \subseteq B^c$.

Sufficiency: Suppose that (X, BV_{τ}) is not a bipolar vague α generalized connected between A and B. Then there exists a bipolar vague α generalized open set E in (X, BV_{τ}) such that $A \subseteq E$ and Eq^cB . This implies that there is no bipolar vague α generalized open set E in (X, BV_{τ}) such that $A \subseteq E \subseteq B^c$. But this is a contradiction to our hypothesis. Hence (X, BV_{τ}) is a bipolar vague α generalized connected between A and B.

Proposition 3.20: If a bipolar vague topological space (X, BV_{τ}) is a bipolar vague α generalized connected between two bipolar vague sets A and B, $A \subseteq A_1$ and $B \subseteq B_1$, then (X, BV_{τ}) is a bipolar vague α generalized connected between A_1 and B_1 .

Proof: Suppose that (X, BV_{τ}) is not a bipolar vague α generalized connected between A_1 and B_1 , then by Definition 3.15, there exists a bipolar vague α generalized open set E in (X, BV_{τ}) such that $A_1 \subseteq E$ and Eq^cB_1 . This implies $E \subseteq B_1^c$ and $A_1 \subseteq E$ implies $A \subseteq A_1 \subseteq E$. Hence $A \subseteq E$. Since $E \subseteq B_1^c$, $B_1 \subseteq E^c$, $B \subseteq B_1 \subseteq E^c$. Hence $E \subseteq B^c$. Therefore (X, BV_{τ}) is not a bipolar vague α generalized connected between A and B, which is a contradiction to our hypothesis. Thus (X, BV_{τ}) is a bipolar vague α generalized connected between A_1 and A_1 . **Proposition 3.21:** Let (X, BV_{τ}) be a bipolar vague topological space and A and B be a bipolar vague sets in (X, BV_{τ}) . If AqB, then (X, BV_{τ}) is a bipolar vague α generalized connected between A and A.

Proof: Suppose (X, BV_{τ}) is not a bipolar vague α generalized connected between A and B. Then there exists a bipolar vague α generalized open set E in (X, BV_{τ}) such that $A \subseteq E$ and $E \subseteq B^c$. This implies that $A \subseteq B^c$. That is Aq^cB . But this is a contradiction to our hypothesis. Therefore (X, BV_{τ}) is a bipolar vague α generalized connected between A and B.

Definition 3.22: A bipolar vague set A is called a bipolar vague regular α generalized open set if A = $BV_{\alpha}Int(BV_{\alpha}Cl(A))$. The complement of a bipolar vague regular α generalized open set is called a bipolar vague regular α generalized closed set.

Definition 3.23: A bipolar vague topological space (X, BV_{τ}) is called a bipolar vague α generalized super connected space if there exists no proper bipolar vague regular α generalized open set in (X, BV_{τ}) .

Proposition 3.24: Let (X, BV_{τ}) be a bipolar vague topological space, then the following are equivalent: (i) (X, BV_{τ}) is a bipolar vague α generalized super connected space

- (ii) For every non-zero bipolar vague regular α generalized open set A, $BV_{\alpha}Cl(A) = 1_{\sim}$
- (iii) For every bipolar vague regular α generalized closed set A with A $\neq 1_{\sim}$, $BV_{\alpha}Int(A) = 0_{\sim}$
- (iv) There exists no bipolar vague regular α generalized open sets A and B in (X, BV_{τ}) such that $A \neq 0_{\sim} \neq B$, A $\subseteq B^c$
- (v) There exists no bipolar vague regular α generalized open sets A and B in (X, BV_T) such that $A \neq 0_{\sim} \neq B$, B $= (BV_{\alpha}Cl(A))^{c}, A = (BV_{\alpha}Cl(B))^{c}$
- (vi) There exists no bipolar vague regular α generalized closed sets A and B in (X, BV₇) such that $A \neq 1_{\sim} \neq B$, $B = (BV_{\alpha}Int(A))^{c}$, $A = (BV_{\alpha}Int(B))^{c}$

Proof:

- (i)⇒(ii) Assume that there exists a bipolar vague regular α generalized open set A in (X, BV_{τ}) such that $A \neq 0_{\sim}$ and $BV_{\alpha}Cl(A) \neq 1_{\sim}$. Now let $B = BV_{\alpha}Int(BV_{\alpha}Cl(A))^{c}$. Then B is a proper bipolar vague regular α generalized open sets in (X, BV_{τ}) . But this is a contradiction to the fact that (X, BV_{τ}) is a bipolar vague regular α generalized super connected space. Therefore $BV_{\alpha}Cl(A) = 1_{\sim}$.
- (ii) \Rightarrow (iii) Let A \neq 1_{\times} be a bipolar vague regular α generalized closed set in (X, BV_{\times}). If B = A^c, then B is a bipolar vague regular α generalized open set in (X, BV_{τ}) with $B \neq 0_{\sim}$. Hence $BV_{\alpha}Cl(B) \neq 1_{\sim}$, by hypothesis. This implies $(BV_{\alpha}Cl(B))^c = 0_{\sim}$. That is $BV_{\alpha}Int(B^c) = 0_{\sim}$. Hence $BV_{\alpha}Int(A) = 0_{\sim}$.
- (iii) \Rightarrow (iv) Suppose A and B be two bipolar vague regular α generalized open sets in (X, BV_{τ}) such that $A \neq 0_{\sim} \neq B$, $A \subseteq B^c$. Since B^c is a bipolar vague regular α generalized closed set in (X, BV_{τ}) and $B \neq 0_{\sim}$ implies $B^c \neq 1_{\sim}$, $B^c = BV_{\alpha}Cl(BV_{\alpha}Int(B^c))$ and we have $BV_{\alpha}Int(B^c) = 0_{\sim}$. But $A \subseteq B^c$. Therefore $0_{\sim} \neq A = 0$ $BV_{\alpha}Int(BV_{\alpha}Cl(A)) \subseteq BV_{\alpha}Int(BV_{\alpha}Cl(B^{c})) = BV_{\alpha}Int(BV_{\alpha}Cl(BV_{\alpha}Cl(BV_{\alpha}Int(B^{c})))) = BV_{\alpha}Int(BV_{\alpha}Cl(BV_{\alpha}Int(B^{c}))) = BV_{\alpha}Int(BV_{\alpha}Int(BV_{\alpha}Int(B^{c}))) = BV_{\alpha}Int(BV_{\alpha}Int(B^{c})) = BV_{\alpha}Int(B^{c}) = BV_{\alpha}Int(B^{c})$ $BV_{\alpha}Int(B^{c}) = 0_{\sim}$ which is a contradiction. Therefore (iv) is true.
- (iv) \Rightarrow (i) Suppose $0_{\sim} \neq A \neq 1_{\sim}$ be a bipolar vague regular α generalized open set in (X, BV_{τ}) . If we take B = $(BV_{\alpha}Cl(A))^{c}$, then B is a bipolar vague regular α generalized open set, since $BV_{\alpha}Int(BV_{\alpha}Cl(B)) =$ $BV_{\alpha}Int (BV_{\alpha}Cl (BV_{\alpha}Cl (A))^{c}) = BV_{\alpha}Int (BV_{\alpha}Cl (A))^{c} = BV_{\alpha}Int (A^{c}) = (BV_{\alpha}Cl (A))^{c} = B.$ Also, we get B $\neq 0_{\sim}$, since otherwise, if B = 0_{\sim} , this implies $(BV_{\alpha}Cl(A))^{c} = 0_{\sim}$. That is $BV_{\alpha}Cl(A) = 1_{\sim}$. Hence A = $BV_{\alpha}Int$ $(BV_{\alpha}Cl(A)) = BV_{\alpha}Int(1_{\sim}) = 1_{\sim}$, which is a contradiction. Therefore $B \neq 0_{\sim}$ and $A \subseteq B^{c}$. But this is a contradiction to (iv). Therefore (X, BV_{τ}) is a bipolar vague α generalized super connected space.
- (i) \Rightarrow (v) Suppose A and B are any two bipolar vague regular α generalized open sets in (X, BV_{τ}) such that A $\neq 0_{\sim} \neq B, B = (BV_{\alpha}Cl(A))^{c}$ and $A = (BV_{\alpha}Cl(B))^{c}$. Now we have $BV_{\alpha}Int(BV_{\alpha}Cl(A)) = BV_{\alpha}Int(B^{c}) = (BV_{\alpha}Cl(B))^{c}$ = A, A $\neq 0_{\sim}$ and A $\neq 1_{\sim}$, since if A $\neq 1_{\sim}$, then $1_{\sim} = (BV_{\alpha}Cl(B))^{c} \Rightarrow BV_{\alpha}Cl(B) = 0_{\sim} \Rightarrow B = 0_{\sim}$. But B $\neq 0_{\sim}$. Therefore $A \neq 1_{\sim} \Rightarrow A$ is a proper bipolar vague regular α generalized open set in (X, BV_{τ}) , which is a contradiction to (i). Hence (v) is true.
- $(v) \Rightarrow (i)$ Suppose A is a bipolar vague regular α generalized open set in (X, BV_{τ}) such that $0_{\sim} \neq A \neq$ 1_{\sim} . Now take B = $(BV_{\alpha}Cl(A))^{c}$. In this case we get B $\neq 0_{\sim}$ and B is a bipolar vague regular α generalized open set in (X, BV_{τ}) , $B = (BV_{\alpha}Cl(A))^{c}$ and $(BV_{\alpha}Cl(B))^{c} = (BV_{\alpha}Cl(BV_{\alpha}Cl(A))^{c})^{c} = BV_{\alpha}Int(BV_{\alpha}Cl(A)^{c})^{c} = BV_{\alpha}Int(BV_{\alpha}Cl(A)^{c})$

 $BV_{\alpha}Int(BV_{\alpha}Cl(A)) = A$. But this is a contradiction to (v). Therefore (X, BV_{τ}) is a bipolar vague α generalized super connected space.

 $(v) \Rightarrow (vi)$ Suppose A and B be two bipolar vague regular α generalized closed sets in (X, BV_{τ}) such that $A \neq 1_{\sim} \neq B$, $B = (BV_{\alpha}Int(A))^{c}$ and $A = (BV_{\alpha}Int(B))^{c}$. Taking $C = A^{c}$ and $D = B^{c}$, C and D become bipolar vague regular α generalized open sets in (X, BV_{τ}) with $C \neq 0_{\sim} \neq D$, $D = (BV_{\alpha}Cl(C))^{c} = (BV_{\alpha}Cl(D))^{c}$, which is a contradiction to (v). Hence (vi) is true.

 $(vi) \Rightarrow (v)$ It can be proved easily by the similar way as in $(v) \Rightarrow (vi)$.

Definition 3.27: A bipolar vague topological space (X, BV_{τ}) is said to be a bipolar vague α generalized extremally disconnected space if the bipolar vague α generalized closure of every bipolar vague α generalized open set in (X, BV_{τ}) is a bipolar vague α generalized open set.

Theorem 3.28: Let (X, BV_{τ}) be a bipolar vague topological space, then the following are equivalent:

- (i) (X, BV_{τ}) is a bipolar vague α generalized extremally disconnected space.
- (ii) For each bipolar vague α generalized closed set A, $BV_{\alpha}Int(A)$ is a bipolar vague α generalized closed set.
- (iii) For each bipolar vague α generalized open set A, $BV_{\alpha}Cl(A) = (BV_{\alpha}Cl(BV_{\alpha}Cl(A))^{c})^{c}$
- (iv) For each bipolar vague α generalized open sets A and B with $BV_{\alpha}Cl(A) = B^{c}$, $BV_{\alpha}Cl(A) = (BV_{\alpha}Cl(B))^{c}$.

Proof: (i) \Rightarrow (ii) Let A be any bipolar vague α generalized closed set. Then A^c is a bipolar vague α generalized open set. So (i) implies that $BV_{\alpha}Cl(A^{c}) = (BV_{\alpha}Int(A))^{c}$ is a bipolar vague α generalized open set. Then $BV_{\alpha}Int(A)$ is a bipolar vague α generalized closed set in (X, BV_{τ}) .

(ii) \Rightarrow (iii) Let A be bipolar vague α generalized open set. Then we have $BV_{\alpha}Cl(BV_{\alpha}Cl(A))^{c} = BV_{\alpha}Cl(BV_{\alpha}Int(A^{c}))$. Therefore $(BV_{\alpha}Cl(BV_{\alpha}Cl(A))^{c})^{c} = (BV_{\alpha}Cl(BV_{\alpha}Int(A^{c})))^{c}$. Since A is a bipolar vague α generalized open set. Then A^c is a bipolar vague α generalized closed set. So by (ii) BV_{\alpha}Int(A^c) is a bipolar vague α generalized closed set. That is $BV_{\alpha}Cl(BV_{\alpha}Int(A^{c})) = BV_{\alpha}Int(A^{c})$. Hence $(BV_{\alpha}Cl(BV_{\alpha}Int(A^{c})))^{c} = (BV_{\alpha}Int(A^{c}))^{c} = BV_{\alpha}Cl(A)$.

(iii) \Rightarrow (iv) Let A and B be any two bipolar vague α generalized open sets in (X, BV_{τ}) such that $BV_{\alpha}Cl(A) = B^{c}$. (iii) implies $BV_{\alpha}Cl(A) = (BV_{\alpha}Cl(BV_{\alpha}Cl(A))^{c})^{c} = (BV_{\alpha}Cl(B^{c}))^{c} = (BV_{\alpha}Cl(B))^{c}$.

(iv) \Rightarrow (i) Let A and B be any two bipolar vague α generalized open sets in (X, BV_{τ}) with $BV_{\alpha}Cl(A) = B^{c}$ and $BV_{\alpha}Cl(A) = (BV_{\alpha}Cl(B))^{c}$. From $BV_{\alpha}Cl(A) = B^{c} \Rightarrow B = (BV_{\alpha}Cl(A))^{c}$. Since $BV_{\alpha}Cl(B)$ is a bipolar vague α generalized closed set, this implies that $BV_{\alpha}Cl(A)$ is a bipolar vague α generalized open set. This implies that (X, BV_{τ}) is a bipolar vague α generalized extremally disconnected space.

References:

- 1. Arockiarani.I and Cicily Flora.S., Positive Implicative bipolar vague ideals in BCKalgebras, International research journal of pure algebra, 2016, 1-7.
- 2. Atanassov.K., Intuitionistic fuzzy sets, Fuzzy sets and systems, 1986, 87-96.
- 3. Chang.C.L., Fuzzy topological spaces, J Math. Anal. Appl, 1968, 182-190.
- 4. Cicily Flora.S and Arockiarani.I., A new class of Generalized bipolar vague sets, International journal of information research and review, 2016, 3058-3065.

- 5. Cicily Flora.S and Arockiarani.I., On bipolar vague ring in baire spaces, Bulletin of mathematics and statistics research, 2017, 1-9.
- 6. Coker.D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 1997, 81-89.
- 7. Ekici.E and Etienne Kerre.K., On fuzzy contra continuities, Advances in Fuzzy Mathematics, 2006, 35-44.
- 8. Gau.W.L and D.J.Buehrer., Vague sets, IEEE Trans. Systems Man and Cybernet, 1993, 610-614.
- 9. Kresteska.B and Ekici.E., Intuitionistic fuzzy contra strong precontinuity, Faculty of sciences and Mathematics, University of Nis, Siberia, 2007, 273-284.
- 10. Lee.K.M., Bipolar-valued fuzzy sets and their operations, Proc. Int. Conf. on Intelligent technologies, Bangkok, Thailand, 2000, 307-312.
- 11. Levine.N., Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, 1970, 89-96.
- 12. Ozcag.S and Coker.D., On connectedness in intuitionistic fuzzy special topological spaces, International journal of Mathematical Science, 1998, 33-40.
- 13. Prishka.F and Mariapresenti.L., Bipolar vague α generalized closed sets in topological spaces, Journal of Basic Science and Engineering, 2024, 1390-1398.
- 14. Prishka.F and Mariapresenti.L., Bipolar vague α generalized continuous mappings in topological spaces, Communications on Applied Nonlinear Analysis, 2024, 318-329.
- 15. Zadeh.L.A., Fuzzy sets, Information and control, 1965, 338-335.