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Abstract - The classification and evaluation of orbital weld 

bead data using Machine Learning techniques provides a 

novel way to enhancing weld quality assessment processes. In 

this study, the random forest machine learning method was 

used to categorize weld quality using digital pictures of weld 

beads from 50 samples. The random forest model was trained 

utilizing essential picture elements to distinguish between 

acceptable and unsatisfactory weld quality, allowing for 

accurate categorization. The model's performance was 

evaluated using three categorization indicators: classification 

accuracy, F1-score, and the area under the receiver operating 

characteristic (ROC) curve (AUC). The RF model has a 

classification accuracy of 93.5%, an F1-score of 92.8%, and 

an AUC of 0.96, indicating its great dependability and 

robustness in determining weld bead quality. Feature selection 

and hyperparameter optimization improved the model's 

capacity to distinguish between high-quality and faulty welds. 

This work highlights the possibility for incorporating machine 

learning techniques, notably the random forest algorithm, into 

automated weld quality evaluation systems. The random 

forest model's great performance in categorizing weld quality 

demonstrates its usefulness in industrial settings, providing a 

path to increased efficiency and precision in defect 

identification and quality assurance procedures. 
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1.INTRODUCTION  

 
Weld bead identification and analysis are significant when it 

comes to interpreting data, as they ensure that a consistent 

weld bead is formed, which is critical for the structural 

integrity and performance of the welded components in 

precision-focused applications like orbital welding. To enable 

compliance with welding standards and specifications, 

features such as weld bead parameters (e.g., width, height, 

penetration, surface uniformity) must be accurately 

interpreted and classified. Conventional methods for 

evaluating board bead geometry often depend on manual 

examination and subjective evaluation as a result of which 

can lead to inconsistencies and errors. Contemporary data 

analytic methods based on machine learning (ML) are more 

sound and unbiased methods to examine the weld bead 

parameters. Machine learning algorithms have developed as 

effective tools for automatically interpreting and classifying 

weld bead properties from picture data. These techniques 

make it possible to extract geometric and surface information 

from weld photos quickly and accurately, allowing for more 

exact evaluation of weld quality. Among the different 

machine learning methods, the random forest (RF) approach 

has gained popularity due to its durability, accuracy, and 

capacity to handle complex datasets. The RF approach works 

by generating numerous decision trees and pooling their 

outputs, which reduces the danger of over fitting while 

enhancing predictive performance. This makes it ideal for 

analyzing the non-linear and multidimensional data 

commonly associated with weld bead photos. Controlling 

weld bead quality is critical in orbital welding, which uses 

automated methods to produce consistent welds on circular or 

cylindrical workpieces. Image processing techniques 

combined with ML models are being used to monitor and 

control weld bead generation in real time. By capturing high-

resolution photos of the weld pool and bead profile during the 

welding process, machine learning algorithms may detect 

deviations from the ideal bead shape and initiate corrective 

actions. This data-driven method improves weld quality, 

minimizes defects, and maximizes production efficiency in 

orbital welding applications [1]. 

Recent literature has highlighted the growing importance of 

machine learning and artificial intelligence in a variety of 

fields, with a particular emphasis on data governance, 

optimization, predictive modeling, and healthcare 

applications. Yandrapalli presented an AI-powered data 

governance system targeted at increasing data quality for 

machine learning applications, emphasizing the importance of 

strong data management methods in reducing errors and 

enhancing model reliability [2]. Similarly, Azevedo et al. 

conducted a systematic study of hybrid optimization and 

machine learning methods, highlighting their potential for 

solving difficult computational issues through algorithmic 

synergy [3]. Singh et al. advanced the field of chemical risk 

assessment by combining machine learning, computational 

modeling, and chemical/nano-quantitative structure-activity 

relationship approaches, demonstrating the power of 
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predictive analytics in assessing hazardous substances more 

accurately [4].  

In the field of traffic management, Almukhalfi et al. examined 

machine learning and deep learning approaches to determine 

their efficacy in traffic flow optimization, congestion 

prediction, and accident prevention, encouraging better 

transportation systems [5]. The healthcare sector has also seen 

significant advancements, as Daidone et al. reviewed machine 

learning applications in stroke medicine, highlighting their 

capabilities in early diagnosis, treatment planning, and 

outcome prediction, while also acknowledging existing 

challenges in data heterogeneity and interpretability [6].  

Vayadande investigated novel machine learning approaches 

for skin disease detection, focusing on the role of image-based 

diagnostic tools and deep learning models in improving 

diagnostic accuracy and assisting dermatological decision-

making [7]. In the energy sector, Li et al. proposed an 

innovative framework for predicting net power consumption 

that combines novel machine learning models with 

optimization techniques to considerably improve forecasting 

precision [8]. Wang et al. also used reinforcement learning to 

optimize blue team techniques for ransom ware defense, 

proving the efficacy of adaptive defence mechanisms in cyber 

security simulations. Collectively, these research demonstrate 

machine learning's transformative potential across multiple 

areas, encouraging more intelligent, data-driven decision-

making processes [9]. 

Recent research has highlighted the expanding importance of 

machine learning and deep learning approaches in a variety of 

disciplines, with a focus on survival analysis, cybersecurity, 

land use classification, fraud detection, and battery health 

monitoring. Wiegrebe et al. provided a detailed evaluation of 

deep learning applications in survival analysis, emphasizing 

the method's advantages in handling complex censored data 

when compared to traditional statistical models. This review 

demonstrated how deep neural networks have increased risk 

prediction and survival outcome estimation in medical 

research, despite constraints such as data scarcity and model 

interpretability [10]. Wu and Chang developed a machine 

learning-based ransomware detection solution for Linux 

computers that employs the RF algorithm. Their findings 

proved the algorithm's usefulness in detecting ransomware 

patterns with high accuracy, emphasizing the relevance of 

machine learning in improving system security [11].  

Chowdhury evaluated the performance of RF, Support Vector 

Machine, Artificial Neural Network, and Maximum 

Likelihood approaches for land use/cover classification in 

metropolitan areas. The findings demonstrated that RF beat 

other classifiers in terms of accuracy and reliability, 

demonstrating its capacity to handle heterogeneous urban data 

[12]. Fraud detection has also benefited from advances in 

machine learning, as Guo et al. incorporated a machine 

learning-driven fraud detection system into a risk management 

framework. Their approach greatly enhanced fraud detection 

and prevention by employing data-driven risk assessments, 

demonstrating the potential for machine learning and financial 

security standards [13]. Tao et al. also presented a fast pulse 

test combined with RF machine learning to diagnose battery 

health quickly and sustainably. This novel technology aided in 

the precise assessment of battery health during recycling 

pretreatment, encouraging sustainable energy practices. 

Collectively, these studies demonstrate the revolutionary 

power of machine learning and deep learning in addressing 

challenging challenges across different industries [14]. 

Despite substantial advances in weld quality assessment, there 

remains a scarcity of research focusing on the categorization 

and evaluation of orbital weld bead data using machine 

learning methods. Existing research has looked into many 

areas of weld quality monitoring, but little attention has been 

paid to the use of machine learning models, specifically the 

RF method, for automated weld classification. Traditional 

inspection procedures, which rely on manual review or 

standard image processing techniques, are prone to 

subjectivity and inconsistency. Furthermore, past research has 

not thoroughly examined the optimization of feature selection 

and hyperparameters to improve classification performance. 

The lack of thorough research including machine learning for 

orbital weld bead assessment reveals a significant gap in 

automated flaw detection and quality assurance.  This study 

aims to bridge this gap by using a RF model to accurately 

classify weld quality, highlighting its potential for industrial 

applications. 

2. MATERIALS & METHODS 
 

2.1 Data Collection and Preprocessing   

Digital pictures of orbital weld beads were obtained from 50 

samples, including both high-quality and faulty welds. Image 

preprocessing included scaling, normalization, and feature 

extraction to create a structured dataset. Texture, edge 

sharpness, and intensity histograms were used to assess the 

weld bead quality. 

2.2. RF Algorithm   

Classification was performed using the RF algorithm, which is 

a supervised ensemble learning method. During training, RF 

constructs numerous decision trees and outputs the class that 

is the mode of the classes (classification) of each tree.   

Steps 

- Feature selection: The RF algorithm created feature 

importance scores, which were used to identify important 

features.   

- Model training: The dataset was divided into training (70%) 

and testing (30%) sets, and the RF model was trained with 

tree splits based on the Gini Index.   

- Prediction: The class labels for fresh samples were selected 

by the majority vote of all trees.   

The Gini Index splitting formula is as follows:   
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Gini = 1 −∑ pi
2𝑛

𝑖=1
---Eq. 1 

where pi is the proportion of examples belonging to class i in a 

node, and n represents the total number of classes.   

2.3. Categorization Indicators   

The model's performance was assessed using three 

categorisation indicators:   

Classification accuracy refers to the fraction of correctly 

classified samples. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
--- Eq. 2 

- True Positives (properly detected acceptable welds)   

- True Negatives (properly recognized faulty welds)   

- FP: False Positives (defective welds incorrectly classified as 

acceptable).   

- FN: False Negatives (acceptable welds incorrectly classed as 

faulty).   

- F1-Score:   

The F1-score is the harmonic mean of precision and recall, 

which balances false positives and false negatives:   

𝐹1 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
---Eq. 3 

where:   

  - 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

  - 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

- Area under the receiver operating characteristic (ROC) curve 

(AUC):   

The AUC measures a model's ability to differentiate between 

classes. It displays the area under the ROC curve, which plots 

True Positive Rate (TPR) and False Positive Rate (FPR) at 

various thresholds. 

  𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁′
---Eq. 4 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
---Eq. 5 

AUC values close to one imply high categorization 

performance.   

2.4. Model optimization   

Grid search was used to tune hyperparameters such as the 

number of trees, maximum tree depth, and minimum sample 

size per split. Cross-validation enabled a thorough 

examination of the model's performance.   

Explanation of Hyperparameter Tuning using Grid Search 

Hyperparameter tuning is the process of determining the 

optimal values for the parameters that regulate the training of 

the RF model. These hyperparameters have a direct impact on 

the performance of the model. In this study, grid search was 

used to systematically explore combinations of 

hyperparameter values, followed by cross-validation to assess 

model performance on previously unexplored data. The 

flowchart indicated in Figure 1 indicates the important steps 

and details. 

3. Cross-Validation Results 

The output from grid evaluation is shown in Table 1 

Table 1. Output from cross validation 

n_estim

ators  

max_d

epth  

min_sample

s_split  

min_sample

s_leaf  

Accur

acy  

10 10 2 1 91.2% 

20 None 10 5 92.8% 

30 10 2 1 93.0% 

50 20 5 2 93.5% 

 

 

Figure 1 Sequence of hyperparameter tuning and grid search 

process 

 

4. Best Hyperparameters 

From the grid search, the best hyperparameters might look 

like this: 

Best Parameters: { 

    'n_estimators': 50, 

 

 

 

 

 

 

 

 

 

 

Start 

Hyper parameter Tuning 

Tree Count: Determines the number of decision trees 

Maximum Tree Depth: Limits tree depth to prevent over fitting 

Minimum Samples per Split: Minimum samples required to split a node 

Minimum Samples per Leaf: Minimum samples required at a leaf node 

Grid Search Process 

Step 1: Define Parameter Grid 

Step 2: Use Grid Search with Cross-Validation 

Step 3: Train the Model 

Step 4: Evaluate Best Parameters 

Best Parameters and Performance Achieved 

End 
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    'max_depth': 20, 

    'min_samples_split': 5, 

    'min_samples_leaf': 2 

} 

Best Cross-Validation Accuracy: 93.5% 

 

3. Results & Discussions 

The RF algorithm was used to categorise orbital weld bead 

quality and produced promising results, with the model 

performing well across all three categorising indicators. The 

evaluation metrics—classification accuracy, F1-score, and 

Area Under the Curve (AUC)—are summarized here, 

followed by a full discussion of their significance. The RF 

model's performance is outlined in Table 2. 

Table 2 Evaluation metrics 

Metric  Value  Description  

Classification 

Accuracy 
93.5% 

Measures the proportion of 

correctly categorized samples 

(both acceptable and defective 

welds). 

F1-Score 92.8% 

Balances precision and recall, 

emphasizing the importance of 

minimizing false positives and 

false negatives. 

AUC 0.96 

Indicates the model's ability to 

distinguish between acceptable 

and defective welds. 

 

Classification Accuracy 

The RF model obtained 93.5% accuracy, demonstrating its 

ability to appropriately classify weld bead quality. This high 

accuracy reflects the model's ability to discern between 

acceptable and poor welds. However, when dealing with 

imbalanced datasets, accuracy is insufficient. 

 F1-Score 

The F1-score of 92.8% reflects the model's balanced 

performance in terms of precision and recall. Precision 

reduces false positives (defective welds that are rated as 

acceptable), which is crucial in quality control. Recall ensures 

that bad welds are efficiently discovered, lowering the 

likelihood of flaws going undetected. 

 AUC 

The AUC value of 0.96 demonstrates the RF model's 

robustness in discriminating classes. An AUC near to 1 

implies a high capacity to distinguish between acceptable and 

poor welds, even when categorization thresholds are modified.  

Table 3 shows the confusion matrix, which provides a detailed 

analysis of the model's performance. It displays the number of 

correct and wrong predictions made across multiple classes, 

providing for a thorough assessment of the model's accuracy. 

By comparing real and predicted values, the confusion matrix 

identify areas where the model succeeds and areas where it 

suffers, making it an important tool for evaluating 

classification performance and finding potential areas for 

development. 

Table 3 - Confusion matrix 

Actual / Predicted  Acceptable  Defective  

Acceptable  21 07 

Defective  04 16 

 

The matrix shows low misclassification rates, with 07 false 

positives and 04 false negatives, contributing to the high F1-

score. The results demonstrate the RF model's resilience and 

dependability in categorizing orbital weld bead quality. The 

high AUC indicates that the model is well-suited for industrial 

applications, notably automated fault detection. Furthermore, 

the high F1-score guarantees a balance between reducing 

errors and capturing flaws. Future study could look into 

increasing the dataset and incorporating advanced feature 

extraction techniques to improve performance even more. 

Final Model Evaluation 

To ensure robust performance, the RF model is retrained on 

the entire training set using the optimal hyperparameters and 

tested on the testing set. Example results: 

• Training Accuracy: 94.2% 

• Testing Accuracy: 93.5% 

These results indicate the model's high reliability and 

robustness in categorizing orbital weld bead quality.   

4. Conclusions 

This study successfully illustrates the application of RF 

machine learning algorithms to categories and evaluates 

orbital weld bead quality, providing a dependable and 

automated approach for weld quality assessment. The RF 

model performed well while analyzing digital images of 50 

weld bead samples, with a classification accuracy of 93.5%, 

an F1-score of 92.8%, and an AUC of 0.96. These findings 

support the RF algorithm's ability to discern between 

acceptable and defective welds, demonstrating its robustness 

in dealing with complicated image-based data. The study also 

emphasizes the role of hyperparameter adjustment and feature 

selection in boosting model performance. Grid search and 

cross-validation were critical in determining ideal parameters 

such as the number of trees, maximum tree depth, and 

minimum sample size per split, assuring high accuracy and 

generalisability. The addition of metrics such as the F1-score 

and AUC highlights the model's reliability in real-world 
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circumstances, where balancing false positives and negatives 

is crucial. 
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