
 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 05 | May – 2025 DOI: 10.55041/ISJEM03885

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Cloud IDE: A Lightweight, Secure, and

Open-Source Remote Development Platform

Priti Routh Chirasmita Deb

Electronic and Communication Electronic and Communication

Institute of Engineering and Management Institute of Engineering and Management

Kolkata, West Bengal, India Kolkata, West Bengal, India

pritirouth535@gmail.com chirasmitadeb@gmail.com

Ratna Chakrabarty

Electronic and Communication

Institute of Engineering and Management

Kolkata, West Bengal, India

ratna.chakrabarty@iemedu.com

mailto:pritirouth535@gmail.com
mailto:chirasmitadeb@gmail.com
mailto:ratna.chakrabarty@iemedu.com

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 05 | May – 2025 DOI: 10.55041/ISJEM03885

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

Abstract— Existing cloud IDEs offer remote development

capabilities but require users to contend with expensive setup,

licensing charges and code storage insecurity. Cloud IDE

resolves these issues by allowing an employee to connect to

powerful employer computers over the internet through a web

browser without the issues of high setup complexity, licensing

fees, or the security ramifications of storing code.

Keywords—Cloud, Node. js, IDE's, Dev Tooling, Docker

I. INTRODUCTION

The growth of cloud computing has ushered unparalleled

change in software development, the introduction of

Cloud-Based Integrated Development Environments (Cloud

IDEs) being an example. On such platforms, developers can

create, test, and deploy code straight from the web browser,

removing the pain of local settings and facilitating

teamwork from distant parts. Cloud Integrated Development

Environments (IDEs) have fundamentally changed the use

of tools and resources by developers, providing solo and

team developers a simple accessibility to use, at their own

expense.

The creation and maintenance of local environments were

the biggest challenges of software development, which were

constantly facing compatibility, resource limitation or

cooperation hurdles. The manually coded procedures of

building compilers, debuggers, and version control systems

were tedious and highly variable with varying development

styles [1, 2].

By consolidating leading development tools within one

browser-based environment, cloud IDEs address these

challenges. The configurations consist of code editors,

debuggers, version control systems, deployment tools, and

cloud-based scalable infrastructure. The fact that developers

can work in real time and access their environment from any

connected device is a major benefit since it boosts

flexibility.

The presence of Cloud IDEs in schools has provided the

coding process to all the students, and programming

environments are easily accessible irrespective of hardware.

With such platforms being used in business environments,

teams are able to collaborate and track projects remotely,

with integrated development environments.

Auto-scaling and resource optimization capabilities of cloud

computing make it possible to run resource-consuming

tasks, like compilation or simulation of code, without

overloading local computers [7][8]. The programmers can

focus on coding instead of infrastructure.

But problems still exist. Though they have value, cloud

IDEs can still become a security risk when deployed to run

proprietary code on third-party servers, which need stable

internet connections. Furthermore, commercial IDEs will

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 05 | May – 2025 DOI: 10.55041/ISJEM03885

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

likely have usage limitations or fees that are not compatible

with large companies [3][4].

To overcome these limitations, this paper presents

Cloud-ID, an open-source self-hosted Cloud IDE. Cloud-ID

is designed to leverage the advantages of cloud development

while providing stronger security, control, and

personalization. Cloud-ID provides infrastructure and data

control, and thus it is apt for organizations seeking a secure,

scalable, and collaborative development environment [2].

This research examines the Cloud-ID model, its application,

and benefits, suggesting its capacity to revolutionize how

coders engage with code in cloud procedures.

II. LITERATURE REVIEW

Software development has been affected by cloud
computing to a great extent with the introduction of
Cloud-Based Integrated Development Environments (Cloud
IDEs). Cloud IDEs remove the need for local development
and transfer it to the cloud, which is easier to set up and
enhances collaboration work[1][7]. Technologies of
containerization and virtualization have also increased these
trends to a large extent[2].

Expansion of Cloud IDEs -

The first implementations like Cloud9 (now AWS
Cloud9)[7] had built-in terminals and editors, thereby
making web-centric development possible. It was later
followed by Replit[3] and CodeSandbox, who built upon it
by introducing multi-language execution and live
collaboration. Front-end development was further supported
by StackBlitz by enabling Node.js execution in-browser via
WebAssembly[4].

While these tools improve the ease of access and flexibility,
some of them create minimal but constricting usage
restrictions, vendor lock-ins, or extra costs[10]. GitHub
Codespaces, for example, is a powerful tool, but charges
users who do not stay within their ecosystem after a grace
period.

Security and Privacy Issues -

Data privacy issues are among the top concerns regarding
Cloud IDEs. Cloud storage of code and sensitive resources
allows access by unauthorized entities which makes it
highly prone to breach or leakage[1]. AWS Cloud9[7] and
Google Cloud Shell[8] offer robust security; however,
certain companies opt for self-hosted environments to retain
full control over their infrastructure.

Rise of Open-Source IDEs-

Open-source options such as Theia[11] and Eclipse Che[12]
offer self-hostable, customizable solutions without vendor
lock-in. Theia, for example, has a modular design and VS
Code-like experience, driving products such as Gitpod.

The Road Ahead-

Cloud IDEs are transforming to incorporate automation,
AI-based coding, and more extensive DevOps
integration[9].With more organizations embracing
cloud-first, secure, customizable, and open-source Cloud
IDEs—such as cloud-id - demand will increase

III. METHODOLOGY

The methodology part of this paper describes the approach,

design, and methods of studying the architecture,

implementation, and operation of Cloud-ID, an open-source

Cloud IDE. The process consists of three main phases:

system design, implementation, and testing. Each phase is

discussed in detail to gain an overall idea of the

development process, motivation behind design choices, and

technologies employed.

1. System Design

The architecture of Cloud-ID is rooted in the central

philosophy of delivering an open-source, extensible, and

secure Cloud IDE capable of addressing both individual

developers and organizational needs[9]. The infrastructure is

designed flexibly as the focus point, where the system can

be customized based on user interface, functionality, and

integration with third-party tools and services.

fig.[1]

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 05 | May – 2025 DOI: 10.55041/ISJEM03885

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

1.1. Architecture

Cloud-ID uses a microservice architectural style with

system partitioning into small components, which each can

be independently developed and maintained. Key benefits

include independent deployment and update of each

component, greater agility in development and operations.

These components include:

Frontend (User Interface): The UI is implemented using

React.js. It also utilizes WebSockets enabling real-time

interaction. The frontend deals with commands from users,

creates the rendering of the development environment, and

calls corresponding services in the backend using REST

APIs and WebSockets.

Backend (Core Services): The backend comprises several

specialized microservices that handle essential IDE

operations. These include editing, compiling, debugging,

and version control. Each service is responsible for a

distinct function such as running code, managing

repositories, or performing debugging.

Isolated Development Environments: Cloud-ID has

employed the use of Docker containers for managing user

sessions to ensure consistency and security. Each developer

is provided with a dedicated container environment which

guarantees that workspaces are isolated, reproducible, and

dynamic in scale based on demand.

Integration with Cloud Storage: The system works in

conjunction with cloud storage systems such as AWS S3

and Google Cloud Storage, allowing management and

storage of user files, configurations, and logs. This ensures

that users can access their projects from multiple systems

while their progress remains stored in the cloud.

1.2. Why Security is Important

Because of the dangers involved with running and storing

user code on remote servers, security is one of the main

features of Cloud-ID's infrastructure. There are multiple

layers of security that the platform uses.

End-To-End Encryption: Every communication between

frontend and backend services and the cloud is protected

under HTTPS and WSS (WebSockets Secure) protecting

delicate information like code and login details during

transmission.

Authentication & Authorization: Storing passwords

becomes redundant because OAuth2 allows secure logins

through verified third-party providers such as Google,

GitHub, and GitLab. Resource restriction is controlled

through role-based authorization which permits or limits

resource access based on user status.

Data Isolation: Each session is allocated a Docker container

which means user data is not exposed to the public, ensuring

privacy. Additionally access to the cloud storage is

extremely limited making data remains confidential and

secure from unauthorized users.

2. Implementation

The development of Cloud-ID is done by following agile

practices which allow for change and constant

improvement. The overall development process can be

broken down into three major activities: initial setup, feature

implementation, and testing.

2.1. Initial Setup

During the setup phase, the development team made the

following selections to aid in the creation of a robust

scalable system:

Frontend: The modern architecture of component reuse in

React.js guarantees the implementation of the client using

this library. Moreover, WebSocket protocols will be used to

facilitate instant collaboration and feedback between the

server and client.

Backend: The service type will be implemented using

Node.js and Express.js as they allow for the asynchronous,

event-driven, and non-blocking model of service request

handling.

Containerization: User environments were Dockered to

provide reproducibility, isolation, and consistency

throughout development sessions and across platforms.

Cloud Infrastructure: Both AWS and Google Cloud services

were utilized. Amazon S3 served as a dependable file

storage utility while Google Cloud’s Kubernetes Engine

took care of the backend’s containerized services’

management and orchestration.

2.2. Feature Implementation

With the foundation in place, the core functionality and

collaborative features of the platform were implemented:

Code Editor: Based on Microsoft’s Monaco Editor, the code

editor supports multiple languages with features like syntax

highlighting, autocompletion, and error detection.

Compiler & Debugger Integration: Each user’s code is

compiled and debugged inside an isolated Docker container,

ensuring a clean and secure runtime environment.

Version Control: Git-based version control was integrated,

allowing users to perform repository operations (clone,

commit, push, etc.) with platforms like GitHub and GitLab

directly within the IDE.

Real-Time Collaboration: Users can collaborate on the same

project in real time. Using WebSockets, any changes made

by one user are instantly reflected across all active sessions.

Cloud File Storage: Project data is stored in AWS S3 or

Google Cloud Storage, allowing users to save, retrieve, and

access files securely from any location.

2.3. Testing

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 05 | May – 2025 DOI: 10.55041/ISJEM03885

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

Ensuring the Cloud-ID platform's reliability necessitated a

multi-layered testing approach throughout the development

cycle. A combination of various testing methodologies was

utilized to ensure the stability of the platform and each

component's correct operation under different conditions:

Component-Level Verification: All microservices, such as

the code editor, compiler engine, and versioning module,

were verified separately with Mocha and Chai (Node.js).

Low-level tests validated that standalone pieces were

functioning as expected and satisfied design requirements.

System Integration Validation: For proper collaboration

among modules, integration tests were employed to test the

flow of data and logic among the user interface, backend

services, and cloud infrastructure. This ensured that

components functioned as expected when integrated.

Simulated User Behavior Testing: End-to-end workflow

scenarios—e.g., authentication, project creation, editing, and

code compilation—were tested using automated tools like

Selenium. Such simulations mimicked end-user activity to

verify that the application operated as anticipated within

actual use cases.

Scalability & Performance Tests: Through the use of tools

such as Apache Jmeter, the system was tested for high user

concurrency. The team tested for response consistency, load

tolerance, and resource capacity under such a scenario to

gauge the platform's readiness for mass consumption.

3. Evaluation

After development, a comprehensive evaluation phase was

conducted to determine both the practical usability and

operational performance of Cloud-ID. The evaluation

employed a mix of empirical data and user-led insights:

Qualitative User Assessment: Feedback was collected from

early users using structured interviews and questionnaires.

This measured how intuitive, functional, and satisfying the

platform was from the user's point of view, identifying areas

for improvement.

Operational Performance Monitoring: Real-time

performance of the platform—e.g., system uptime, latency,

and resource utilization—was monitored through

observability stacks such as Grafana and Prometheus, which

facilitated continuous improvement in service efficiency.

Competitor Benchmarking Research: Cloud-ID features

were compared with leading alternatives including Replit,

AWS Cloud9, and GitHub Codespaces using metrics such as

startup performance, feature depth, security strength, and

general user opinion, with the intention of determining

Cloud-ID's position within the market as well as identifying

areas to develop further.

IV. IMPLEMENTATION

Cloud-ID functions as a set of decoupled modules

working together to provide a responsive, secure, and

user-friendly development environment. The platform is

designed with a modular architecture that enables

independent scaling, easy maintenance, and

replacement of components without affecting the entire

platform.

1. Backend Infrastructure

Central to Cloud-ID is its backend framework, which

orchestrates the key services that manage containers,

user sessions, code execution, and file persistence.

Session Orchestration:

When a user starts a session, the backend creates a fresh

Docker container from a standardized base image. This

image is already pre-loaded with a Linux distribution

and pre-installed with development tooling like Node.js,

Python, Java, Git, Vim, and typical build utilities. Each

container is run within an isolated user namespace,

giving complete runtime isolation to ensure secure,

individualized workspaces.

File System Mapping:

To ensure continuity across sessions, each user is

assigned a dedicated Docker volume. This volume is

attached to the container and retains project files,

configuration preferences, and temporary data. As a

result, users returning to the environment after

disconnection or reboot will find their workspace intact,

just as they left it .

fig.[2]

Execution Management:

Commands typed via the browser-terminal are sent to the

backend, which in turn runs them within the user's

container. Outputs (standard output and standard error) are

read in real-time and streamed back to the user.

Synchronous command execution and interactive sessions

are both supported[2]]6].

Resource Cleanup:

Containers are memory-hungry if not controlled. Thus, an

inactivity timeout feature is introduced. A container is

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 05 | May – 2025 DOI: 10.55041/ISJEM03885

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

forcefully terminated and unloaded if it happens to be idle

(no current WebSocket[5] connection or command

execution) for more than a configurable amount of time

(e.g., 30 minutes).

2. Bridge Layer (Real-Time Communication Server)

The bridge layer plays the role of middleware between

frontend client and backend containers, focusing mainly on

real-time bi-directional communication[5].

WebSocket Management:

A secure WebSocket (WSS) server is employed to maintain

persistent, low-latency connections with the frontend[5].

Each connection is authenticated using JWT (JSON Web

Token) tokens generated upon login. This ensures that only

valid users can communicate with their corresponding

sessions.

Session Mapping:

Each user's socket connection is associated with their own

Docker container session. Upon receiving a message

(command, file edit, terminal input) through WebSocket, the

bridge server sends it appropriately, maintaining isolation

between user sessions[5].

Load Handling:

For improving scalability, the bridge server is made stateless

wherever possible, so multiple instances of the bridge can

be run behind a load balancer, giving horizontal scaling

capability for large-scale deployments[7][8].

3. Client-Side (Frontend)

The client-side application offers an intuitive, responsive,

and light-weight user interface for users to interact with

their development environments[4].

Editor:

The frontend's backbone is the built-in code editor, which is

achieved through powerful libraries like Monaco Editor (the

same editor used by Visual Studio Code) or

CodeMirror[10][11]. The editor can include features like

syntax highlighting, autocompletion, error checking, and

multi-file editing.

Terminal:

An embedded, browser-based terminal emulator (i.e.,

xterm.js) is included, allowing users to execute shell

commands directly within their container from their

browser[6]. This offers an uncomplicated, near-native

developer experience without the need for local software

installations.

Project Explorer:

The project explorer UI shows the user's file system

structure, supporting typical file operations such as making,

removing, renaming, and moving folders/files. Changes are

real-time synced with the backend volume storage[2][4].

Session Management UI:

Login and authentication screens handle user identities.

After successful authentication, the system restores a

previous session or creates a new one. The UI also shows

session status (e.g., active, disconnected) and provides

actions such as disconnecting or resetting the

environment[10].

4. Security Measures

Security is a fundamental cornerstone of Cloud-ID's design,

and several layers of protection are integrated into each

module.

Secure Communication:

All frontend-backend traffic is exchanged using WSS

(WebSocket Secure) connections, secure traffic encryption

and avoiding man-in-the-middle attacks[5].

Isolated Networking:

Each container runs on its own isolated virtual network.

Users' containers can't be accessed or seen by other users

unless specifically allowed for, avoiding lateral movement

during a potential breach[2]]7].

User-Specific Permissions:

Role-Based Access Control (RBAC) is enforced, limiting

what a user can do based on the role they are playing (e.g.,

admin versus standard user). Every user session is tied to

their identity[9][10], so they only have access to their own

workspace.

File Storage Security:

User volumes are encrypted when stored, so data is still safe

even if server disks are breached[7][8].

Audit Logging:

Significant activities like login attempts, container creation,

and administrative activities are logged centrally for security

audit and forensic purposes[9].

5. Optimizations in Resource and Scalability

Bandwidth Optimization:

Rather than uploading full files for every save, Cloud-ID's

editor client computes diffs (changes) and only sends the

smallest difference set, significantly cutting back on

bandwidth use[4].

Lazy Loading:

Non-critical resources like project history or settings are

only loaded when they are required to ensure a rapid initial

load[4][10].

Auto-Scaling (Future Improvements):

The architecture is designed to accommodate Kubernetes

integration for auto-scaling of containers and bridge servers

as per the system load. This guarantees seamless functioning

even during traffic bursts[7][8][12].

V. Acknowledgment

The writer would like to take this opportunity to express

warmest thanks to Professor Mrs Ratna Chakrabarty for her

precious advice, guidance, and constant encouragement

throughout the duration of this project. Her inspiration and

confidence in my work helped pave the way for this study,

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 05 | May – 2025 DOI: 10.55041/ISJEM03885

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 7

giving me a chance to prove myself and test my abilities in a

purposeful and scholarly environment.

We also express our sincere gratitude to the open-source

community for their foundational contributions to cloud

computing, containerization, and browser-based application

development. Projects such as Docker[2], Kubernetes[12],

Node.js, and open-source code editors have paved the way

for platforms like Cloud-ID to materialize. Special thanks to

platforms like Repl.it[3], StackBlitz[4], and CodeSandbox

for pioneering the concept of accessible cloud IDEs, serving

as critical inspirations for this project.

It has really been a great and life-changing experience, and I

appreciate the chance to be able to give this project life

under her guidance.

VI. REFERENCES

The following articles are the references used in order to
complete this research paper

[1] Blewitt, William, Gary Ushaw, and Graham Morgan. "Applicability

Docker Documentation – https://docs.docker.com/

[2] Replit Official Documentation – https://docs.replit.com/

[3] StackBlitz: Online IDE for Web Applications – https://stackblitz.com/

[4] CodeSandbox Documentation – https://codesandbox.io/docs

[5] WebSockets: Real-Time Communication –
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

[6] xterm.js: Terminal for the Web – https://xtermjs.org/

[7] Amazon Web Services (AWS) - Cloud Computing Basics –

https://aws.amazon.com/what-is-cloud-computing/

[8] Google Cloud Platform (GCP) - Cloud Computing Concepts –

https://cloud.google.com/docs

[9] "A Survey of Cloud-based Integrated Development Environments" -

Academic Paper Source

[10] GitHub - Cloud-ID Project Repository –

[11] Eclipse Theia Documentation,-https://theia-ide.org/

[12] Eclipse Che Documentation, https://www.eclipse.org/che/

https://stackblitz.com/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://xtermjs.org/
https://aws.amazon.com/what-is-cloud-computing/
https://arxiv.org/abs/1905.02977
https://theia-ide.org/
https://www.eclipse.org/che/

