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Abstract:- Purpose: This study looks at how well lattice-structured titanium dental implants—Gyroid, X-Cell, and 

Diamond designs—work when made with two different levels of porosity (20% and 40%) and compared to a totally 

solid implant. 

Methods: We used Finite Element Analysis (ANSYS) to model physiological axial loading. The most important 

numbers were the maximum von Mises stress, the maximum deformation, and the average deformation for all 

implant types. 

Results: Higher porosity always lowered peak stress but raised deformation, showing a trade-off between stiffness 

and compliance. The X-Cell structure had the best mechanical balance at 20% porosity, while the Gyroid design 

was better at handling stress with little deformation. Diamond, on the other hand, had too much compliance at 40% 

porosity, which made it less useful under high load. 

Conclusion: The mechanical behaviour is greatly affected by the lattice geometry and porosity. X-Cell (20%) and 

Gyroid (20%) arrangements look like they could be good ideas for implants that work well mechanically and 

respond to biological signals. The results show how important it is to optimise the structure of next-generation 

dental prosthesis. 
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1. Introduction :-   

The growing need for dental implants that are made just for each patient has led to the quick development of new 

manufacturing technologies, especially additive manufacturing (AM), which is also called 3D printing. With AM, 

it's possible to make highly customised implants with complicated internal shapes that couldn't be made with 

standard subtractive processes. One of the best things about AM is that it makes it possible to make porous lattice 

structures inside implants. These structures can be changed to make osseointegration better, encourage 

vascularization, and better imitate the mechanical properties of normal bone [1,2]. One of the biggest problems in 

dental implantology is dealing with the fact that dense titanium implants don't fit well with the surrounding 

cancellous or cortical bone. This difference can cause stress shielding, bone loss, and the implant to fail [3,4]. 

Adding porous structures to the implant body makes it possible to change the stiffness so that it is more like that of 

natural bone. This improves mechanical compatibility and long-term clinical success [5]. To reach this goal, other 

lattice shapes have been suggested, including gyroid, diamond, and cubic-octahedron. Each shape has its own 

structural and biomechanical qualities [6,7]. Porosity affects how well an implant works in two ways. On the one 

hand, making things more porous helps tissues grow and makes biological fixation better [8,9]. Too much porosity, 

on the other hand, could make things less stable and less able to hold weight [10]. So, it's very important to find the 

right balance between mechanical integrity and biological performance by optimising both the lattice topology and 

the porosity level. Studies have shown that lattice constructions with 20–40% porosity tend to work well for 

integrating bone without greatly affecting how well they work mechanically [11–13]. A lot of people now use Finite 
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Element Analysis (FEA) to check how well these complicated porous structures work mechanically. FEA lets you 

simulate physiological loading situations and gives you information about stress distribution, deformation patterns, 

and effective stiffness without having to make physical prototypes [14,15]. FEA has been used in the past to look 

into how the topology of the lattice, the size of the pores, and the orientation of the unit cell affect the compressive 

behaviour and  elastic modulus of dental and orthopaedic implants [16–18].   

These analyses provide a cheap and quick way to check the design of an implant before it is built. Gyroid structures, 

which fall under the category of Triply Periodic Minimal Surfaces (TPMS), have become quite popular because 

they have a constant curvature, a large surface area, and are mechanically isotropic [19,20]. They have done well 

with both static and dynamic loads, which makes them good candidates for dental applications that need to hold 

weight [21]. Diamond lattices have a high strength-to-weight ratio because their nodes link to each other. Octet 

trusses, on the other hand, are recognised for being very rigid and not buckling when compressed [22,23]. There 

aren't many research that compare these shapes, though, especially when it comes to controlled changes in porosity 

utilising simulation-based methods. In the past few years, a number of studies have looked at the mechanical and 

biological effects of lattice-based implants. For example, Wally et al. [24] showed that lattice structures with graded 

porosity made loads distribution as well as bone-matching modulus better in selective laser melted Ti-6 Al-4V 

Figure. 1.1 Parts of Dental Implant 
 

Figure. 1.2 Gyroid Lattice CAD-FEA-Additive Manufactured 
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scaffolds.  In the same way, Xu et al. [11] created functionally graded scaffolds based on gyroids and tested their 

design with FEA and real-world compression tests. But these studies usually only look at one type of lattice or a 

set level of porosity, and they don't look at how different designs work under the same simulation conditions. Also, 

while some FEA studies have shown that porous implants are safe for orthopaedic and cranial use [25–27], not 

many have looked at dental implants that are put under normal bite forces. For instance, Takaki et al. [30] discovered 

that the average occlusal loads might be between 200 and 700 N, depending on the patient's age and where the tooth 

is located. This shows how important it is to design implants that are mechanically strong. Before using these 

structures in real life, it would be helpful to test them by simulating these kinds of forces on them. This study intends 

to fill in the gaps by doing an organised finite element analysis of 3D printed dental implant models with three 

different the lattice topologies—gyroid, diamond, and octet—each tested at two levels of porosity (20% and 40%). 

Using Ti-6Al-4V as the implant material, the implants are tested under compressive loading conditions that are 

similar to occlusal forces. To measure and compare biomechanical performance, we use mechanical metrics such 

von Mises stress, overall displacement, and effective elastic modulus. The goal is to find the lattice–porosity 

combination that gives the best balance between durability and design freedom that depends on porosity. This study 

adds to the expanding body of research by directly comparing different types of lattices and levels of porosity under 

the same loading and boundaries. The results are meant to help with the early design of dental implants, which will 

make it less necessary to use trial-and-error prototyping and move towards safer, more effective solutions for each 

patient. 

2. Literature Review :- 

2.1 Evaluation of 3D printing in Dental Implantology:-   

Additive manufacturing (AM), especially 3D printing, has changed the way dental implants are designed by 

allowing for customisation, complicated shapes, and biomimetic architecture. Early uses were mostly on making 

implants that fit each patient based on CT scans [2]. This has now led to the creation of porous scaffolds that look 

like trabecular bone, with the goal of improving osseointegration and mechanical compatibility [1][5][6]. The 

implementation of additive manufacturing in oral surgery is not solely cosmetic or geometric; it has a direct impact 

on clinical outcomes. Demonstrated that 3D printed surgical guides decrease operative duration, [3] [4] and their 

synergy with biocompatible materials facilitates functionally graded implants. [5] 

2.2  Lattice Structure and Mechanical Optimization 

 Lattice design is an important part of implant engineering since it makes the implants strong and works like 

biological systems. Researchers have looked at the load distribution and stress absorption features of structures like 

gyroid, diamond, and cubic-octahedron in great detail [10][11][12]. Cubic-octahedron and gyroid lattices make the 

biomechanical response better when there is a load [10]. Gyroid-based functionally graded porous scaffolds, on the 

other hand, mirror the anisotropy of human bone [11]. Gyroid lattice structures can mimic how trabecular bone 

behaves when it is compressed, which makes them good for use in cancellous bone implants [12]. Gyroid lattices 

made with selective laser melting (SLM) are very good at withstanding dynamic impacts, which makes them even 

better for use in mouth prosthesis [14]. Finite element analysis (FEA) also backs up the usage of 3D printed Co-Cr 

lattices for testing under real-world clinical circumstances [13]. 
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2.3 FEA in Implant Design  

FEA is an essential technique for modelling how implants work in complicated anatomical settings [1]. Lattice 

trends are very important for simulation models that try to guess how implants would work when chewing forces 

are applied [16]. ANSYS simulations have shown that strut-based cranial implants are mechanically reliable [17]. 

Researchers have found that changing the size of the struts and pores in a unit cell can change the von Mises stress, 

deformation, and coefficient distributions [11][13]. The mechanical-biological sweet spot was found to be between 

20% and 40% porosity, which gave both strength in structure and tissue ingrowth [11, 14, 19]. 

 

 

2.4    Material Selection and Surface Engineering 

The materials that make up an implant are very important to how well it works. Titanium and its alloys, especially 

Ti–6Al–4V, are still the best since they are strong for their weight and don't rust [23][24]. Optimising the 

microstructure of titanium alloys makes them more resistant to fatigue and lasts longer [23]. Graded porous titanium 

lattices made with SLM make both mechanical anchoring and osseointegration better [24]. Zirconia/alumina 

composites are good for your health and look good, thus they could be used in ceramic implants [18]. 

Osteoconductivity can be improved even further by changing the surface with topological and biological coatings 

[27]. 

 

Figure.2.1 FEA Process for Dental Implant 
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2.5   Design Innovation and Functional Integration  

Design changes like Voronoi and topology-optimized structures better mimic the structure of real bones and spread 

stress in a more natural way [28][29]. Studies comparing 3D printed scan bodies have revealed that how accurately 

they are made has a direct effect on how well the implant fits and how well it integrates with the bone [32]. Recent 

FEA studies that looked into porous TPMS (Triply Periodic Minimal Surface) implants and typical solid implants 

found that the porous ones had much less micromotion and were more stable across a range of bone densities [33]. 

To make sure that implants work well and are comfortable for a long time, implant biomechanics must also take 

into account the range of bite forces that patients of different ages can handle [30]. 

3. Material and Methods 

3.1 Implant Design and lattice implementation 

The outside shape of a conventional dental implant was made with Solid Edge software to match the anatomical 

measurements that are important in a clinical setting. Three distinct lattice structures—Gyroid, X-cell, and 

Diamond—were chosen for analysis since they are already used in load-bearing orthopaedic applications. [1] We 

used Fusion 360 to make the lattice geometries. This programme lets you regulate the size of the unit cells and the 

thickness of the struts in a parametric way. There were six different types of porous implants, each modelled with 

two different levels of porosity: 20% and 40%. A solid implant model without any internal porosity was also made 

as a control for mechanical comparison. 

3.2  Material Assignment 

All of the implant designs were given the mechanical properties of Ti–6Al–4V, a titanium alloy that is often utilised 

in dental and orthopaedic implants. The following were the qualities of the material: The Young's Modulus is 110 

GPa, the Poisson's ratio is 0.33, and the yield strength is 880 MPa.[2] We chose these values based on data from 

the literature on SLM-made titanium and used them the same way in all models so that they could be compared. 

3.3  Finite Element Simulation Setup  

ANSYS Workbench 2021 R2 was utilised for finite element analysis (FEA). To ensure the answer was right, we 

added extra detail around the lattice struts and meshed the implant models with tetrahedral elements. To ensure that 

the figures were stable, we investigated mesh convergence for the Gyroid 20% model using coarse, medium, and 

fine mesh densities. The implant was placed inside a basic cylindrical bone model in the simulation area. A vertical 

axial load of 200 N was applied to the implant's upper surface in order to simulate occlusal stress. To simulate 

cortical fixation, the bottom of the bone model was totally restricted. It was believed that the osseointegration was 

complete as all of the connections between the implant and the bone were bonded.[3] 

3.4 Model Validation  

We looked at three main factors to see how well each implant model worked: von Mises stress, total deformation, 

and fatigue life. We got these numbers straight from the ANSYS simulation output. We used von Mises stress to 

find areas that were likely to yield under normal loads and total deformation to measure how stiff the structure was. 

Stress-based analysis was used to estimate the fatigue life under the assumption of a cyclic load state in order to 

assess long-term durability [4]. We compared the data from the porous implants to the baseline of the solid implant 

to see how the internal lattice shape changed performance, either for the better or for the worse. 
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3.5  Model Validation  

This work was based on simulations and only included a few design options (six porous models and one solid 

control), hence there was no direct experimental validation. Instead, validation was done using a mix of comparative 

benchmarking, internal control analysis, and mesh convergence testing. These are all common methodologies used 

in early-stage implant research.   

A solid implant model was used as a control to set a baseline for mechanical performance. The porous designs 

always showed lower peak stress concentrations and smoother stress distribution, which is what we expected to see 

with lattice-structured implants. Also, the trends in von Mises stress and deformation were the same as those found 

in earlier investigations of titanium implants made with additive manufacturing and gyroid and strut-based designs. 

This adds to the credibility of the model's results under physiological load conditions.  

To make sure the calculations were reliable, a mesh sensitivity analysis was done on a sample model (Gyroid 20%). 

This revealed that the stress values didn't change by more than 5% between medium and fine mesh densities. The 

loading and boundary conditions were based on clinically relevant occlusal forces and were modelled using 

recognised FEA frameworks that have been used in biomechanical dental research.  

It would be good to do experiments to confirm the results in the future, but the current modelling technique gives 

us useful information on how lattice structure and porosity affect the mechanics of implants. The results can be 

used as a scientifically sound basis for future experiments or studies on living organisms. 

Figure: 3.1  Methodology Flowchart 
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4. Result and Discussion  

4.1 Mechanical Behaviour of porous and solid Implant  

This study looked at how three lattice-based dental implant designs—Gyroid, X-Cell, and Diamond—responded 

mechanically when they had 20% and 40% porosity. A totally solid titanium implant was used as a comparison. 

We used ANSYS to do Finite Element Analysis (FEA) under normal axial compressive loading. To find out how 

much weight each implant architecture could hold and how well it fit, we looked at von Mises stress distribution, 

maximum deformation, and average deformation. 

4.1.1 Control: Solid Implant 

 

The control implant (0% porosity) had the least amount of deformation (0.00210 mm) and a moderate von Mises 

stress of 74.26 MPa, which shows how stiff it is and how well it can handle loads. This design has the least amount 

of average deformation (0.000118 mm), making it the standard for structural rigidity. 

4.1.2 Implants with a Gyroid Lattice 

 

20% Porosity: The maximum stress was 77.19 MPa, with a deformation of 0.00207 mm and an average deformation 

of 0.00011 mm. The performance was most like the solid control when it came to both stress and displacement. 

40% Porosity: Stress went down a little to 74.54 MPa, but deformation went up to 0.00221 mm. The average 

deformation was 0.00015 mm, which clearly showed that compliance went up with porosity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: 4.1 Stress and Displacement  in Implant with Gyroid Lattice 20% Porosity 

 



                           International Scientific Journal of Engineering and Management (ISJEM)                                 ISSN: 2583-6129 
                                  Volume: 04 Issue: 06 | June – 2025                                                                                          DOI: 10.55041/ISJEM04561 

                                  An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        

 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                                                                      |        Page 8 

4.1.3 Implants with Diamond Lattice 

 

20% Porosity: It showed a von Mises stress of 76.56 MPa and a deformation of 0.00211 mm, with an average 

deformation of 0.00012 mm. These numbers show that the reaction is well-balanced between stiffness and load 

accommodation. 

Figure: 4.2 Stress and Displacement in Implant with Gyroid Lattice 40% Porosity 

Figure: 4.3 Stress and Displacement  in Implant with Diamond Lattice 20% Porosity 
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40% Porosity: It had the lowest stress (73.67 MPa) but the maximum deformation (0.00226 mm) and average 

deformation (0.00017 mm), which means it might not be able to handle significant occlusal forces. 

 

4.1.4 Implants with X-Cell Lattice 

 

 

20% Porosity: The implant had a von Mises stress of 76.79 MPa and a deformation of 0.00209 mm, with an average 

deformation of 0.00012 mm. This means that the implant will keep its rigidity despite being lighter.  

 

Figure: 4.4 Stress and Displacement in Implant with Diamond Lattice 40% Porosity 
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Figure: 4.5 Stress and Displacement  in Implant with X-Cell Lattice 20% Porosity 

 

Figure: 4.6 Stress and Displacement in Implant with X-Cell Lattice 40% Porosity 
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40% Porosity: The maximum stress dropped to 74.49 MPa, and the deformation rose to 0.00222 mm. The average 

deformation went up to 0.00015 mm, which means that the material was less rigid at increasing porosity.  

4.1.5 Combined Comparative Analysis Result 

 

Simulation results show that there is a continuous inverse connection between porosity and mechanical stiffness 

across all lattice configurations. As porosity goes up from 20% to 40%, peak von Mises stress goes down, but 

maximum and average deformations go up. This shows the natural trade-off between strength and compliance, 

which is a key factor in the design of porous implants. 
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In comparison: 

1. Gyroid (20%) had the best stress distribution and the lowest average deformation (0.00011 mm), making it 

the best choice for keeping stiffness while reducing stress shielding. 

2. X-Cell (20%) had almost the same rigidity as the solid implant but was lighter, making it the best overall 

mechanical compromise. 

3. Diamond (40%) had the lowest peak stress but the maximum deformation, which suggests that it may be 

less rigid under functional loading and may need reinforcement in high-stress situations.  

These patterns show how important it is to choose lattice geometry and porosity together, based on the individual 

therapeutic needs, such as improving osseointegration, load accommodation, or long-term fatigue performance. 

5. Conclusion 

Using Finite Element Analysis under physiologically appropriate loads, this study looked at how titanium dental 

implants with lattice-structured bases (particularly Gyroid, X-Cell, and Diamond geometries) behaved 

mechanically at two levels of porosity (20% and 40%). When compared to a fully solid implant, it was shown that 

lattice topology and porosity have a big effect on how stress is spread out and how well the structure can bend. The 

X-Cell structure with 20% porosity was the best balance between mechanical rigidity and deformation. It nearly 

resembled the solid implant while greatly lowering the volume of material. Gyroid structures, especially those with 

20% porosity, did a great job of reducing stress concentrations and average deformation. This makes them good for 

use in applications that aim to reduce stress shielding. On the other hand, Diamond with 40% porosity showed the 

most deformation, which suggests that it may not be able to handle occlusal stresses unless it is utilised in low-

stress areas or with extra support. These results show that topology-optimized lattice implants could improve 

mechanical performance while also encouraging biological integration. This is a step towards designing the next 

generation of dental implants. 
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