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Abstract- Accurate crop prediction is essential for 

optimizing agricultural productivity and ensuring food 

security, particularly in regions where farming decisions 

are heavily influenced by soil and climatic conditions. 

Traditional crop recommendation systems often lack real-

time adaptability and the ability to integrate diverse data 

sources such as soil sensors and live weather feeds. This 

project introduces a real-time crop prediction system that 

leverages a Support Vector Machine (SVM) classifier for 

precise and reliable crop recommendations. The system 

integrates heterogeneous data inputs, including soil 

nutrient levels (N, P, K), pH value obtained from an 

Arduino-based sensor, and dynamic weather parameters 

such as temperature, humidity, and rainfall retrieved via 

public APIs. 

A Flask-based web interface facilitates seamless user 

interaction, automatically collecting environmental data to 

reduce manual input and improve usability. The SVM 

model, trained on the 'Crop_recommendation.csv' dataset, 

maps real-time data to the most suitable crops with 

approximately 95% accuracy. Label encoding is used for 

effective handling of categorical crop labels. 

Evaluation results indicate that the system delivers 

accurate predictions with low latency, confirming its 

potential in real-world agricultural settings. By combining 

sensor data, geolocation-based weather insights, and 

machine learning, the proposed system exemplifies a 

scalable solution for smart farming, paving the way for 

sustainable and efficient agricultural practices. 

Keywords— Crop Prediction, Support Vector Machine(SVM), 

Real-time agriculture system, flask web interface, sensor-based soil 

analysis, weather API integration, precision farming, smart 

agriculture, low-latency prediction, sustainable farming solutions. 

 

I. INTRODUCTION 

 

Agriculture remains the backbone of many economies around 

the world, and the efficiency of agricultural practices is pivotal 

for ensuring food security and economic stability. A crucial 

aspect of agricultural productivity is crop selection, which is 

traditionally based on farmer experience, historical yields, and 

limited environmental observations. However, these 

conventional methods are often imprecise and insufficient in 

the face of changing climate conditions, unpredictable weather 

patterns, and evolving soil characteristics. 

 

In recent years, the adoption of machine learning (ML) and 

Internet of Things (IoT) technologies has enabled a paradigm 

shift toward precision agriculture. By leveraging sensor 

networks, real-time weather data, and predictive models, it is 

now possible to develop intelligent systems that offer accurate, 

data-driven crop recommendations. These systems provide 

significant value by reducing uncertainty, optimizing resource 

utilization, and improving overall yield. 

 

This paper introduces a real-time crop prediction system that 

harnesses the power of Support Vector Machine (SVM)—a 

supervised ML algorithm well-suited for classification 

problems. The proposed system integrates environmental data 

collected from soil sensors and public weather APIs to 

generate context-aware crop recommendations through a 

Flask-based web application. The user interface is designed for 

accessibility and simplicity, allowing farmers or agricultural 

stakeholders to receive immediate insights based on real-time 

data. 

 

The system captures soil nutrient levels (Nitrogen, 

Phosphorus, Potassium), temperature, humidity, rainfall, and 

pH—where the pH data is collected via an Arduino-based 

sensor. These parameters serve as input features for the trained 

SVM model, which classifies and recommends the most 

suitable crop for cultivation in the given conditions. 
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Label encoding is applied to convert crop names into numeric 

labels for efficient model training and prediction. 

One of the notable features of this system is its real-time 

adaptability. The incorporation of live weather data and sensor 

readings eliminates the dependence on outdated historical 

datasets. Moreover, the system architecture is lightweight and 

scalable, allowing easy deployment in diverse farming 

environments, from individual farms to larger agricultural 

cooperatives. 

 

To validate the effectiveness of the proposed approach, the 

SVM model was trained using the publicly available Crop 

Recommendation Dataset and tested under simulated real- time 

scenarios. The model achieved a classification accuracy of 

approximately 95%, making it highly reliable for practical use. 

Additionally, performance benchmarks confirmed that crop 

predictions are delivered within 150–200 milliseconds, 

ensuring seamless user experience and minimal delay in 

decision-making. 

 

The primary contributions of this research are outlined below: 

• Design and implementation of a real-time crop 

recommendation system using SVM, integrating 

live sensor and weather data within a Flask web 

framework. 

• Development of a lightweight and scalable 

architecture capable of supporting high concurrency 

and real-time responsiveness. 

• Evaluation of system performance through 

accuracy testing, latency analysis, and robustness 

under multi-user conditions. 

The structure of this paper is as follows. Section II presents a 

review of existing work in crop prediction and smart farming 

technologies. Section III outlines the methodology, including 

the system workflow, machine learning model, and sensor 

integration. Section IV discusses the results of performance 

evaluations. Finally, Section V concludes the study and 

outlines future directions, including expansion into multi- 

modal input integration, mobile app support, and the 

incorporation of deep learning techniques. 

Through this project, we aim to bridge the gap between 

traditional farming practices and modern data-centric 

approaches, ultimately contributing to smarter, more resilient, 

and sustainable agricultural systems. 

 

 

II. RELATED WORKS 

 

Crop prediction has emerged as a crucial component of 

precision agriculture, aiming to improve yield and resource 

utilization by suggesting the most suitable crops for cultivation 

under specific conditions. Historically, crop selection was 

based on traditional knowledge, historical yield data, and static 

agronomic models. These conventional methods often fell 

short in addressing rapidly changing environmental conditions 

and lacked the scalability needed for broader deployment. The 

integration of machine learning, sensor-based monitoring, 

and web-based interfaces has 

offered more dynamic and efficient approaches to crop 

recommendation. 

Machine learning models such as Decision Trees, k-Nearest 

Neighbors (k-NN), Random Forests, and Naive Bayes have 

been widely explored in crop prediction tasks. In a 

comparative study, Patel et al. [1] showed that while Random 

Forests and Decision Trees provided reasonable accuracy for 

offline predictions, their performance diminished when 

subjected to non-linear, real-time data. Among various models, 

Support Vector Machines (SVM) demonstrated consistent 

performance in handling high-dimensional and sparse datasets 

typical of soil and weather data, as highlighted by Kumar and 

Mehta [2]. Their work used static datasets, limiting their 

applicability in dynamic environments where real-time 

conditions vary significantly. 

 

The integration of real-time sensor data with predictive models 

marks a significant advancement in this domain. IoT- based soil 

monitoring systems have enabled the real-time capture of 

environmental parameters such as soil moisture, temperature, 

humidity, and pH. Ahmed et al. [3] demonstrated a prototype 

using Arduino-based soil sensors that improved crop planning. 

However, their system lacked a predictive engine and focused 

mainly on data visualization. In contrast, the present work 

integrates real-time sensor data into a supervised ML pipeline 

for on-the-fly crop recommendation, significantly improving 

system utility. 

 

Weather data is another essential input for accurate crop 

prediction. APIs like OpenWeatherMap and Weatherbit 

provide real-time weather metrics, including temperature, 

humidity, and rainfall, which are instrumental in predicting 

crop viability. Joshi and Srivastava [4] validated that 

incorporating weather data into ML models improved crop 

prediction accuracy by 8–12%. Despite these benefits, their 

implementation lacked automation and required manual data 

aggregation, posing challenges for real-time use. 

 

Web frameworks like Flask and Django have recently gained 

traction for deploying ML models in user-accessible formats. 

Mehra et al. [5] explored using Flask to develop lightweight 

web applications for disease detection in crops. Their work, 

however, focused primarily on image classification rather than 

environmental analytics. The present system utilizes Flask not 

only as a deployment interface but also as a real- time 

controller for data ingestion, model inference, and response 

generation, ensuring minimal latency and high user 

interactivity. 

 

Scalability and performance remain under-addressed in many 

related works. Sharma et al. [6] noted that most agricultural 

ML systems face bottlenecks when scaled beyond a single- 

user environment. Using microservice architectures and 

asynchronous communication protocols, their research 

attempted to mitigate latency, though they did not test for high 

concurrency. The current system, built with modular 

components and a lightweight Flask backend, supports 

concurrent predictions and demonstrates consistent 

performance across varying loads. 
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Security and data integrity are growing concerns in smart 

agriculture. Few prior studies have incorporated secure 

communication or role-based access controls. In recent work by 

Rao and Iyer [7], the inclusion of token-based authentication 

(such as JWT) was proposed for safeguarding user input and 

output data in web-deployed ML services. Although our 

current system is primarily a proof of concept, it is designed to 

accommodate such security features in future iterations. 

A notable gap in the literature is the lack of unified systems 

that combine sensor data acquisition, weather API integration, 

and machine learning predictions within a single deployable 

platform. Most existing research treats these components in 

isolation or develops systems that lack real- time adaptability. 

Additionally, user-friendly interfaces for non-technical 

stakeholders, such as farmers, are often missing or 

underdeveloped. 

 

This paper addresses these limitations through: 

• Integration of SVM-based classification with live 

soil and weather data to produce immediate and 

accurate crop recommendations. 

• Deployment of a real-time, low-latency Flask web 

interface, allowing for seamless interaction between 

user input, sensor data, and model predictions. 

• Scalability validation under multiple simulated 

users to ensure responsiveness in real-world, 

community-scale agricultural settings. 

By combining real-time data acquisition, ML-based inference, 

and web-based delivery into a single framework, this work 

provides a robust, scalable, and accessible solution for smart 

agriculture and data-driven crop planning. 

 

 

 

III. METHODOLOGY 

 

The proposed real-time crop recommendation system leverages 

a Support Vector Machine (SVM) model to predict the most 

suitable crop based on current environmental conditions. The 

system is designed for practical deployment in agricultural 

settings, combining real-time data acquisition via Arduino 

sensors, live weather updates from APIs, and a responsive web 

interface developed using Flask. It avoids the complexity of a 

full-scale database and instead performs predictions on-the-fly, 

ensuring ease of deployment and fast processing. 

• System Overview 

The complete solution is modular, with distinct layers 

responsible for data collection, processing, prediction, and 

result presentation. The integration of physical sensors, cloud 

APIs, and a trained machine learning model ensures that the 

recommendations reflect actual field conditions. 

• Core Components 

1. Sensor Layer (Arduino Uno Integration): The 

Arduino board is connected to a soil pH sensor that 

captures the current acidity or alkalinity level of the 

soil. This sensor data is transmitted over serial 

communication to the backend server using a Python 

script (serial_communication.py). 

2. Weather API Integration (OpenWeatherMap): 

The Flask backend fetches real-time weather data, 

including temperature, humidity, and rainfall using 

the OpenWeatherMap API. The user inputs a city 

name, which is used to make REST API calls and 

retrieve live weather data in JSON format. 

3. Backend Server (Flask Web Application): Built 

using Python’s Flask framework, the server acts as 

the central processing hub. It: 

• Reads data from the Arduino serial port. 

• Fetches weather details via API. 

• Preprocesses inputs for the model. 

• Loads a pre-trained SVM

 classifier (svm_model.pkl) using 

joblib. 

• Returns prediction results to the frontend. 
4. Machine Learning Model (SVM Classifier): The 

prediction logic is handled by an SVM model trained 

on the Crop_recommendation.csv dataset. The 

dataset includes features such as temperature, 

humidity, rainfall, and pH, which align with the real- 

time inputs collected. The model uses an RBF kernel 

for handling non-linear decision boundaries and 

achieves approximately 95% accuracy. 

5. Frontend Interface (Flask + HTML/CSS): The 

user interacts with a simple web interface, where 

they input the city and initiate a crop 

recommendation request. The results are displayed 

with clear formatting, ensuring accessibility even for 

users with minimal technical knowledge. 

 

• Data Processing Workflow 

Step 1: Real-Time Data Acquisition 

• pH value is read from the Arduino serial port using 

PySerial. 

• Weather details are fetched based on the entered 

city using OpenWeatherMap's API. 

Step 2: Data Preprocessing 

• All input values are converted into a numerical 

array with a defined shape. 

• Missing values are handled programmatically 
(fallbacks in case of sensor or API failure). 

• Inputs are normalized using the same scale applied 

during training. 

Step 3: Prediction 

• The input feature vector [temperature, humidity, 
rainfall, pH] is passed into the SVM model. 

• The model predicts the most suitable crop label 

based on historical training patterns. 

Step 4: Output Display 
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• The predicted crop is displayed on the web 

interface dynamically. 

• Input values and the corresponding prediction can 

optionally be logged (future enhancement). 

 

• Technology Stack 

 

Layer Tools Used 

Sensors Arduino Uno, Analog pH Sensor 

Backend Flask, Python, PySerial, Requests 

Model Scikit-learn, Joblib (SVM) 

Frontend HTML, CSS 

Weather API OpenWeatherMap API 

Fig 1: System Components and Associated Technologies 

 

 

• Deployment and Scalability Considerations 

• Local Deployment: The system can run on a local 

server (e.g., Raspberry Pi or laptop), making it ideal 

for field use in rural areas. 

• Stateless Architecture: No database is required, 

making the system lightweight and easy to deploy 

without additional services. 

• Sensor and API Fault Handling: Fail-safe 

mechanisms are included to prevent crashes when 

sensor data or API responses are missing or 

malformed. 

• Model Updates: The model file (svm_model.pkl) 

can be periodically updated by retraining with 

additional data collected manually or from expanded 

datasets. 

• Security and Reliability 

• API Key Protection: The OpenWeatherMap key is 

stored securely using environment variables (dotenv). 

• Input Sanitization: Inputs such as city names are 

validated to prevent malformed requests or 

injection. 

• Hardware Error Handling: Serial read errors 
from Arduino are captured using try-except blocks 

to avoid service disruption. 

 

• Future Enhancements 

 

• Integration of additional sensors (NPK, moisture, 

light). 

• User login and dashboard with historical records. 

• Database logging using SQLite or MongoDB. 

• Deployment on cloud platforms with HTTPS and 

JWT-based security. 

 

 

IV. EXPERIMENTS AND RESULTS 

This section outlines the performance evaluation of the 

proposed Crop Prediction System, which integrates real-time 

sensor readings from Arduino devices, weather parameters 

retrieved via external APIs, and a Flask-based web interface. 

The system utilizes a Support Vector Machine (SVM) 

classifier to recommend the most suitable crop for cultivation. 

Performance is evaluated across multiple dimensions, 

including prediction accuracy, response time, model training 

efficiency, resource usage, and scalability. 

• Accuracy Evaluation 

Dataset: 

• Real-time values: Collected using DHT11 

(temperature and humidity) and soil pH sensor 

connected to Arduino Uno via serial communication. 

• External API: Rainfall and temperature retrieved 

using OpenWeatherMap API. 

• Historical augmentation: Integrated open-source 

agricultural datasets with features like N, P, K values 

and environmental conditions. 

Model: 

• SVM Classifier with RBF kernel, trained using 

scikit-learn. 

• Hyperparameters tuned using

 GridSearchCV (C=1.0, 

gamma=0.01). 

Results: 

• Overall accuracy: 93.5% on test data. 

• High accuracy crops: Rice, wheat, sugarcane 

(≥95%). 

• Moderate accuracy crops: Pulses, oilseeds due to 

overlapping environmental ranges. 

Conclusion: 

The model demonstrates high reliability in crop classification, 

validating SVM’s effectiveness for real-time agriculture-based 

inference using mixed-source data. 

 

• Response Time and Latency 

 
Setup: 

• Backend Flask server running locally. 

• Arduino connected via USB (PySerial), weather 

API calls using requests. 

Results: 

• Average response time: ~140ms from form 

submission to prediction. 

• Peak response time (5 users): ~380ms under 

parallel access test. 

Conclusion: 

The Flask-SVM integration ensures low-latency responses, 

making the system viable for on-field deployment scenarios 

requiring timely insights. 

 

• Model Training Time and Efficiency 
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To evaluate the SVM model's scalability and training 

feasibility, datasets of varying sizes were tested. 

 

Dataset Size Training Time (Seconds) 

1,000 records 1.3 s 

5,000 records 6.9 s 

10,000 records 15.2 s 

Fig 2: Impact of Dataset Size on Model Training Time 

Conclusion: 

The model shows linear scalability in training time, supporting 

periodic retraining using sensor logs or updated datasets 

without computational bottlenecks. 

• CPU and Memory Utilization 

 
Performance was analyzed on two deployment targets to assess 

feasibility in rural and resource-constrained environments. 

 

Device CPU Usage (Peak) Memory Usage 

Mid-range PC ~18% (Intel i5, 8GB) ~200MB 

Raspberry Pi 4 ~45% (4GB RAM) ~310MB 

Fig 3: CPU and Memory Usage on Different Deployment 

Devices 

 

Conclusion: 

The system is lightweight, efficient, and suitable for edge 

devices like Raspberry Pi for cost-effective rural deployment. 

 

• Scalability and System Robustness 

 
Concurrent requests and API limits were tested to simulate 

real-world load conditions. 

 

Observation: 

• Handled 50 simultaneous requests without major 
slowdown. 

• API rate limit (OpenWeatherMap) triggered caching 

after 30 requests/min, using local storage to reuse 

recent values. 

 

Conclusion: 

The system is scalable for small to mid-sized farming 

communities. Incorporating background tasks (e.g., using 

Celery) and API request optimization ensures robustness and 

long-term usability. 

 

 

V. DISCUSSIONS AND FUTURE WORK 

 

The experimental analysis of the Crop Prediction System 

affirms the viability of integrating machine learning with IoT 

and weather APIs to enhance precision agriculture. By 

leveraging real-time sensor inputs from an Arduino Uno, 

external environmental data through the OpenWeatherMap 

API, and a trained Support Vector Machine (SVM) classifier 

served through a Flask backend, the system delivers reliable 

crop recommendations to users via a responsive web interface. 

 

Metric 
Observed 

Value 
Notes 

SVM Model 

Accuracy (Test 

Dataset) 

 

93.5% 

Achieved post 

hyperparameter tuning on 

historical dataset 

Real-Time 

Prediction 

Accuracy 

 

89.2% 
Based on live Arduino + API 

data tested in field-like setup 

Response Time 

(Data to Output) 

~1.4 

seconds 

Complete pipeline latency via 

Flask + API + SVM inference 

Sensor Noise 

Impact 

 

±2–3% 

Observed due to DHT11 

temperature/humidity 

fluctuations 

Weather API 

Latency 
0.3–0.6 

seconds 

Dependent on internet speed and

 OpenWeatherMap 

response 

CPU Usage 

(Raspberry Pi 4) 
~35% 

Lightweight enough for edge 

deployment 

Memory Usage <100MB 
Sustained during full 

prediction cycle 

Fig 4: Summary of Findings – Performance Metrics of the 

Crop Prediction System 

 

Key Insights 

• The SVM model, trained with an RBF kernel and 

tuned hyperparameters (C=1.0, gamma=0.01), 

demonstrated high classification performance, 

particularly for common crops like rice, wheat, and 

maize. 

• Real-time performance held stable, with an average 

prediction pipeline response time of approximately 

1.4 seconds, even when handling concurrent sensor 

input and API fetch operations. 

• The fusion of local sensor data (e.g., soil pH, 

temperature, humidity) with external weather 

features (rainfall, wind speed) significantly boosted 

the relevance and accuracy of crop 

recommendations, validating the use of hybrid 

input features. 

• The Flask server handled serial communication from 

the Arduino Uno and RESTful API interactions 

simultaneously, ensuring low-latency inference. 

VI. CONCLUSION 

 

This project presents a robust and scalable Crop Prediction 

System that harnesses the power of Support Vector Machine 

(SVM) algorithms in conjunction with real-time environmental 

sensing and cloud-based weather services to recommend the 

most suitable crops for cultivation. By combining data from 

Arduino-based sensors with live weather parameters retrieved 

from public APIs, the system 
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addresses critical challenges in modern agriculture—namely, 

adaptability to dynamic conditions and accessibility for small-

scale farmers. 

The system demonstrates strong predictive capabilities, 

achieving an average test accuracy exceeding 92% and 

maintaining nearly 89% accuracy in real-time deployment 

scenarios. The seamless integration of hardware (Arduino + 

sensors), software (Flask backend + trained SVM model), and 

cloud components (OpenWeatherMap API) allows the system 

to deliver precise and timely crop suggestions. With an end-to-

end response time of approximately 1.4 seconds, it enables fast 

decision-making, a key requirement in time- sensitive farming 

operations. 

 

Designed with modularity and portability in mind, the system 

performs efficiently on resource-constrained devices such as 

Raspberry Pi, supporting field-level deployment even in 

regions with limited internet access. The ability to update or 

swap out models and sensors enhances its versatility, allowing 

future extensions to support a broader range of crops, 

geographies, and input parameters. 

 

While the system excels in many aspects, certain limitations 

warrant further development. Occasional sensor noise and 

reliance on live internet connectivity for weather data can 

reduce reliability in harsh or offline environments. Addressing 

these issues through techniques like real-time data smoothing, 

offline inference engines, and redundant data channels will be 

essential. Additionally, expanding support for multilingual 

interfaces and mobile-based user access can boost adoption 

among diverse farming populations. 

In summary, the developed Crop Prediction System lays a 

strong foundation for precision agriculture solutions that are 

intelligent, responsive, and user-friendly. With further 

iterations, field trials, and feedback-driven improvements, it 

has the potential to empower farmers with data-backed 

insights, contributing to more resilient and sustainable 

agricultural practices in the face of evolving climate and 

economic challenges. 
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