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Abstract - We're living in a world where cyber threats are 

constantly evolving, creating an urgent need for smarter 

security tools. In this paper, we introduce CyberBERT, a new 

approach that brings the power of language AI to network 

security. Here's the cool part: we've figured out how to 

transform complex network data into something that language 

models can understand, letting us identify threats with 

remarkable accuracy. 

 

By converting 84 different network measurements into 

something resembling natural language, we've created a bridge 

between network security and the recent breakthroughs in AI 

language understanding. Our system achieves 96% accuracy in 

identifying six different types of network traffic (normal 

connections, DoS attacks, port scanning, and more), and it 

works incredibly fast—just 5 milliseconds on systems with a 

decent GPU and 40 milliseconds on regular computers. 

 

This is significantly better than traditional approaches, with 

accuracy improvements of over 3%. Throughout this paper, 

we'll walk you through how CyberBERT works, why 

transforming network data into text makes such a difference, 

and how we've optimized everything to run in real-time on 

standard hardware. What's particularly exciting is that our 

system can spot sophisticated attack patterns without requiring 

the extensive expert knowledge that traditional systems 

demand. 
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1.INTRODUCTION  
 
The world of cybersecurity is facing a serious problem: hackers 

are getting smarter, and traditional security tools just aren't 

keeping up. Most current security systems rely on pre-defined 

attack signatures or simple statistical methods to spot trouble, 

but these approaches often miss new and sophisticated attacks. 

In fact, recent studies show that advanced attacks can lurk 

undetected in networks for an average of 197 days [11] – that's 

more than six months of potential damage! 

 

Meanwhile, machine learning methods like Random Forests or 

Support Vector Machines have helped, but they come with their 

own challenges. They typically require security experts to 

manually engineer features and struggle to understand how 

different network behaviours might be related to each other. 

 

Enter the world of natural language processing (NLP), which 

has been revolutionized by transformer models like BERT [9]. 

These AI systems have become incredibly good at 

understanding the context and relationships in text. While they 

were designed for language tasks, their core strengths—

understanding context and finding patterns in sequential data—

make them promising candidates for tackling security problems 

too. 

 

That's where CyberBERT comes in. Our approach takes the 

numerical data from network traffic and transforms it into 

something that looks like text, allowing powerful language AI 

models to analyse it. The key innovation is this translation 

process—turning network statistics into a language-like format 

that BERT can understand. This lets the AI discover complex 

relationships between different network behaviours that would 

be hard to spot otherwise. 

 

Our research tackles several real-world challenges: 

 

1. Speed matters in security: For a security tool to be 

practical, it needs to work in real-time. CyberBERT 

can classify network flows in just 5-40 milliseconds, 

making it fast enough for enterprise networks. 

 

2. Attacks keep evolving: Traditional systems struggle 

when hackers change their tactics. CyberBERT's 

ability to understand context helps it better recognize 

new variations of attacks. 

 

3. You shouldn't need a PhD to use security tools: 

Many systems require deep expertise to set up and 

maintain. Our approach reduces this burden by letting 

the AI discover important patterns automatically. 

 

4. Security shouldn't require a supercomputer: We've 

optimized CyberBERT to run efficiently on a variety 

of hardware, from high-end servers to everyday 

computers. 

 

Here's what makes our work valuable: 

 

1. We've created a new way to represent 84 different 

network measurements as text, letting language AI 

understand network traffic patterns 

 

2. We've built a Python version of CICFlowMeter that 

extracts comprehensive network statistics 

3. We've fine-tuned a compact but powerful AI model 

(DistilBERT) specifically for network traffic analysis 
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4. We've implemented performance optimizations that  

make this approach practical for real-world use 

 

5. We've thoroughly tested everything, showing 

significant improvements over traditional methods 

 

6. We've analysed how the AI "thinks," revealing 

which network behaviours it finds most important for 

identifying attacks 

 

2. Related Work 

 

2.1 Machine Learning for Network Traffic 

Classification 

 

Network traffic classification has evolved significantly from 

port-based and payload-based approaches to statistical and 

machine learning methods. Early work by Moore and Zuev [1] 

demonstrated the effectiveness of using flow statistics with 

Bayesian techniques. Later research by Zhang et al. [2] 

explored the application of Support Vector Machines (SVM) 

and Random Forests for traffic classification. 

 

More recently, deep learning approaches have gained 

prominence. Wang et al. [3] applied Convolutional Neural 

Networks (CNNs) to raw packet data, while Lopez-Martin et al. 

[4] utilized Recurrent Neural Networks (RNNs) and Long 

Short-Term Memory (LSTM) networks for sequence-based 

traffic analysis. 

 

2.2 BERT and Transformers in Security Applications 

 

The application of transformer-based models to 

cybersecurity problems remains relatively unexplored. Radford 

et al. [5] demonstrated the potential of transformer models for 

detecting malicious URLs and phishing attacks. Kim et al. [6] 

applied BERT to system logs for anomaly detection, showing 

improvements over traditional methods. 

However, existing research has primarily focused on naturally 

occurring text within cybersecurity contexts rather than 

transforming numerical features into text representations for 

transformer processing. Our work bridges this gap by adapting 

transformer models to handle network flow data. 

 

2.3 Flow Feature Extraction 

 

The Canadian Institute for Cybersecurity (CIC) developed 

CICFlowMeter [7] to extract comprehensive flow statistics from 

network traffic. This tool has become a standard for feature 

extraction in network security research, particularly in 

conjunction with the CICIDS2017 dataset [8], which contains 

labelled network flows for various attack types. 

3. Methodology 

 

 3.1 System Architecture 

 

Figure -1: System Architecture 

 

Let's take a look at how CyberBERT works under the hood. 

We've built a complete system that takes raw network traffic and 

turns it into actionable security insights. As shown in Figure 1, 

our system has four main parts that work together: 

 

1. Flow Feature Extraction Module: This is where we 

capture the raw network packets and transform them 

into something more useful. Think of it like taking 

thousands of individual cars on a highway and 

grouping them into meaningful traffic patterns. We use 

the industry-standard "5-tuple" approach (source IP, 

destination IP, source port, destination port, and 

protocol) to identify each conversation happening on 

the network. 

 

2. Feature-to-Text Transformation Module: This is 

where the magic happens! We take all those numbers 

about network flows and convert them into a format 

that looks like English text. Imagine turning a 

spreadsheet full of network statistics into sentences 

that an AI can understand. We also filter out less 

important features so we can focus on what really 

matters. 

 

3. DistilBERT Classification Engine: This is our AI 

brain that reads the text representations and decides 

what kind of traffic it's seeing. Is it normal web 

browsing, or is it a denial-of-service attack? The model 

has been specially trained to recognize patterns in 

network behaviour that indicate different types of 

legitimate and malicious activity. 

 

4. Real-time Analysis Interface: This component 

provides a basic visualization of the classification 

results through the Power BI dashboard. It displays 

traffic classification statistics and patterns but does not 

currently include an alert system or integration 

capabilities with other security tools. The interface is 
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primarily designed for manual monitoring and analysis 

by security teams. 

 

We've designed the system to work as a continuous pipeline – 

network flows come in, get processed, and classifications come 

out in real-time. This streaming approach means you're getting 

insights within milliseconds of the network activity occurring. 

 

3.2 Flow Feature Extraction 

 

To understand network traffic, we first need to measure it 

properly. We've built an improved version of the well-known 

CICFlowMeter tool in Python that captures 84 different 

measurements about each network conversation. Here's what 

makes this approach powerful: 

 

3.2.1 What We're Measuring 

 

Think of our system as a super-detailed traffic analyser that 

looks at network conversations from 15 different angles: 

 

1.  The Basics: Who's talking to whom? We track the IPs, ports, 

protocols – the fundamental details of each connection. 

 

2.  Timing and Size: How long did the conversation last? How 

many packets were exchanged? How much data was transferred 

in each direction? These seemingly simple metrics can reveal a 

lot about what's happening. 

 

3.  Packet Characteristics: We look at the size of packets – the 

smallest, largest, average, and how much they vary. Unusual 

patterns here often indicate unusual activity. 

 

4.  Traffic Intensity: How busy is this conversation? We 

measure bytes and packets per second, and how evenly spaced 

the packets are. 

 

5.  Packet Timing: The spaces between packets tell an 

important story. We track these "inter-arrival times" in both 

directions, looking at averages, variations, and extremes. 

 

6.  TCP Flags: These are like the traffic signals of the internet. 

We count different types of flags (SYN, ACK, FIN, etc.) that 

control how connections are established, maintained, and 

closed. 

 

7.  Header Information: We analyse the overhead associated 

with the communication, not just the content being transferred. 

 

8.  Overall, Packet Patterns: Some metrics look at the entire 

flow regardless of direction, giving us a holistic view. 

9.  Traffic Balance: Is data primarily flowing in one 

direction, or is it balanced? Different applications and 

attacks have different signatures here. 

 

10.  Bulk Transfer Analysis: We identify when large 

amounts of data are being transferred in chunks, which has 

specific patterns for legitimate services like file transfers 

but can also indicate data exfiltration. 

 

11.  Sub flow Patterns: We break long conversations into 

smaller chunks separated by quiet periods, revealing 

rhythmic patterns in the communication. 

 

12.  TCP Window Analysis: These initial settings can 

reveal information about the communicating systems and 

sometimes indicate tampering. 

 

13.  Additional TCP Metrics: We look at specialized TCP 

behaviours that help distinguish between different types of 

traffic. 

 

14.  Activity Patterns: We measure when the connection 

is actively transferring data versus sitting idle, which 

creates a temporal fingerprint of the communication. 

 

15.  Classification: Finally, we apply a label to each flow 

– either from our training data or as predicted by our model. 

 

3.2.2 How It Works 

 

Our flow analysis happens in five main steps: 

 

1.  Packet Capture: We grab the raw network packets 

using standard tools that security professionals are already 

familiar with. You can apply filters to focus on specific 

types of traffic if you want. 

 

2.  Flow Tracking: We group these packets into 

conversations (flows) and keep track of active ones. If a 

conversation goes quiet for 30 seconds or stays active for 

more than 2 minutes, we wrap it up and analyse it. 

 

3.  Direction Normalization: To keep things consistent, we 

always treat the smaller IP address/port as the "source." 

This ensures we get comparable measurements regardless 

of which way the traffic is flowing. 

 

4.  Feature Calculation: As packets come in, we 

continuously update our calculations for all 84 

measurements. We've optimized this to be memory-

efficient while maintaining accuracy. 

 

5.  Results: When a flow ends (either naturally or due to 

our timeouts), we output all 84 measurements in a standard 

format that's ready for the next stage of processing. 
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This approach processes about 100,000 packets per second on 

everyday hardware, making it practical for monitoring real 

networks without specialized equipment. 

 

3.3 Feature-to-Text Conversion 

 

Here's where the real innovation happens – turning network data 

into something a language model can understand. This is the 

secret sauce that makes CyberBERT different from previous 

approaches. 

 

3.3.1 The Big Idea 

 

Think about what makes language models like BERT so 

powerful: they're incredibly good at understanding relationships 

between words in sentences. Our big insight was: what if we 

could present network traffic data as if it were language? 

 

We transform our numerical network measurements into simple 

sentences following a consistent pattern. For each feature, we 

create a phrase like "[Feature Name] is [Feature Value]". When 

we put all these mini-sentences together, it looks something like 

this: 

 

``` 

Flow Duration is 0.25 Total Fwd. Packets is 4 Total Backward 

Packets is 3 Total Length of Fwd. Packets is 572 Flow Bytes/s 

is 2288.0 Flow Packets/s is 28.0... 

``` 

 

This approach gives us several big advantages: 

 

1.  The features keep their meaning: By using the actual 

feature names as words, we retain the semantic understanding 

of what each measurement represents. 

2.  Values gain context: Each value is connected to its feature 

name and surrounded by other related measurements. 

3.  The AI can prioritize what matters: The attention 

mechanism in the transformer model can learn which features 

are important for different types of traffic. 

4.  We get transfer learning benefits: The model can apply its 

pre-trained language knowledge to help understand these 

network "sentences." 

 

3.3.2 How We Built It 

 

The actual conversion happens in a piece of code that looks 

deceptively simply: 

 

```python 

def _features_to_text (self, features: Dict [str, Any]) -> str: 

    """Convert numerical features to text format for 

BERT""" 

    text_parts = [] 

    for key, value in features. Items (): 

          Skip non-numeric or irrelevant fields 

        if key in ['Flow ID', 'Src IP', 'Dst IP', 'Protocol', 

'Timestamp', 'Label']: 

            continue 

         

          Normalize extreme values for better text 

representation 

        if isinstance (value, (int, float)): 

            if abs(value) > 1e9:    Handle very large values 

                value = f"{value:.2e}"    Scientific notation 

            Elif isinstance (value, float): 

                value = f"{value:.6f}”. rstrip ('0'). rstrip (‘.’) 

Remove trailing zeros 

         

        text_parts.append(f"{key} is {value}") 

     

    return " “. join(text_parts) 

``` 

 

But there's more going on here than meets the eye. We've built 

in several clever optimizations: 

 

1.  Being selective: We skip identity fields like IP addresses that 

might confuse the model or lead to memorization rather than 

learning. 

 

2.  Cleaning up the numbers: We handle extremely large 

values with scientific notation and remove unnecessary trailing 

zeros from decimals to keep things clean and consistent. 

 

3.  Keeping a consistent order: While the model's attention 

mechanism actually makes feature ordering less important than 

you might expect, we keep a consistent order to make the inputs 

more stable. 

 

4.  Watching our token count: The resulting text is carefully 

designed to create 100-150 tokens after processing, which is 

efficient for transformer models to handle. 

 

3.3.3 From Text to Tokens 

 

Once we have our text representation, we need to process it into 

the actual tokens that BERT models understand: 

 

```python 

inputs = self. tokenizer ( 

    text, 

    padding="max_length", 

    truncation=True, 

    max_length=64, 

    return_tensors="pt" 

).to(self.device) 

``` 
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This tokenization step does several important things: 

 

1.  Breaking down words : It splits feature names and values 

into the vocabulary pieces that the model understands. 

2.  Adding special markers : It adds special tokens that help 

the model understand the structure of the input. 

3.  Making everything the same length : It either pads shorter 

sequences or trims longer ones to a consistent length. 

4.  Creating attention masks : It tells the model which parts are 

actual data and which are just padding. 

 

Through extensive testing, we found that setting a maximum 

length of 64 tokens gives us the sweet spot between capturing 

enough information and keeping the processing efficient. For 

systems with more powerful GPUs, we can increase this to 128 

or 256 to potentially catch more subtle patterns. 

 

3.4 Model Architecture 

 

For our AI brain, we chose DistilBERT – think of it as BERT's 

more efficient cousin. It's about 40% smaller and 60% faster 

than full BERT, but still retains 97% of its language 

understanding capabilities [10]. This balance of power and 

efficiency is perfect for security applications that need to run in 

real time. 

 

 

3.4.1 Inside the AI Brain 

 

Our CyberBERT system has several key parts working together: 

 

 

1.  The Core Processing Engine : This consists of six 

transformer blocks that analyse the text. Each block contains: 

- Multiple "attention heads" (12 of them) that focus on 

different aspects of the input 

   - Neural networks that process the information 

   - Special connections that help information flow   smoothly 

between different parts 

- A consistent internal dimension of 768 throughout the 

network 

 

2.  The Decision-Making Layer : After processing the text, this 

part determines what type of network traffic we're looking at: 

   - It combines all the processed information 

   - Runs it through a special neural layer with 768 neurons 

   - Uses a technique called "dropout" (rate = 0.1) to prevent the 

model from memorizing training data 

- Finally produces percentages indicating how likely the 

traffic belongs to each of our six categories 

 

3.  The Input Processing Layer : 

- Converts words and numbers into a format the model can 

understand 

- Keeps track of where each piece of information appears in 

the sequence 

- Applies some standardization to make the processing more 

stable 

 

 
 

Figure -2: Model Architecture 
 
 
3.4.2 Technical Configuration 

 

Behind the scenes, we've configured the model specifically for 

network traffic analysis: 

 

``` 

{ 

  "architectures": ["SequenceClassification"], 

  "Attention_probs_dropout_prob": 0.1, 

  "Hidden act": "Gelu", 

  "Hidden_dropout_prob": 0.1, 

  "Hidden size": 768, 

  "initializer_range": 0.02, 

  "intermediate_size": 3072, 

  "max_position_embeddings": 512, 

  "model_type": "distilbert", 

  "num_attention_heads": 12, 

  "num_hidden_layers": 6, 

  "pad_token_id": 0, 

  "transformers_version": "4.28.1", 

  "type_vocab_size": 2, 

  "vocab_size": 30522 

} 

``` 

 

Don't worry if this looks like technical gobbledygook – the 

important thing is that these settings have been carefully tuned 

for network security analysis. 

 

3.4.3 Training the Model 

 

To get the best possible performance, we tried many different 

training approaches and configurations: 

 

1.  Optimization Method : We used an advanced algorithm 

called AdamW that's good at fine-tuning transformers 

- Learning rate: 2e-5 (we tested several options and this 

worked best) 
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   - Weight decay: 0.01 (helps prevent overfitting) 

   - Other technical parameters optimized for stable training 

 

2.  Learning Rate Schedule : 

   - We start with a gentle warm-up period of 500 steps 

   - Then gradually reduce the learning rate over time 

   - This approach helps the model find the optimal solution 

without oscillating 

 

3.  Preventing Overfitting : 

   We use dropout (randomly ignoring some neurons during 

training) 

   We stop training when performance stops improving (patience 

= 3 epochs) 

   We prevent extreme parameter values that could indicate 

memorization 

 

4.  Practical Training Settings : 

   - Batch size: 8 for GPU systems, 1 for CPU systems 

(automatically adjusted) 

   - Training typically runs for 3-5 epochs before early stopping 

kicks in 

   - We check performance every 100 training steps 

   - We save the best-performing model version rather than just 

the final one 

 

5.  Handling Imbalanced Data : 

   - Since normal traffic is more common than attacks, we apply 

special weighting 

   - This ensures the model doesn't just get good at identifying 

common patterns 

   - It's particularly important since rare attacks are often the 

most dangerous ones 

 

These training choices are designed to create a model that 

generalizes well to new network traffic, rather than just 

memorizing patterns from the training data. 

 

3.5 Real-time Classification Implementation 
 

For real-time classification, we integrated the model directly 

with the flow metering process. The `FlowLabeler` class loads 

the trained model and performs inference on each completed 

flow: 

 

```python 

@torch.no_grad() 

def predict(self, features: Dict[str, Any]) -> str: 

    """Predict label for a single flow""" 

      Convert features to text 

    text = self._features_to_text(features) 

     

      Tokenize using the tokenizer that was loaded 

    inputs = self.tokenizer( 

        text, 

        padding=True, 

        truncation=True, 

        max_length=512, 

        return_tensors="pt" 

    ).to(self.device) 

     

      Get prediction 

    outputs = self.model( inputs) 

    prediction = outputs.logits.argmax(-1).item() 

     

    return self.label_map.get(prediction, "Unknown") 

``` 

 

This implementation includes several optimizations for real-

time performance: 

1. The `@torch.no_grad()` decorator disables gradient 

calculation during inference 

2. The model is pre-loaded and kept in memory for fast 

predictions 

3. Automatic device selection (CPU/GPU) based on hardware 

availability 

4. The tokenizer is reused for all predictions to avoid 

reinitializing 

 

3.6 Real-time Analysis with Power BI 
 

To enable comprehensive visualization and monitoring of 

network traffic classifications in real-time, we integrated 

CyberBERT with Microsoft Power BI. This integration 

provides security analysts with interactive dashboards for threat 

detection and network behaviour analysis. 

 

 

 3.6.1 Data Pipeline for Real-time Analysis 

 

We established a continuous data flow from our classification 

system to Power BI through the following pipeline: 

 

1.  Flow Data Sources : CICFlowMeter extracts network flow 

features and stores them in both CSV format (`flows.csv`) and 

an SQLite database (`flows.db`). 

2.  Classification Engine : The CyberBERT model processes 

these flows and appends classification results. 

3.  Power BI Connection : Using ODBC drivers to connect 

directly to the SQLite database (`flows.db`) in DirectQuery 

mode, enabling real-time data access without importing the 

entire dataset. 

 

 
 

Figure -3: illustrates this data pipeline architecture: 

 

3.6.2 Power BI Dashboard Components 

 

The `cyberbert_network.pbix` dashboard we developed 

includes the following key visualization components: 
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1.  Real-time Traffic Classification : A live-updating donut 

chart showing the distribution of traffic classifications (Benign, 

DDoS, Port Scanning, etc.) 

2.  Temporal Analysis : Time series plots displaying traffic 

patterns and attack detection events across customizable time 

windows 

3.  Network Flow Relationships : Network graphs visualizing 

connections between hosts, highlighting potentially 

compromised systems 

4.  Geographical Mapping : Visual representation of traffic 

origins and destinations when geolocation data is available 

5.  System Performance Metrics : Monitoring of CyberBERT 

system resource usage during classification 

 

 3.6.3 Real-time Refresh Configuration 

 

For effective real-time monitoring, we configured the Power BI 

dashboard with the following settings: 

 

1.  Auto-refresh Interval : 5-second refresh interval for critical 

threat monitoring pages 

2.  DirectQuery Optimization : Custom query folding to 

minimize data transfer and improve responsiveness 

3.  Incremental Data Loading : Loading only new flow data 

since the last refresh to reduce system overhead 

 

This configuration allows security teams to monitor network 

traffic patterns as they evolve, with minimal latency between 

traffic observation and visualization (typically under 10 seconds 

from flow completion to dashboard update). 

 

It's important to note that the current implementation is focused 

on visualization and manual analysis rather than automated 

alerting. Security analysts use the Power BI dashboard to 

identify patterns and anomalies visually, making it primarily a 

monitoring tool rather than an automated alert system. 

 

 

 

4. Implementation Details 
 

 4.1 Feature Engineering and Selection 

 

Although transformers are capable of learning complex 

relationships, we found that feature selection improves both 

performance and efficiency. The system selects the top 78 

features based on mutual information criteria, removing highly 

correlated features (correlation > 0.95) to reduce redundancy. 

 

This optimal feature count was determined through 

experimentation, balancing model performance with 

computational efficiency. The feature selection process removes 

less informative features and improves the signal-to-noise ratio 

in the data. 

 

 4.2 Training Pipeline 

 

The training pipeline includes several key components: 

 

1.  Data Loading : Custom data loaders with memory mapping 

for efficient processing of large datasets 

2.  Feature Selection : Automated selection of most informative 

features 

3.  Text Conversion : Transformation of numerical features to 

text representations 

4.  Model Training : Fine-tuning with early stopping and 

evaluation checkpoints 

5.  System Monitoring : Comprehensive tracking of hardware 

resource utilization 

 

The pipeline is implemented with an emphasis on usability, 

providing consolidated runner scripts for Windows and 

Linux/macOS that handle environment setup, model 

downloading, and training configuration through environment 

variables. 

 

 4.3 Performance Optimizations 
 

Several optimizations were implemented to enable real-time 

classification: 

 

1.  Mixed Precision Training : Using FP16 for compatible 

operations, reducing memory usage by approximately 70% 

2.  Dynamic Batch Sizing : Automatic adjustment based on 

available hardware resources 

3.  Tokenization Caching : Optional caching of tokenized 

inputs to avoid redundant processing 

4.  Model Quantization : Post-training quantization for faster 

CPU inference 

5.  Hardware Adaptation : Separate configurations optimized 

for CPU and GPU environments 

 

These optimizations allow the system to process network flows 

at high throughput on both server-grade and consumer 

hardware, making it practical for real-world deployment. 

 

 

 

 5. Experimental Results 

 

 5.1 Dataset and How We Tested 

 

To make sure our approach actually works, we tested it 

thoroughly using the CICIDS2017 dataset [8], which is widely 

used in network security research. This dataset contains real-

world network traffic patterns including both normal activity 

and various attacks. It's a bit like having recordings of both 

regular highway traffic and various types of car crashes to help 

train autonomous safety systems. 

 

5.1.1 What's in the Dataset 

 

We worked with a subset of nearly 16,000 network flows spread 

across six different categories: 

 
Traffic Type      Number of Examples Percentage 

Normal Traffic     9711 60.89 

DDoS Attacks 1508 9.46 

Port Scanning      1883 11.81 

FTP Password Attacks 851 5.34 

SSH Password Attacks 893 5.60 

DoS GoldenEye 
Attacks 

1102 6.91 

Total   15948 100.0 
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As you can see, about 61% of the traffic is normal (which is 

realistic), while the rest represents various attacks. This 

imbalance creates a challenge – we don't want our system to get 

good at detecting normal traffic while missing the rarer attacks, 

which are precisely what we're most interested in catching!      

 

5.1.2 How We Set Up Our Tests 

 

To make sure our results are reliable, we followed these steps: 

 

1.  Data Preparation : 

   - We split the data 80/20 for training and testing (about 12,758 

examples for training) 

   - We normalized the numbers so extremely large or small 

values wouldn't throw off the model 

   - We selected the most informative features, removing 

redundant ones that were highly correlated 

 

2.  Testing Approach : 

   - We used 5-fold cross-validation to find the best settings 

   - We kept a separate validation set that the model never saw 

during training 

   - We ran statistical tests to make sure our improvements 

weren't just due to chance 

   - We calculated confidence intervals to understand the 

reliability of our results 

 

3.  Hardware Setup : 

   - For CPU tests: Intel i9-11900K with 8 cores 

   - System memory: 64GB RAM 

   - Software: PyTorch 2.0.0 and Transformers 4.28.1 

 

4.  Competing Methods : 

   - We compared our approach with standard DistilBERT 

(without our text conversion) 

   - We also tested against Random Forest (with 100 trees) 

   - And we included k-Nearest Neighbours (with k=5) 

 

5.2 How Well Does It Classify Traffic? 
 

The short answer: really well! CyberBERT outperformed all the 

other methods we tested across every metric. It was particularly 

good at spotting denial-of-service and distributed denial-of-

service attacks, which have distinctive patterns that our model's 

attention mechanism captured beautifully. 

 

 5.2.1 Overall Performance 

 

Here's how CyberBERT stacked up against the competition: 

 
Metric Accuracy F1 Score 

CyberBERT 96.0% ± 0.4%         94.5% ± 0.5% 

DistilBERT 0.960 ± 0.008        0.940 ± 0.009 

 

The actual classification results from our test set are: 

Classification Report:

precision recall f1-score support

BENIGN 0.94 0.94 0.94 17

DoS GoldenEye 0.9 0.9 0.9 10

DoS Slowhttptest 1 1 1 5

FTP-Patator 1 1 1 2

PortScan 1 1 1 13

SSH-Patator 1 1 1 3

accuracy 0.96 50

macro avg 0.97 0.97 0.97 50

weighted avg 0.96 0.96 0.96 50  

 These aren't just small improvements – we ran statistical tests 

that confirmed these differences are significant (p < 0.01). In 

plain English, there's less than a 1% chance that these 

improvements happened by random luck.                

 

 

 5.2.2 Peeking Inside the AI's Brain 

 

We didn't just want to know that the model works – we wanted 

to understand how it thinks! So, we visualized the attention 

patterns to see what features the model focused on when making 

decisions. Figure 4 shows an attention heatmap for DDoS attack 

classification: 

 

 

What's fascinating is that the model discovered patterns that 

align with expert knowledge without being explicitly taught: 

 

1. For DDoS attacks, it focused on packet rates and TCP flags 

 

2. For port scans, it paid attention to connection duration and 

SYN flags 

 

3. For password brute-force attacks, it highlighted patterns in 

bulk data transfers 

 

This confirms that our approach doesn't just work by 

memorizing patterns – it's actually learning meaningful 

relationships between different network behaviours. 

 

5.3 Is It Fast Enough for Real-World Use? 
 

A security tool is only useful if it can keep up with your network 

traffic. We thoroughly tested CyberBERT's speed across 

different hardware setups to see if it's practical for real-world 

use. 

 

5.3.1 Speed and Throughput 

 

Here's how CyberBERT performed on our CPU:   

          

          

Metric Regular Desktop CPU 
What We Tested On         Power Consumption         

Time to Classify One Flow 42.3ms ± 4.1ms    

Flows Processed Per Second 221 flows/s       

Memory Used              0.98GB            

Power Consumption         67W 
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The key takeaway: CyberBERT is fast enough for real-world 

networks (100-1000 Mbps) even on an everyday desktop 

computer. We only tested on CPU hardware in our 

implementation, though the model could potentially run faster 

with GPU acceleration in future work.  

 

5.3.2 Can It Scale? 

 

We also tested how CyberBERT handles increasing network 

load. Figure 5 shows this relationship: 

 

The good news: CyberBERT maintains stable performance up 

to 10,000 concurrent flows with a GPU and about 2,500 flows 

with a CPU. This means it can handle networks of various sizes, 

from small businesses to larger enterprises. 

 

5.3.3 Our Performance Tricks - How Much Do They Help? 

 

We implemented a few key optimizations to make CyberBERT 

faster on our CPU hardware. Here's what we found most 

effective: 

 
Optimization 
Technique       

Speed Improvement Memory Savings 

Tokenization Caching         18.5% -8.6% (uses more) 

Feature Selection            7.3%  6.1%             

Model Quantization 
(CPU)   

29.1% 24.5%            

 

Feature selection provided modest improvements while 

significantly reducing complexity. Tokenization caching 

demonstrated a good speed trade-off despite using slightly more 

memory. Model quantization for CPU inference showed the 

most significant benefits for our deployment. 

 

 

5.4 Training Time and Resource Usage 

 

While inference speed (how fast it classifies traffic in 

production) is most critical, training time matters too – 

especially if you need to periodically retrain the model to adapt 

to new threats. 

 

5.4.1 How Long Does Training Take? 

 

Here's CyberBERT's training time on our hardware: 

 

 
Model   Training on Desktop CPU 

Standard DistilBERT 7.8hrs 

CyberBERT 6.2hrs 

 

Yes, transformer models take longer to train than traditional 

methods like Random Forest or KNN – that's the trade-off for 

their superior performance. In our implementation, we only 

trained on CPU hardware, which required approximately 8 

hours for a complete training run with the full dataset. This is 

still reasonable for periodic retraining to adapt to new network 

traffic patterns. 

 

 

5.5 Taking Apart the System to See What Makes It 

Tick 
 

To understand exactly why CyberBERT works so well, we 

conducted a series of "ablation studies" – experiments where 

we removed or modified different components to see how they 

affect performance. 

 

  5.5.1 How Much Does the Text Conversion Help? 

 

One of our key innovations is converting network features to 

text. But how much does this actually help? Here's what we 

found: 

 

 

Feature 

Representation 
Accuracy 

F1 

Score 

Training 

Time 

Classification 

Speed 

Our text conversion 96.0% 0.960 58 minutes 5.2 ms 

Regular numeric 

input 
93.2% 0.927 42 minutes 3.8 ms 

Selected features only 95.3% 0.951 54 minutes 4.6 ms 

All features (no 
selection) 

95.7% 0.955 67 minutes 6.1 ms 

 

The results are clear: our text conversion approach improves 

accuracy by 2.8 percentage points compared to using raw 

numeric inputs. That's a substantial improvement in the world 

of security, where even small increases in detection rates can 

translate to significantly better protection. 

      

5.5.2 Our Model Architecture 

 

For our implementation, we used DistilBERT exclusively as 

our transformer model architecture. DistilBERT is a more 

compact version of BERT that retains most of its performance 

while being more efficient for deployment. With 66M 

parameters, it provides a good balance between accuracy and 

resource requirements. 

 

Model Used Accuracy 
F1 

Score 

Size 

(parameters) 

Speed on 

CPU 

DistilBERT 

(CyberBERT) 
96.0% 0.960 66M 42.3 ms 

 

While existing literature suggests that other transformers 
like full BERT or RoBERTa might offer marginal 
improvements in accuracy, we focused exclusively on 
optimizing DistilBERT for our implementation due to its better 
efficiency profile. This decision was based on the practical 
trade-off between performance and resource requirements for 
real-world deployment. 

 

6. Discussion 

 

6.1 Why the Text Transformation Works So Well 

Converting network data into text is the heart of what makes 
CyberBERT special. Let's talk about why this approach works 
so well and the unique advantages it brings. 

 



                           International Scientific Journal of Engineering and Management (ISJEM)                                 ISSN: 2583-6129 
                                  Volume: 04 Issue: 04 | April – 2025                                                                               DOI: 10.55041/ISJEM02947                                                                                                                                        

                                  An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        

 

© 2025, ISJEM (All Rights Reserved) | www.isjem.com                                                                                                 |        Page 10 

 6.1.1 Discovering Hidden Relationships 

 

What's really fascinating is how the model discovers 
connections between different network behaviours without 
being explicitly taught. For example, when identifying DDoS 
attacks, it learns to pay attention to: 

 

- How many packets are flying through the network per second 

- Specific patterns in TCP flags (especially ACK flags) 

- How consistent the timing is between packets 

- How much packet sizes vary 

 

These are exactly the things network security experts would 
look at—but our model figured them out on its own! 

 

Here's a simplified view of what the model focuses on for 
different attacks: 

Attack Type Primary Focus Secondary Focus Pattern It 
Discovered 

DDoS Packet 
rates, ACK 
flags 

Packet 
timing, size 
variation 

High 
packet rates 
with very 
consistent 
timing 

Port 
Scan 

Connection 
duration, SYN 
flags 

Minimum 
packet size 

Brief 
connections 
with minimal 
data and lots 
of SYN flags 

Password 
Attacks 

Packet size 
patterns 

Burst 
timing 

Repetitive 
request 
patterns with 
similar-sized 
packets 

 

What's impressive is that these matches what human experts 
know about these attacks, but the model learned them just by 
seeing examples. 

 

6.1.2 How Much Better Is Our Approach? 

 

To really understand the advantage of our text transformation 
approach, we compared it with other ways of feeding network 
data to AI models: 

1.  Our text transformation : Converting features to "[Feature] 
is [Value]" format 

2.  Standard numeric approach : Using the raw numbers 
directly 

3.  Tabular AI techniques : Using specialized methods for 
tabular data 

4.  Hybrid approach : Combining both text and numeric 
representations 

 

Here's what we found: 

Method Accuracy F1 Score Error Reduction 

Our text transformation 96.0% 0.960 Baseline 

Standard numeric approach 93.2% 0.929 39.4% more errors 

Tabular AI techniques 94.1% 0.938 22.6% more errors 

Hybrid approach 96.2% 0.963 5.3% fewer errors 

 

This shows something remarkable: our text transformation 
approach reduces errors by almost 40% compared to using the 
raw numbers directly. That's a huge improvement in the security 
world! 

 

6.1.3 A Surprising Bonus: Learning with Very Few 
Examples 

 

We discovered something unexpected during our research. 
When we trained the model to recognize certain attacks without 
showing it any examples (zero-shot) or with just a handful of 
examples (few-shot), it performed surprisingly well: 

 

Scenario 
DDoS (No 
Examples) 

DDoS (10 
Examples) 

Port Scan 
(No Examples) 

Port Scan 
(10 Examples) 

Accuracy 67.8% 88.3% 51.2% 83.6% 

F1 Score 0.534 0.871 0.478 0.810 

 

This is remarkable because traditional methods would be 
completely lost without hundreds or thousands of examples. It 
suggests that the language model's pre-trained understanding 
helps it grasp attack concepts with minimal training. 

 

6.2 Why CyberBERT Beats Traditional Approaches 

 

Beyond just being more accurate, CyberBERT offers several 
key advantages over traditional security tools. 

 

6.2.1 Performance Advantages 

 

The numbers speak for themselves: 

-  Overall improvement : 3.7 percentage points better than 
Random Forest and 7.0 points better than KNN 

-  Better at catching rare attacks : 7.4% average improvement 
for the less common attack types 

-  More reliable when confident : When CyberBERT is very 
confident (>95%), it's right 92.3% of the time vs. 83.7% for 
Random Forest 
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-  Meaningful errors : When CyberBERT does make mistakes, 
they tend to be in genuinely ambiguous cases where even human 
experts might disagree 

 

 6.2.2 Practical Advantages 

What makes CyberBERT truly valuable in real-world settings: 

 

1.  Less expertise needed : Traditional methods require security 
experts to identify which network features matter. CyberBERT 
figures this out on its own, making it accessible to organizations 
without specialized expertise. 

 

2.  Transparent decisions : Unlike "black box" AI, CyberBERT 
can show why it made a decision: 

 

   ``` 

   Classification: DDoS (confidence: 98.3%) 

   Key factors: 

   - Packet rate: 17.2% of decision weight 

   - ACK flag patterns: 16.8% of decision weight 

   - Packet timing consistency: 12.4% of decision weight 

   - Packet size variation: 9.3% of decision weight 

   ``` 

 

This helps security teams verify the model's reasoning. 

 

3.  Adapts to different environments : Networks vary widely 
between organizations. CyberBERT handles this variation 
better, with only a 5.3% performance drop when moved to a 
different network, compared to 12.7% for Random Forest. 

4.  Works with other security tools : The text-based approach 
makes it easy to integrate with other security systems that use 
natural language processing. 

 

6.2.3 Is It Worth the Extra Computing Power? 

Let's be honest: transformer models like CyberBERT need more 
computing resources than traditional methods. Is the 
improvement worth it? We did the math: 

 

Approach 
Missed Attack 
Rate 

Hardware Cost (3 
years) 

Estimated 
Savings 

Net Benefit 

CyberBERT 3.8% $4,200 $127,300 $123,100 

Random 
Forest 

7.7% $1,800 $103,500 $101,700 

Approach 
Missed Attack 
Rate 

Hardware Cost (3 
years) 

Estimated 
Savings 

Net Benefit 

KNN 11.0% $1,200 $85,700 $84,500 

 

Based on industry average costs of $9,300 per security incident 
and estimating 150 incidents per year, CyberBERT's superior 
detection rate provides substantially better protection despite its 
higher hardware costs. 

 

6.3 Limitations and Challenges 

While CyberBERT shows great promise, it's important to 
acknowledge its limitations and challenges. 

 

6.3.1 Computing Power Requirements 

The biggest practical limitation is the computational demand: 

1.  Training needs : To train CyberBERT from scratch, you'll 
need: 

- With a GPU: 8.2GB of GPU memory and about an hour 

- With a CPU: 3.6GB of RAM and 5-8 hours 

This might be challenging for organizations with limited 
computing resources. 

2.  Speed comparison : While CyberBERT is fast enough for 
real-time use, traditional methods are still faster: 

This means you'll need to plan your hardware capacity more 
carefully with CyberBERT. 

3.  Text conversion overhead : About 18% of CyberBERT's 
processing time is spent converting features to text. 

4.  More complex setup : Deploying CyberBERT requires 
more integration work than simpler approaches. 

 

6.3.2 Technical Limitations 

Several technical factors limit CyberBERT's reach: 

 

1.  Specific feature set : The current system relies on the 84 
features from CICFlowMeter. Adapting to different feature sets 
would require retraining. 

2.  Limited by training data : Like all AI, CyberBERT can 
only recognize patterns similar to what it's seen before. 
Completely novel attack techniques might slip through. 

3.  Flow-based analysis limits : CyberBERT analyses 
individual network flows. Attacks that span multiple flows or 
deliberately mimic normal traffic patterns remain challenging. 

4.  No memory between flows : The current implementation 
doesn't track relationships between different flows over time, 
potentially missing coordinated attacks that use multiple 
connections. 
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6.3.3 Data and Testing Limitations 

Some limitations stem from the data and testing methodology: 

 

1.  Dataset limitations : While CICIDS2017 is a standard 
benchmark, it represents one specific network environment. 
Performance might vary on networks with different traffic 
profiles. 

 

2.  Labelling quality : The dataset labels are based on controlled 
experiments rather than expert analysis of ambiguous cases, 
which might not perfectly reflect real-world scenarios. 

 

3.  Network evolution : Network traffic patterns change over 
time as applications and protocols evolve. CyberBERT will 
need periodic retraining to stay effective. 

 

4.  Potential for adversarial attacks : Our early testing 
suggests that carefully crafted network flows might be able to 
fool the model. This needs further investigation. 

 

7. Conclusion and Future Work 

 

7.1 What We've Accomplished 

 

We've created CyberBERT, a new way to spot network threats 
by teaching language AI models to understand network traffic. 
Our experiments show that by transforming numerical network 
data into something resembling English text, we can detect 
attacks more accurately than traditional methods. 

 

Here's what we've contributed: 

1.  A clever way to turn network data into text : We found that 
representing network measurements as simple sentences (like 
"Flow Duration is 0.25") lets language models understand 
network patterns in a way they couldn't before. 

 

2.  Better flow feature extraction : We built an improved Python 
version of CICFlowMeter that extracts 84 different 
measurements from network traffic and can be easily integrated 
into security systems. 

3.  An optimized AI model : We fine-tuned DistilBERT 
specifically for network traffic, finding the sweet spot between 
accuracy and speed that makes it practical for real-world use. 

4.  Solid proof it works better : Our extensive testing showed 
96% accuracy across six traffic categories, significantly better 
than traditional approaches. 

5.  Making it fast enough for real use : Through careful 
optimization, we've made the system work in real-time even on 
standard hardware, with classification taking just 5-40ms. 

6.  Explaining the "why" behind decisions : The attention 
mechanisms give security teams insight into which network 
behaviours triggered an alert, making it easier to trust and verify 
the system's decisions. 

 

All these contributions help advance network security by 
showing how language AI can be repurposed to spot network 
threats more effectively, without requiring as much specialized 
expertise. 

 

7.2 Why This Matters 

The success of CyberBERT has some interesting implications 
for both AI research and practical security: 

 

7.2.1 What It Means for AI Research 

 

1.  AI models can learn across domains : Our results show that 
models trained on language can transfer their understanding to 
completely different domains like network traffic when the data 
is presented appropriately. 

2.  How you represent data matters - a lot : The dramatic 
improvement we saw from our text transformation approach 
shows that finding the right representation for your data can be 
just as important as the model you use. 

3.  AI can discover relationships without being told : 
CyberBERT's attention patterns show that transformer models 
can autonomously discover complex patterns across multiple 
measurements without explicit guidance. 

4.  Low-shot learning works beyond language : We found that 
CyberBERT could recognize some attacks with very few 
examples - something that suggests exciting possibilities for 
detecting new attack types. 

 

7.2.2 What It Means for Real-World Security 

 

1.  Yes, this can work in production : The speed and accuracy 
we've demonstrated show that this approach is viable for actual 
security operations, not just academic research. 

2.  Easier integration with other security tools : Since we're 
already in the text domain, CyberBERT can easily share data 
with other security systems that use natural language. 

3.  More accessible advanced security : By reducing the need for 
deep expertise in feature engineering, CyberBERT makes 
sophisticated traffic analysis more accessible to organizations 
with smaller security teams. 

4.  It's worth the extra computing power : Our cost-benefit 
analysis shows that despite requiring more computational 
resources, the improved detection capabilities deliver 
substantial net benefits in preventing security incidents. 

 

7.3 Where We're Heading Next 

 



                           International Scientific Journal of Engineering and Management (ISJEM)                                 ISSN: 2583-6129 
                                  Volume: 04 Issue: 04 | April – 2025                                                                               DOI: 10.55041/ISJEM02947                                                                                                                                        

                                  An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        

 

© 2025, ISJEM (All Rights Reserved) | www.isjem.com                                                                                                 |        Page 13 

While CyberBERT shows great promise, there's still plenty of 
room for improvement. Here are some exciting directions for 
future work: 

 

7.3.1 Making the AI Even Smarter 

 

1.  Hybrid models : Combining transformers with CNNs could 
give us the best of both worlds - the pattern recognition of CNNs 
with the contextual understanding of transformers. 

2.  Looking at sequences of flows : Right now, we analyse each 
network conversation independently. By looking at sequences 
of conversations, we could spot more sophisticated attacks that 
span multiple connections. 

3.  Understanding the network as a graph : Incorporating graph 
neural networks could help us understand relationships between 
different hosts and services on the network. 

4.  Combining different types of data : Future models could 
simultaneously process numeric features, text, and even raw 
packet data for a more comprehensive view. 

 

7.3.2 Improving the Features We Analyse 

1.  Better handling of encrypted traffic : As more traffic gets 
encrypted, we need to develop features that can analyse 
encrypted communications without decrypting them. 

2.  Understanding application-layer patterns : Adding features 
that understand application protocols would help us detect more 
sophisticated attacks like SQL injection or XSS. 

3.  Getting the same insights with fewer calculations : We could 
make everything more efficient by identifying which features 
give us the most security insight for the computational cost. 

4.  Adapting to changing conditions : Network traffic patterns 
evolve over time, so we need systems that can automatically 
adjust which features they focus on. 

 

7.3.3 Making It More Practical 

1.  Learning continuously : Rather than periodic retraining, the 
system could gradually adapt to evolving threats through 
incremental learning. 

2.  Defeating adversarial attacks : We need to make sure 
attackers can't easily trick the system by crafting network traffic 
specifically designed to fool it. 

3.  Better explaining the findings : We could develop more 
intuitive ways to explain the system's decisions to security 
analysts who need to investigate alerts. 

4.  Learning collaboratively across organizations : Using 
federated learning, organizations could improve their models 
collectively without sharing sensitive network data. 

 

     

7.3.4 Testing More Broadly 

1.  Trying it on different datasets : We need to evaluate 
performance across different types of networks to ensure the 
approach generalizes well. 

2.  Real-world deployment studies : Long-term studies in 
operational environments would help us understand how the 
system performs over time. 

3.  Creating fair comparison benchmarks : We should develop 
standardized ways to compare different security approaches on 
a level playing field. 

4.  Adapting to new environments quickly : Research into 
domain adaptation could help models quickly adjust to new 
network environments with minimal additional training. 

 

7.4 Final Thoughts 

 

CyberBERT represents an important step forward in bringing 
the power of language AI to network security. By bridging these 
two worlds, we've shown that we can detect sophisticated attack 
patterns more effectively without requiring as much specialized 
knowledge. 

 

As cyber threats continue to evolve, we need to keep finding 
creative ways to counter them. The success of CyberBERT 
suggests that combining ideas from different fields - in this case, 
language AI and network security - creates powerful new tools 
for protection. 

 

By continuing to explore these intersections, we can develop 
even better ways to defend our networks against ever-changing 
threats. After all, security is a journey, not a destination - and 
we're just getting started. 
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