
 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT (ISJEM) ISSN: 2583-6129
 VOLUME: 04 ISSUE: 05 | MAY – 2025 DOI: 10.55041/ISJEM03371

AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Design and Development of Automotive On-Board

Diagnostic Protocol system

Priti Dattaray Hagawane

Department of Electronics and

Telecommunication

SVPM College of Engineering,

Baramati, Pune

hagawanepriti@gmail.com

Dr. Nitin B. Dhaygude

Department of Electronics and

Telecommunication

SVPM College of Engineering,

Baramati, Pune

nbdhaigude@engg.svpm.org.in

Abstract- The increasing complexity of modern vehicles

necessitates the use of multiple Electronics Control Units

(ECUs) to manage and monitor various functions.

Communication between these ECUs is facilitated by the

Controller Area Network (CAN) protocol, which handles the

Physical and Data Link layers of the OSI model but lacks

advanced diagnostic capabilities. To address this, standardized

diagnostic protocols such as On-Board Diagnostics (OBD2) have

been developed, providing a comprehensive framework for fault

detection and in-vehicle communication. This paper presents

the design and implementation of the OBD2 protocol on an

embedded system using STM32F407 microcontrollers. The

project aims to establish a diagnostic communication system

between ECUs and Tester Tool. Primary function of this ECU

is to measure ambient temperature and Throttle Position. ECU

and Tester tools are connected via a CAN bus. The

implementation leverages the ISO 15031 standard to ensure

reliable and standardized diagnostic services.

Keywords: On-Board Diagnostics (OBD2), ISO 15031,

Electronic Control Unit (ECU), Body Control Module (BCM),

Light Control Module (LCM), Controller Area Network (CAN),

Diagnostic Trouble Code (DTC), Routine Control Identifier

(RID), Data Identifier (DID), ISO-TP (Transport Protocol)

I. INTRODUCTION

The complexity of modern vehicles necessitates advanced
diagnostic capabilities to ensure optimal performance and
reliability. The OBD2 protocol, standardized under ISO
15031, is a crucial tool in the automotive industry for
monitoring and diagnosing vehicle systems. OBD2 provides
a comprehensive framework for fault detection, emission
control, and real-time data access, facilitating efficient
vehicle maintenance and repair.

This paper explores the design and implementation of an
OBD2-based diagnostic communication system using
STM32F407 microcontrollers. The project involves two key
components one is ECU and another is PC Based tester tool.
ECU and Tester tools communicate over a CAN bus and
respond to OBD2 diagnostic requests. The system supports
vital OBD2 services, including retrieving DTCs(0x03) and
accessing real-time sensor data. Mode (0x01)

To ensure the system's robustness, fault injection
techniques are employed to simulate real-world ECU failures
such as over Temperature and ECU power loss. The
diagnostic responses to these failures are analyzed using a
Waveshare USB-to-CAN module. By implementing OBD2
on embedded automotive ECUs, this project aims to
demonstrate the practical application of standardized

diagnostic services, enhancing the efficiency of vehicle fault
detection and maintenance processes.

II. LITERATURE SURVEY

Malekian et al. designed a wireless OBD-II fleet
management system using a custom OBD reader to measure
real-time vehicle data such as speed and fuel consumption,
and then transmitted the data to a remote server via Wi-Fi [1].
Their work highlights the ability of OBD-II to provide
accurate data using PID requests, although the focus was
more on wireless transmission and cloud integration.

Baek and Jang implemented an integrated OBD-II
connector that supports Bluetooth, Wi-Fi, and WCDMA
modules for multi-platform communication [2]. While this
study focused on external interfacing, the underlying
diagnostic protocol used SAE J1979 and ISO 15765-4
standards for CAN-based request-response communication
with the ECU.

Joseph and Kumar presented a low-cost Driver
Information System (DIS) that reads live OBD-II data such
as throttle position, RPM, and ambient temperature using
standard PID requests [3]. Their system used a polling
mechanism to repeatedly query the ECU, decode the
hexadecimal responses, and present the results in a user-
friendly format, demonstrating a structure similar to the
STM32-based system in this project.

Jhou et al. implemented a cloud-based OBD-II diagnostic
system using a 3.5G wireless module to send vehicle data to
a cloud server for real-time fault classification [4]. Although
the project emphasized cloud computation, the use of
standard services like Mode 01 (Current Data) and Mode 03
(DTCs) forms a strong parallel to the core services
implemented in the present project.

Moniaga et al. conducted a study on real-time vehicle
diagnostics using an OBD-II scanner with a Raspberry Pi
platform [5]. The system acquired data such as throttle
position and RPM and displayed it on a local interface. The
comparison between microcontrollers (Arduino vs.
Raspberry Pi) underscored the importance of processing
capability in real-time OBD-II applications.

Michael and Sunday conducted a case study on digitized
vehicle diagnostics using tools like Launch X431 and Autel
MaxiDiag to capture and interpret fault codes and vehicle
parameters [6]. Their findings confirm that OBD-II is
effective in identifying malfunction conditions early, which
reduces emissions and improves vehicle maintenance.

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT (ISJEM) ISSN: 2583-6129
 VOLUME: 04 ISSUE: 05 | MAY – 2025 DOI: 10.55041/ISJEM03371

AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

OBD-II is a standardized vehicle diagnostics protocol that
provides access to real-time vehicle data and DTCs via a 16-
pin standardized connector. The core functionality is defined
in SAE J1979 / ISO 15031-5 for diagnostic services and
PIDs, ISO 15765-4 for CAN-based communication, and ISO
15031-3 / SAE J1962 for connector specifications. These
standards ensure uniformity across all OBD-II-compliant
vehicles and provide the technical basis for diagnostic tools
and embedded implementations.. ISO 15765-4 defines how
CAN is used for diagnostics, while ISO 15765-2 defines the
transport protocol for multi-frame messaging. ISO 15031-5
(SAE J1979) lists the standard services and PIDs, and ISO
15031-3 (SAE J1962) defines the standardized connector,
ensuring tool compatibility across manufacturers [7]–[10].

III. SYSTEM OVERVIEW

A. OBD2 Protocol Overview

OBD2 is a standardized system implemented in modern
vehicles to monitor and diagnose various aspects of vehicle
performance and emissions. Defined under the ISO 15031
standard, OBD2 provides a comprehensive framework for
fault detection, real-time data access, and emission control,
ensuring vehicles meet regulatory requirements and maintain
optimal performance. The OBD2 protocol enables
communication between the vehicle's ECUs and diagnostic
tools via the CAN bus.

B. Client-Server Architecture

 The OBD2 protocol operates on a client-server
architecture, where the diagnostic tool acts as the client and
the vehicle's ECUs act as servers. Client initiates diagnostic
request, and Server will respond to the request as per
configuration. The diagnostic tool provides a user-friendly
interface for mechanics and technicians to interact with the
vehicle's diagnostic system. This interface allows users to
select specific tests, view data, and perform diagnostic
procedures. Client-Server architecture provides
standardization, Efficiency, Scalability and Flexibility.

C. OBD2 Message Structure

 an OBD2 message consists of an identifier and data. Further,
the data is split in Mode, PID and data bytes.

Fig.1. OBD2 Protocol Frame Structure

● Identifier: For OBD2 messages, the identifier is
standard 11 bit and used to distinguish between
"request messages" (ID 7DF) and "response
messages" (ID 7E8 to 7EF). Note that 7E8 will
typically be where the main engine or ECU responds
at.

● Length: This simply reflects the length in number of
bytes of the remaining data (03 to 06). For the
Vehicle Speed example, it is 02 for the request (since
only 01 and 0D follow), while for the response it is
03 as both 41, 0D and 32 follow.

● Mode: For requests, this will be between 010A. For
responses the 0 is replaced by 4 (i.e. 41, 42, … , 4A).

There are 10 modes as described in the SAE J1979
OBD2 standard. Mode 1 shows Current Data and is
e.g. used for looking at real-time vehicle speed, RPM
etc. Other modes are used to e.g. show or clear stored
DTC and show freeze frame data.

● PID: For each mode, a list of standard OBD2 PIDs
exist e.g. in Mode 01, PID 0D is Vehicle Speed. For
the full list, check out our OBD2 PID overview .
Each PID has a description and some have a specified
min/max and conversion formula. The formula for
speed is e.g. simply A, meaning that the A data byte
(which is in HEX) is converted to decimal to get the
km/h converted value (i.e. 32 becomes 50 km/h
above). For e.g. RPM (PID 0C), the formula is (256A
+ B) / 4.

● A, B, C, D: These are the data bytes in HEX, which
need to be converted to decimal form before they are
used in the PID formula calculations. Note that the
last data byte (after Dh) is not used.

D. OBD2 Request

An OBDII request is a message sent by a diagnostic tool
or scan tool to the vehicle’s ECU to request specific
diagnostic information. The request typically consists of
several parts. Mode Defines the type of operation or request
being made. OBDII defines several modes, each with a
specific purpose. For example

1. Mode 01: Request Current Data
2. Mode 02: Request Freeze Frame Data
3. Mode 03: Request DTC
4. Mode 04: Clear DTC
5. Mode 05: Request Oxygen Sensor Monitoring
6. Mode 06: Request Test Results for Specific

Monitors
7. Mode 07: Request Pending DTCs
8. Mode 08: Request Control of OnBoard System
9. Mode 09: Request Vehicle Information

PID (Parameter ID) Specifies the particular data or
diagnostic information requested within the given mode. For
example, in Mode 01 (Request Current Data), PIDs represent
specific parameters like engine RPM, vehicle speed, coolant
temperature, etc. Data Bytes In some cases, additional data
bytes are sent with the request to provide parameters or
specific instructions.

Example Request To request the current engine RPM, a
diagnostic tool would send a request with Mode 01 and PID
0C (which represents RPM data).

E. OBD2 Response

An OBDII response is the message sent by the vehicle’s
ECU back to the diagnostic tool in reply to a request. The
response contains the requested diagnostic data or an
indication of the operation's success or failure. The response
typically consists of

● Mode Repeats the mode of the request to confirm

the type of data being returned.

● PID Identifies the specific parameter or diagnostic

information returned.

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT (ISJEM) ISSN: 2583-6129
 VOLUME: 04 ISSUE: 05 | MAY – 2025 DOI: 10.55041/ISJEM03371

AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

● Data Bytes Contains the actual diagnostic data

requested. The format and content of these bytes

depend on the PID and the requested data.

● Status Byte Sometimes included to indicate the

status of the request, such as whether it was

successful or if there were errors.

Example Response For a request of current engine RPM

(Mode 01, PID 0C), the response might include a data byte

sequence representing the RPM value. For instance, the

response data might be 0C 0A 00 1E, where 0A is a status

byte and 001E is the RPM value (in hexadecimal format).

Fig.2. OBD II Request and Response message structure

F. Block Diagram

The block diagram below illustrates the overall

architecture of the proposed method for implementing

the complete system over CAN using the STM32

microcontroller.

 Fig. 3. Block diagram of OBD protocol implemented system

● Sensors (Potentiometer and LM35): A potentiometer

is connected to the STM32-based ECU to simulate
the throttle position sensor, providing variable analog
input based on its rotation. An LM35 temperature
sensor is used to measure the ambient temperature,
supplying a linear analog voltage corresponding to
the temperature in degrees Celsius.

● STM32-Based ECU: The STM32F407VG
microcontroller acts as the ECU, responsible for
reading analog signals from the sensors through its
built-in ADC. It processes these values and converts
them into standard diagnostic data, formatted
according to the OBD2 protocol. In terms of OBD2
protocol, the STM32 based controller is called a
server, which processes the OBD2 Request and
provides a response.

● CAN Transceiver(MCP2551) : This module enables
communication between the STM32 microcontroller
and the CAN bus.It converts the controller's TX/RX
logic levels to CAN differential signals and vice
versa.The processed data is transmitted over the
CAN bus via a CAN transceiver, which converts the
digital signals from the STM32 into differential
signals suitable for CAN communication and vice
versa.

● STM32 USB-CAN Tool (Waveshare): This acts as a
bridge between the CAN bus and the PC. It captures
the CAN frames sent by the STM32 ECU and
transmits them to the computer via USB. The CAN
transceiver is connected to an STM32-based USB-to-
CAN tool, which acts as a bridge between the CAN
bus and the computer. It enables communication
between the ECU and diagnostic software on the PC.

● Computer with CAN Analyzer Software: The PC
runs CAN analyzer software to send diagnostic
requests (OBD2 service requests) and receive the
corresponding responses from the ECU. It helps in
visualizing and verifying the communication
between the diagnostic tool (tester) and the ECU.

IV. FLOW CHART

 The flowcharts represent the communication flow for OBD-

II Services 01 and 03 implemented on an STM32

microcontroller. The process includes CAN interface

initialization, diagnostic request generation, message

transmission, and ECU response handling. Service 01 is used

to access real-time vehicle parameters, while Service 03

retrieves stored DTCs. Each flow ensures structured data

exchange over the CAN protocol, enabling accurate

interpretation and display of diagnostic data.

A. Mode 01 Request Current Data

Fig. 4. Flowchart for OBD Mode 01 Request current Data

In OBD Mode 01 (Request Current Data), the flow begins

with the scan tool (diagnostic tester) sending a Mode 01

request with a PID (Parameter ID), which specifies the type

of real-time data it needs from the vehicle’s ECU, such as

engine speed, vehicle speed, or coolant temperature. Upon

receiving the request, the ECU interprets the PID, retrieves

the relevant sensor data, and formats the response message.

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT (ISJEM) ISSN: 2583-6129
 VOLUME: 04 ISSUE: 05 | MAY – 2025 DOI: 10.55041/ISJEM03371

AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

The ECU then sends this response back to the scan tool,

which decodes and displays the requested information for the

user. This process enables real-time monitoring of vehicle

parameters to assist in diagnostics and performance analysis.

B. Mode 03 Request Diagnostic Trouble Code

Fig.5. Flowchart for OBD Mode 03 Request DTC

The flow chart for OBD Mode 03 (Request DTCs)
involves a sequence where the scan tool sends a request to the
vehicle's ECU to retrieve DTC stored during fault detection.
First, the scan tool initiates a request by sending Mode 03
over the OBD interface. The ECU receives this request,
checks its internal memory for any stored DTCs, and formats
the response accordingly. If DTCs are found, the ECU sends
back a list of DTC codes, each identifying a specific fault. If
no DTCs are present, the ECU responds with an indication of
no faults. Finally, the scan tool displays the retrieved codes,
allowing further diagnostics or repairs based on the fault
information.

V. APPLICATION

The design and development of an Automotive On-Board
Diagnostic (OBD) Protocol System has wide-ranging
applications across vehicle diagnostics, maintenance, and
performance optimization. It enables real-time data
visualization and advanced analysis to improve diagnostic
efficiency, helping technicians quickly identify and resolve
issues through detailed insights into performance metrics and
DTC. The system supports preventive maintenance by
continuously monitoring key parameters to predict potential
issues, and it also maintains comprehensive service histories

for better long-term vehicle care. For performance
optimization, the system provides real-time monitoring and
historical data analysis to fine-tune vehicle settings.
Additionally, it offers user-friendly interfaces for vehicle
owners to track their car's health, enhancing overall vehicle
management and reliability.

VI. RESULTS

 The implementation of the OBD2 protocol on the STM32

microcontroller was tested using various diagnostic service

requests sent via a PC-based CAN analyzer. The system was

configured to simulate real ECU behavior, responding to

Mode 01 (Show Current Data) and Mode 03 (Read Stored

DTCs) requests.

Sensor inputs were provided using an LM35 temperature

sensor and a potentiometer, representing ambient temperature

and throttle position, respectively. The ECU processed the

analog signals and returned real-time values encoded into

standard OBD2 PID response formats. Additionally, artificial

faults were simulated by inducing specific sensor conditions

such as over-temperature, disconnected sensors, or frozen

input values. These faults were successfully logged as DTC

(DTCs) and could be retrieved using Mode 03 requests.

The system also responded with negative responses when

invalid or unsupported requests were received. According to

the ISO 15031-5 / SAE J1979 standard, a negative response

uses 0x7F as the service ID, followed by the requested service

number and a Negative Response Code (NRC). This

mechanism confirms that the ECU handles unexpected or

incorrect requests gracefully, as per OBD2 protocol

requirements.

A. Read Current sensor Data

The tester sends a request to read real-time data from the ECU

using Mode 01 (Show Current Data).

● PID 01: Throttle Position (Potentiometer)

 Fig.6. Request and Response of Read Current Data

B. Request Diagnostic Trouble Code

This mode is used to read stored DTC that are related to

emission system faults. It helps identify issues detected by the

ECU that may cause increased emissions, aiding in quick

fault diagnosis and repair.

Fig.7. Request and Response of Read DTC

VII. CONCLUSION

The Design and Development of an Automotive On-Board

Diagnostic (OBD) Protocol System successfully

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT (ISJEM) ISSN: 2583-6129
 VOLUME: 04 ISSUE: 05 | MAY – 2025 DOI: 10.55041/ISJEM03371

AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

demonstrates the ability to monitor, diagnose, and

communicate vehicle faults, enhancing both the efficiency

and reliability of automotive diagnostics. This project

leveraged the standardized OBD protocol to facilitate real-

time fault detection and reporting, allowing for quick

identification of issues such as sensor malfunctions and

system errors. Through structured implementation, the

system achieved effective communication between vehicle

ECUs and diagnostic tools, accurately retrieving DTC

(DTCs) and other relevant data. The system's modular and

scalable design also supports future expansions for additional

diagnostic functions, making it adaptable for evolving

automotive technologies. This OBD protocol system stands

as a crucial tool for vehicle maintenance, reducing downtime

and promoting proactive vehicle care, thereby contributing to

improved safety, performance, and environmental

compliance in the automotive industry.

REFERENCES

[1] R. Malekian, N. R. Moloisane, L. Nair, B. Maharaj,
and U. A. K. Chude-Okonkwo, "Design and Implementation
of a Wireless OBD II Fleet Management System," IEEE
Transactions on Intelligent Transportation Systems, vol. 18,
no. 10, pp. 1–10, 2017.

[2] S.-h. Baek and J.-W. Jang, "Implementation of
Integrated OBD-II Connector with External Network,"
Information Systems, Elsevier, 2014. DOI:
10.1016/j.is.2014.06.011

[3] P. C. Joseph and S. P. Kumar, "Design and
Development of OBD-II Compliant Driver Information
System," Indian Journal of Science and Technology, vol. 8,
no. 21, pp. 1–8, Sep. 2015. DOI:
10.17485/ijst/2015/v8i21/79516

[4] J.-S. Jhou, S.-H. Chen, W.-D. Tsay, and M.-C. Lai,
"The Implementation of OBD-II Vehicle Diagnosis System
Integrated with Cloud Computation Technology," in Proc. of
2nd Int. Conf. on Robot, Vision and Signal Processing
(RVSP), 2013, pp. 267–270. DOI: 10.1109/RVSP.2013.55

[5] J. V. Moniaga, S. R. Manalu, D. A. Hadipurnawan,
and F. Sahidi, "Diagnostics Vehicle’s Condition Using OBD-
II and Raspberry Pi Technology: Study Literature," Journal
of Physics: Conference Series, vol. 978, no. 1, p. 012011,
2018. DOI: 10.1088/1742-6596/978/1/012011

[6] M. M. Oluwaseyi and M. S. Abolarin, "Specifications
and Analysis of Digitized Diagnostics of Automobiles: A
Case Study of On-Board Diagnostic (OBD II)," International
Journal of Engineering Research & Technology (IJERT), vol.
9, no. 1, pp. 91–96, Jan. 2020.

[7] ISO 15765-4:2016 – Road vehicles — Diagnostic
communication over Controller Area Network (DoCAN) —
Part 4: Requirements for emissions-related systems.

[8] ISO 15031-5:2015 / SAE J1979 – Communication
between vehicle and external test equipment for emissions-
related diagnostics.

[9] ISO 15031-3:2004 / SAE J1962 – Diagnostic
connector and associated electrical interface requirements.

[10] ISO 15765-2:2016 – Transport protocol and network
layer services for CAN (ISO-TP used for multi-frame CAN
messaging in OBD).

