
 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05115
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Design and Fabrication of Internet Controlled Transport Car

Dr. K. Ankamma Rao, Professor, Department of Mechanical Engineering, Mahatma Gandhi Institute of

Technology, Hyderabad. kankamma_mct@mgit.ac.in

D. Kareemulla, Student of Mechanical (MCT) Engineering Dept., MGIT, Hyd.

Dudekulakareemulla271@gmail.com

G. Abhinay, Student of Mechanical (MCT) Engineering Dept., MGIT, Hyd. abhinaysachin.d7b@gmail.com

K. Jathin, Student of Mechanical (MCT) Engineering Dept., MGIT, Hyd. jathink0292@gmail.com

P. Tapan sai, Student of Mechanical (MCT) Engineering Dept., MGIT, Hyd. Tapansai4299@gmail.com

Abstract:

The emergence of the Internet of Things (IoT) has paved the way for innovative technologies, including internet-controlled transport

cars. This is a transport car to deploy and transport important materials such as food to flood affected citizens or arms to military

personnel or transport medicine during times like pandemics, where people cannot easily go. Here we can use internet controlled robot

vehicles to transport the required materials or goods to the destination from anywhere in the world as long as there is internet

connection to the robot and the controller which maybe a computer or a mobile phone. The transport car houses a cabinet which is

servo controlled that opens and closes on command and has a sufficient storage area. The car is a robust mini van which can go over

small obstacles with ease and has a camera feedback system through which we can see what the robot is seeing and control the robot

through it.

The basic components required for building the robot are, a Robust Robot chassis, Raspberry PI 4, Wi-Fi module, Raspberry PI

Camera module, Motor Driver Board, 4 wheels, 4 DC Servo motors and a smart phone or a computer to control the car. In the first

step we design and simulate the working of the components in Tinker CAD, Blynk or Sketch. Then build a prototype to test the

working of the concept.

Keywords: Remote controlled Camera Car, Remote controlled Mini Transport Car, Internet controlled Transport Robot, Unmanned

Transport vehicle

I. Introduction

1.1 History of Radio Control (RC) Cars

The remote-controlled (RC) cars date back to the mid-20th century and have evolved significantly over the years. Here's a brief

overview of the history of RC cars:

Fig 1.1 RC Car

1. Development of Radio Control (1960s):

• The 1960s saw a significant advancement in RC technology with the introduction of radio control systems.

• These systems allowed for more freedom of movement as compared to the tethered models. Hobbyists began building and racing

these radio-controlled cars for recreational purposes.

mailto:Dudekulakareemulla271@gmail.com
mailto:abhinaysachin.d7b@gmail.com
mailto:jathink0292@gmail.com
mailto:Tapansai4299@gmail.com

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05115
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

2. Advancements in Technology (2000s-Present):

• The 2000s and beyond have witnessed continuous advancements in RC technology. Brushless electric motors, LiPo batteries,

and sophisticated radio control systems have significantly improved the speed, efficiency, and handling of RC cars.

• The introduction of ready-to-fly (RTF) and bind-and-drive (BND) models has made the hobby more accessible to beginners.

1.2 Working
The working of RC cars involves several components and technologies that work together to control the car's movement. When the

operator manipulates the controls on the transmitter, the signals are transmitted to the receiver, which then instructs the ESC and servo

to adjust the speed and direction of the RC car accordingly. This coordination of components allows for precise control and

maneuverability.

1.3 TYPES OF RC CONTROLLING WAYS

• Wifi Controlled Car

To enable wireless communication, a Wi-Fi module, such as the ESP8266 or ESP32, is connected to the Arduino. We used Raspberry

pi.

• Bluetooth Controlled Car

Bluetooth-controlled RC cars provide a modern and convenient way to operate remote-controlled vehicles. These cars utilize

Bluetooth technology to establish a wireless connection between a mobile device, such as a smartphone or tablet, and the RC car itself.

• Radio Controlled Car

These are conventional Radio control cars that use radio frequency to control the car.

II. Current Challenges

The current challenges with the existing RC cars is their range and integretability with IoT devices. They have a short range compared

to the internet and cannot be remotely controlled from different cities or countries like IoT devices can be.

In transitioning a manual internet-controlled car to semi-automatic with a storage box, several key considerations must be addressed

to ensure seamless functionality and user convenience.

Firstly, the manual control system of the car needs to be modified to incorporate semi-automatic features. This involves integrating

sensors and actuators that allow for automated control of certain functions, such as acceleration, braking, and steering, while still

retaining manual override capabilities. Additionally, connectivity features must be enhanced to enable seamless communication

between the car and external control systems via the internet.

Secondly, the installation of a storage box adds another layer of complexity to the design. The storage box should be securely

integrated into the car's chassis to ensure stability and safety during operation. Furthermore, mechanisms for opening and closing the

storage box need to be implemented, possibly through motorized actuators controlled by the car's onboard systems or remotely via

the internet.

To achieve semi-automatic functionality, the car's control system must be programmed to manage various tasks autonomously, such

as maintaining a constant speed, following predefined routes, and detecting obstacles to avoid collisions. Advanced algorithms and

machine learning techniques may be employed to enhance the car's decision-making capabilities and adapt to different driving

conditions effectively.

Moreover, user interfaces need to be developed to facilitate interaction with the semi-automatic car and its storage box. This includes

designing intuitive control panels or mobile applications that allow users to input commands, monitor the car's status, and access the

contents of the storage box remotely.

III. Methodology

Developing a semi-automatic internet-controlled car using a Raspberry Pi involves a structured methodology that encompasses several

stages of planning, implementation, and testing to ensure a successful project outcome. Firstly, the project requires a thorough

understanding of the hardware components needed. This includes selecting the appropriate motors for propulsion and steering, sensors

for detecting obstacles and other environmental cues, and actuators for controlling these components. The Raspberry Pi serves as the

central control unit, responsible for processing sensor data, making decisions, and sending commands to the actuators. The next step

involves setting up the hardware components. This includes wiring the motors, sensors, and other peripherals to the GPIO pins of the

Raspberry Pi according to their specifications. Additionally, power management systems must be implemented to ensure reliable

operation of the car's components.

With the hardware in place, the focus shifts to software development. This involves writing code to interface with the various sensors

and actuators, interpret sensor data, and implement control algorithms. Python is a popular programming language for Raspberry Pi

projects due to its versatility and ease of use, and libraries such as RPi.GPIO and picamera are commonly used for GPIO control and

camera functionality, respectively. For internet connectivity, the Raspberry Pi can be configured to connect to a local Wi-Fi network

or utilize a USB dongle for mobile data access. Once connected, the car can communicate with external control systems or user

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05115
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

interfaces via TCP/IP or other networking protocols. Secure communication protocols such as HTTPS or MQTT with TLS encryption

may be employed to protect sensitive data and ensure privacy.

In semi-automatic mode, the car's software must be programmed to perform certain tasks autonomously while still allowing manual

intervention when necessary. This may include implementing algorithms for obstacle avoidance, lane following, or basic navigation

using input from sensors and feedback from the vehicle's onboard systems. User interfaces play a crucial role in interacting with the

internet-controlled car. This may involve developing a web-based dashboard or a mobile application that allows users to send

commands, receive real-time telemetry data, and monitor the car's status remotely. User-friendly interfaces and intuitive controls

enhance the overall user experience and make the car more accessible to a wider audience.

Finally, thorough testing and validation are essential to ensure the reliability, safety, and performance of the internet-controlled car.

This involves conducting extensive testing under various conditions to identify and address any potential issues or shortcomings in

the hardware or software implementation. Iterative refinement may be necessary to optimize the car's performance and enhance its

capabilities.

By following this methodology, a semi-automatic internet-controlled car using a Raspberry Pi can be successfully developed as a

compelling project that integrates hardware, software, and networking technologies to create an engaging and interactive experience.

IV. Design Process, Fabrication and Code

4.1 Material and Components required

1. Chassis

2. Microcontroller – Raspberry pi 3 B+, 5V transformer and 12V, 12ah battery.

3. L298 H bridge Motor dirver module boards

4. Wheels

5. Geared DC motors

6. RaspiCam

7. High Torque Servo Motor

8. Ultrasonic Sensor

9. Storage Box

10. Head Lights

11. Bumpers for safety

12. Buzzer

4.2 Chassis and build

A chassis refers to the framework or structure that provides the underlying support for the vehicle's components and body. Made with

Polyamide nylon board, a high-performance synthetic polymer, boasts exceptional versatility and durability across various industries.

Composed of repeating amide linkages, this thermoplastic material exhibits remarkable strength, resilience, and resistance to wear

and tear. Its molecular structure contributes to outstanding chemical and thermal stability, making it suitable for a spectrum of

applications.

All dimensions are in mm

Fig 4.1 AUTO CAD Diagram Fig 4.2 Chemical formula of polyamides

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05115
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

Fusion 360 (3D):

Fig 4.3 Fusion 360 diagram Fig 4.4 Expected output 3D model

4.3 Circuit Diagrams

The pin diagram/description of raspberry pi is really important to make all the right connections with the components for the device

to work properly because of the way the code is writte.

Fig 4.5 Raspberry Pi Pins description

Circuit Diagram of Motors:

Fig 4.6 Circuit diagram of motors

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05115
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

All the necessary connections to be made and their pins:

• For ultra-sonic sensor, Pins are, TRIG = 4, ECHO = 3.

• For servo motor, pins are, Servo pin = 6.

• For buzzer, pins are, buzzer pin = 5.

• For led headlights, pin = 2.

• The motor layout and pins are in the diagram above.

• The ultrasonic sensor and the servo motor sensor connections are in the figure below.

• All the ground connections and the power input connections are taken from the raspberry pi GPIO.

• To not overload the controller with components, we can also make separate connections to the components positive terminal,

directly from the battery with a transformer in between for right voltage and amp.

• Power to raspberry pi is given from a 12V from the 12ah battery converted to 5V through transformer.

4.7 Pin diagram of lid servo motor and ultrasonic sensor

Fig 4.8 WIP Front view of the car

4.9 Front view of the car with ultrasonic sensor and headlights

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05115
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

4.10 Control box containing Raspberry pi, camera module, motor controllers, buzzer, led indicator

4.11 Servo controlled storage box containing batter and charger

4.5 Control and Code

An internet-controlled car integrates a combination of hardware and software components to enable remote control and monitoring

through the internet. The car is equipped with sensors, microcontrollers, and communication modules such as Wi-Fi or cellular

connectivity. These components work together to transmit real-time data, including sensor readings and control commands, between

the car and a centralized server or a user interface. Users can interact with the car through a web or mobile application, sending

commands such as steering, acceleration, and braking. The server processes these commands and communicates them to the car's

onboard system, allowing for immediate and responsive control. Additionally, the system facilitates feedback by streaming live data

from the car, providing users with information on the vehicle's speed, location, and environmental conditions. This internet-controlled

car project demonstrates the potential of remote vehicle management and monitoring, showcasing the intersection of embedded

systems, communication technologies, and user interfaces in the realm of smart and connected vehicles.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05115
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 7

4.12 HTML Live control and feed UI page

4.5.1 Code for controlling the Internet Controlled Car

from flask import Flask, render_template, request, Response

from flask_socketio import SocketIO

from threading import Thread

import RPi.GPIO as GPIO

import time

from picamera import PiCamera

from io import BytesIO

app = Flask(__name__)

socketio = SocketIO(app)

camera = PiCamera()

Set GPIO mode

GPIO.setmode(GPIO.BCM)

Motor A (front left)

ena = 18

in1 = 23

in2 = 24

Motor B (front right)

enb = 25

in3 = 17

in4 = 27

Motor C (back left)

enc = 12

in5 = 16

in6 = 20

Motor D (back right)

end = 21

in7 = 22

in8 = 26

Set motor pins as output

motor_pins = [ena, in1, in2, enb, in3, in4, enc, in5, in6, end, in7, in8]

GPIO.setup(motor_pins, GPIO.OUT, initial=GPIO.LOW)

PWM setup

pwm_a = GPIO.PWM(ena, 1000)

pwm_b = GPIO.PWM(enb, 1000)

pwm_c = GPIO.PWM(enc, 1000)

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05115
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 8

pwm_d = GPIO.PWM(end, 1000)

pwm_a.start(0)

pwm_b.start(0)

pwm_c.start(0)

pwm_d.start(0)

Ultrasonic sensor setup

TRIG = 4

ECHO = 3

GPIO.setup(TRIG, GPIO.OUT)

GPIO.setup(ECHO, GPIO.IN)

Servo motor setup

servo_pin = 6

GPIO.setup(servo_pin, GPIO.OUT)

servo = GPIO.PWM(servo_pin, 50) # PWM frequency: 50 Hz

Buzzer setup

buzzer_pin = 5

GPIO.setup(buzzer_pin, GPIO.OUT)

LED setup

led_pin = 2

GPIO.setup(led_pin, GPIO.OUT)

led_state = False

Motor control functions

def motor_control(pwm, in1_pin, in2_pin):

 GPIO.output(in1_pin, GPIO.HIGH)

 GPIO.output(in2_pin, GPIO.LOW)

 pwm.ChangeDutyCycle(100)

def forward():

 motor_control(pwm_a, in1, in2)

 motor_control(pwm_b, in3, in4)

 motor_control(pwm_c, in5, in6)

 motor_control(pwm_d, in7, in8)

def backward():

 GPIO.output(in1, GPIO.LOW)

 GPIO.output(in2, GPIO.HIGH)

 GPIO.output(in3, GPIO.LOW)

 GPIO.output(in4, GPIO.HIGH)

 GPIO.output(in5, GPIO.LOW)

 GPIO.output(in6, GPIO.HIGH)

 GPIO.output(in7, GPIO.LOW)

 GPIO.output(in8, GPIO.HIGH)

 pwm_a.ChangeDutyCycle(100)

 pwm_b.ChangeDutyCycle(100)

 pwm_c.ChangeDutyCycle(100)

 pwm_d.ChangeDutyCycle(100)

def left():

 GPIO.output(in1, GPIO.LOW)

 GPIO.output(in2, GPIO.HIGH)

 GPIO.output(in3, GPIO.HIGH)

 GPIO.output(in4, GPIO.LOW)

 GPIO.output(in5, GPIO.LOW)

 GPIO.output(in6, GPIO.HIGH)

 GPIO.output(in7, GPIO.HIGH)

 GPIO.output(in8, GPIO.LOW)

 pwm_a.ChangeDutyCycle(100)

 pwm_b.ChangeDutyCycle(100)

 pwm_c.ChangeDutyCycle(100)

 pwm_d.ChangeDutyCycle(100)

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05115
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 9

def right():

 GPIO.output(in1, GPIO.HIGH)

 GPIO.output(in2, GPIO.LOW)

 GPIO.output(in3, GPIO.LOW)

 GPIO.output(in4, GPIO.HIGH)

 GPIO.output(in5, GPIO.HIGH)

 GPIO.output(in6, GPIO.LOW)

 GPIO.output(in7, GPIO.LOW)

 GPIO.output(in8, GPIO.HIGH)

 pwm_a.ChangeDutyCycle(100)

 pwm_b.ChangeDutyCycle(100)

 pwm_c.ChangeDutyCycle(100)

 pwm_d.ChangeDutyCycle(100)

def stop():

 GPIO.output(motor_pins, GPIO.LOW)

 pwm_a.ChangeDutyCycle(0)

 pwm_b.ChangeDutyCycle(0)

 pwm_c.ChangeDutyCycle(0)

 pwm_d.ChangeDutyCycle(0)

def open_lid():

 servo.start(7.5) # Duty cycle for 0 degree position

 time.sleep(1)

def close_lid():

 servo.start(2.5) # Duty cycle for 90 degree position

 time.sleep(1)

def beep():

 GPIO.output(buzzer_pin, GPIO.HIGH)

 time.sleep(0.5)

 GPIO.output(buzzer_pin, GPIO.LOW)

def ultrasonic_distance():

 GPIO.output(TRIG, True)

 time.sleep(0.00001)

 GPIO.output(TRIG, False)

 while GPIO.input(ECHO) == 0:

 pulse_start = time.time()

 while GPIO.input(ECHO) == 1:

 pulse_end = time.time()

 pulse_duration = pulse_end - pulse_start

 distance = pulse_duration * 17150

 distance = round(distance, 2)

 return distance

Function to check obstacle in a separate thread

def check_obstacle():

 while True:

 distance = ultrasonic_distance()

 if distance < 30: # Adjust threshold as needed

 stop()

 time.sleep(0.5) # Adjust sleep time as needed

 # You may add additional actions here if an obstacle is detected

 time.sleep(0.1) # Adjust sleep time as needed

Camera streaming function

def generate_video():

 while True:

 # Create a byte buffer for storing the stream

 stream = BytesIO()

 # Capture an image from the camera

 camera.capture(stream, format='jpeg')

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05115
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 10

 # Reset the stream position to the beginning

 stream.seek(0)

 # Yield the stream as bytes

 yield (b'--frame\r\n'

 b'Content-Type: image/jpeg\r\n\r\n' + stream.read() + b'\r\n')

Flask route for video streaming

@app.route('/video_feed')

def video_feed():

 return Response(generate_video(),

 mimetype='multipart/x-mixed-replace; boundary=frame')

Flask route for control page

@app.route('/')

def index():

 return render_template('control_page.html')

WebSocket event for controlling the car and additional functionalities

@socketio.on('control_event')

def control(direction):

 if direction == 'forward':

 forward()

 elif direction == 'backward':

 backward()

 elif direction == 'left':

 left()

 elif direction == 'right':

 right()

 elif direction == 'stop':

 stop()

 elif direction == 'open_lid':

 open_lid()

 elif direction == 'close_lid':

 close_lid()

 elif direction == 'beep':

 beep()

 elif direction == 'route1':

 route1()

 elif direction == 'route2':

 route2()

 elif direction == 'toggle_led':

 toggle_led()

 elif direction == 'turn_on_led':

 GPIO.output(led_pin, GPIO.HIGH) # Turn LED on

 elif direction == 'turn_off_led':

 GPIO.output(led_pin, GPIO.LOW) # Turn LED off

Function to implement route 1

def route1():

 # Start the thread for obstacle detection

 obstacle_thread = Thread(target=check_obstacle)

 obstacle_thread.start()

 # Go straight for 5 seconds

 forward()

 time.sleep(5)

 stop()

 time.sleep(1)

 # Turn right for 2 seconds

 right()

 time.sleep(2)

 stop()

 time.sleep(1)

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05115
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 11

 # Go straight for 5 seconds

 forward()

 time.sleep(5)

 stop()

 time.sleep(1)

 # Turn left for 2 seconds

 left()

 time.sleep(2)

 stop()

 time.sleep(1)

 # Go straight for 5 seconds

 forward()

 time.sleep(5)

 stop()

 # Wait for the obstacle detection thread to finish

 obstacle_thread.join()

Function to implement route 2

def route2():

 # Start the thread for obstacle detection

 obstacle_thread = Thread(target=check_obstacle)

 obstacle_thread.start()

 # Go straight for 5 seconds

 forward()

 time.sleep(5)

 stop()

 time.sleep(1)

 # Turn left for 2 seconds

 left()

 time.sleep(2)

 stop()

 time.sleep(1)

 # Go backward for 3 seconds

 backward()

 time.sleep(3)

 stop()

 time.sleep(1)

 # Turn right for 2 seconds

 right()

 time.sleep(2)

 stop()

 time.sleep(1)

 # Go straight for 5 seconds

 forward()

 time.sleep(5)

 stop()

 # Wait for the obstacle detection thread to finish

 obstacle_thread.join()

Function to toggle LED

def toggle_led():

 global led_state

 led_state = not led_state

 GPIO.output(led_pin, led_state)

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05115
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 12

if __name__ == '__main__':

 # Run the Flask app with SocketIO

 socketio.run(app, debug=True, host='0.0.0.0', use_reloader=False)

4.5.2 HTML Code for UI and Camera Feed

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Robot Control</title>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/socket.io/4.0.1/socket.io.js"></script>

</head>

<body>

 <h1>Internet controlled Transport Car</h1>

 <!-- Camera feed -->

 <h2>Live Camera Feed</h2>

 <!-- Control Buttons -->

 <button onclick="control('forward')">Forward</button>

 <button onclick="control('backward')">Backward</button>

 <button onclick="control('left')">Left</button>

 <button onclick="control('right')">Right</button>

 <button onclick="control('stop')">Stop</button>

 <button onclick="control('open_lid')">Open Lid</button>

 <button onclick="control('close_lid')">Close Lid</button>

 <button onclick="control('turn_on_led')">Turn On LED</button>

 <button onclick="control('turn_off_led')">Turn Off LED</button>

 <button onmousedown="pressBuzzer()" onmouseup="releaseBuzzer()">Press Buzzer</button>

 <!-- Route Sheets -->

 <h2>Route Sheets</h2>

 <button onclick="control('route1')">Route 1</button>

 <button onclick="control('route2')">Route 2</button>

 <script>

 var socket = io.connect('http://' + document.domain + ':' + location.port);

 // Function to send control command to the server

 function control(direction) {

 socket.emit('control_event', direction);

 }

 // Function to send command to start the buzzer

 function pressBuzzer() {

 socket.emit('control_event', 'turn_on_buzzer');

 }

 // Function to send command to stop the buzzer

 function releaseBuzzer() {

 socket.emit('control_event', 'turn_off_buzzer');

 }

 </script>

</body>

</html>

It was not possible to completely automate or semi automate the car, so there are 2 route sheets coded into the code, that have fixed

movement lengths and the car stops when there is an obstacle detected in that path to not veer off the course. But the future plan is

to implement both together and use AI and ML to go on correct path, if the robot veers of the path when it avoids an obstacle. But

for now, that function is manual.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05115
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 13

V. Machine future developments, advantages and disadvantages

Internet-controlled transport mini cars are evolving toward smarter, safer urban mobility. Integration with IoT and 5G will enable

real-time remote control and fleet coordination. AI-driven automation will reduce human intervention, boosting efficiency and

accessibility. Future use includes smart deliveries, shared micro-mobility, and eco-friendly urban transport. This can not only be used

for transport of material, but for human travel as well.

5.1 Advantages

1. Efficiency: By automating certain driving tasks, semi-autonomous storage cars can optimize route planning and navigation,

reducing delivery times and increasing overall efficiency. They can operate continuously without the need for driver breaks, resulting

in faster and more reliable deliveries.

2. Cost-Effectiveness: With reduced reliance on human drivers, semi-autonomous storage cars can potentially lower labor costs

associated with transportation. Additionally, their efficient route planning helps minimize fuel consumption and vehicle wear and tear,

leading to cost savings for operators.

3. Improved Safety: Semi-autonomous features such as collision detection and adaptive cruise control enhance the safety of storage

cars by reducing the risk of accidents caused by human error. These systems can detect obstacles, pedestrians, and other vehicles,

helping to prevent collisions and ensure safer transportation of goods.

4. Flexibility: Semi-autonomous storage cars are versatile and can be adapted to various transportation needs. They can accommodate

different types of cargo, from small packages to large items, making them suitable for a wide range of industries and applications.

5. Real-Time Monitoring and Management: Internet connectivity enables operators to remotely monitor the location, status, and

performance of semi-autonomous storage cars in real-time. This allows for proactive management, route optimization, and timely

interventions in case of any issues or delays.

6. Scalability: Semi-autonomous storage cars can easily scale to meet changing demand levels. Operators can deploy additional

vehicles or adjust routes and schedules as needed to accommodate fluctuations in delivery volumes or seasonal variations.

Overall, semi-autonomous storage cars offer numerous advantages, including improved efficiency, cost-effectiveness, safety, and

flexibility, making them valuable assets in modern logistics and transportation operations.

5.2 Disadvantages

1. Cybersecurity Risks: Internet-connected cars are susceptible to hacking and cyber-attacks. Malicious actors could potentially

gain unauthorized access to a vehicle's systems, compromising safety and privacy. Ensuring robust cybersecurity measures is crucial

to mitigate these risks.

2. Privacy Concerns: The continuous connectivity of cars raises privacy concerns. The collection and transmission of data,

including location, driving habits, and personal preferences, could be exploited or misused without adequate safeguards in place.

3. Dependency on Network Infrastructure: Internet-controlled cars rely heavily on network infrastructure. In areas with poor or

no network coverage, the functionality of connected features may be compromised, affecting navigation, communication, and other

connected services.

4. Software Bugs and Glitches: Like any software-driven technology, internet-controlled cars can experience bugs or glitches.

These issues may lead to malfunctions, unexpected behavior, or system failures, posing safety risks if not promptly addressed

through software updates.

5. Limited Standardization: There is currently a lack of standardized protocols and regulations for internet-controlled cars. This

lack of uniformity can result in interoperability issues between different vehicle brands and may slow down the widespread adoption

of connected car technologies.

VI. Conclusion

In conclusion, this internet-controlled car is a portable and excellent way to transport things with stealth and precision without the

need of human intervention or human driver which saves many lives during pandemics and in military sectors. It is also a very

convenient way to transport materials over smaller distances in warehouses and hospitals which can be controlled from anywhere in

the world and can be made autonomous like an AGV as long as it is connected to internet. A semi-automated internet-controlled car

represents a groundbreaking fusion of automotive technology and remote connectivity, offering a glimpse into the future of

transportation. This innovative vehicle integrates traditional automotive systems with advanced automation features and internet

connectivity to enable remote control and monitoring capabilities. At its core, the semi-automated internet-controlled car leverages a

combination of onboard sensors, actuators, and computing power to facilitate autonomous driving functions. These systems, including

cameras, LiDAR, radar, and ultrasonic sensors, enable the vehicle to perceive its environment and make real-time decisions to navigate

safely on roads. It is an excellent project which uses all the mechanical, electronic and software sectors to make a very important

future use.

6.1 Credit authorship contribution statement

Gottiparthi Abhinay: Team leader, research coordination, project conceptualization, designing, fabrication writing and editing.

Dudekula Kareemulla: Data collection, literature review, documentation integrity, fabrication. Kandala Jathin: Intermediate

fabrication, process optimization, quality control. P. Tapan sai: Materials sourcing and procurement, inventory management,

documentation assistance. Dr. K. Ankamma Rao Guidance, mentorship, Automation.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05115
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 14

6.2 Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to

influence the work reported in this paper.

References

[1] Akshay Bhati, Balendu Teterbay, Ayush Srivastava, “Smartphone Controlled Multipurpose Robot Car”, International Journal

of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Vol. 9, Issue 05, May-2020.

[2] H. Rissanen, J. Mahonen, K. Haataja, M. Johansson, J. Mielikainen and P. Toivanen, "Designing and implementing an

intelligent Bluetooth enabled robot car," 2009 IFIP International Conference on Wireless and Optical Communications Networks,

Cairo, 2009.

[3] S. Mandal, S. K. Saw, S. Maji, V. Das, S. K. Ramakuri and S. Kumar, "Low cost arduino wifi bluetooth integrated path

following robotic vehicle with wireless GUI remote control," 2016 International Conference on Information Communication and

Embedded Systems (ICICES), Chennai, 2016.

[4] Ritika Pahuja, Narender Kumar, “Android controlled Bluetooth robot using 8051 Microcontroller” ISSN (Online), 2015.

[5] Mrumal.K. Pathak, Javed Khan, “Robot control design using android smartphone”, 2 Feb 2015, ISSN :2347- 5471.

[6] S R Madkar (Assistant Professor), Vipul Mehta, Nitin Bhuwania, Maitri Parida, “Robot controlled car using Wi-Fi module”,

ISSN: 2277.

[7] Aniket R. Yeole, Sapana M. Bramhankar, Monali D. Wani, “Smartphone controlled robot using ATMEGA328

Microcontroller”, ISO 3297: 2007.

[8] T. L. Chien, H. Guo, K. L. Su and S. V. Shiau, "Develop a Multiple Interface Based Fire Fighting Robot," 2007 IEEE

International Conference on Mechatronics, Changchun, Jilin, 2007, doi:10.1109/ICMECH.2007.4280040.

[9] Vito M. Guardi “Design of a Bluetooth enabled android application for a microcontroller driven robot”, IEEE International

Conference on Mechatronics, Changchun, Jilin, May 2014.

[10] M. Kumari, A. Kumar and R. Singhal, "Design and Analysis of IoT-Based Intelligent Robot for Real-Time Monitoring and

Control", 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC),

2020.

[11] S. R. Madkar et al., "Robot Controlled Car Using Wi-Fi Module", International Journal of Advanced Research in Computer

Science and Software Engineering, vol. 6, no. 5, 2016. [9]Y. Xiao, N. Sakib, Z. Yue, Y. Wang, J. You, and J. Militky, “Study on the

relationship between structure parameters and filtration performance of polypropylene meltblown nonwovens,” AUTEX Res. J.,

vol. 20, no. 4, pp. 1–6, 2020, doi: 10.2478/aut-2019-0029.

[10] V. K. Kothari, A. Das, and A. Sarkar, “Effect of processing parameters on properties of layered composite needle-punched

nonwoven air filters,” Indian J. Fibre Text. Res., vol. 32, no. June, pp. 196–201, 2007.

