
 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT (ISJEM) ISSN: 2583-6129
 VOLUME: 04 ISSUE: 05 | MAY – 2025 DOI: 10.55041/ISJEM03373

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Design and Implementation of Unified Diagnostic

Service Protocol

Omkar Shivaji Bhagat

Student at

Department of Electronics and

Telecommunication,

SVPM College of Engineering,

Baramati, Pune

osbhagat90@gmail.com

Dr. N. A. Doshi

Professor at

Department of Electronics and

Telecommunication,

SVPM College of Engineering,

Baramati, Pune

nadoshi@engg.svpm.org.in

Abstract- Modern vehicles use the Electronics Control Unit

(ECU) to control and monitor all the activities within the vehicle.

The number of ECUs are increasing as the complexity of

vehicles increases. All the ECUs present in the vehicles are

communicated with each other via CAN protocol. Any

malfunction in the ECU or abnormal behaviour of ECU is

detected or understood by diagnostic services. CAN Protocol

does not have advanced features like Diagnostic. The CAN

protocol covers only the Physical and Data link layer of the OSI

model. There is a need for a standardised diagnostic protocol

which can use CAN as underlying technology. Standardised

diagnostic protocols used in the automotive domain are On

Board Diagnostics (OBD) and Unified Diagnostic services

(UDS). UDS protocol is defined under the ISO 14229 standard

and provides a standardized framework for in-vehicle

communication and fault diagnosis. This project focuses on the

design and implementation of the UDS protocol on an embedded

system using STM32F407 microcontrollers. The project

involves developing a diagnostic communication system between

Electronic Control Units (ECUs) Light Control Module (LCM)

and Tester tool connected over a CAN bus.

Keywords- Unified Diagnostic Services (UDS), ISO 14229,

Electronic Control Unit (ECU), Body Control Module (BCM),

Light Control Module (LCM), Controller Area Network (CAN),

Diagnostic Trouble Code (DTC), Routine Control Identifier

(RID), Data Identifier (DID), ISO-TP (Transport Protocol)

I. INTRODUCTION (HEADING 1)

In modern automotive systems, the ability to diagnose and
troubleshoot ECUs efficiently is critical for ensuring vehicle
reliability and performance. The UDS protocol, defined by
ISO 14229, is widely adopted in the automotive industry to
facilitate standardized communication between diagnostic
tools and vehicle ECUs over the CAN network. UDS enables
functions such as fault detection, software updates, parameter
tuning, and remote ECU diagnostics, making it an essential
part of vehicle maintenance and repair processes.

This paper presents the design and implementation of a
UDS-based diagnostic communication system using
STM32F4 microcontrollers. The project involves vehicle
ECUs Light Control Module (LCM) that communicate via
CAN bus and respond to UDS diagnostic requests. The
system supports essential UDS services, including Read Data
by Identifier (0x22), Write Data by Identifier (0x2E), Routine
Control (0x31) and Read DTC Information (0x19).

To validate the robustness of the system, fault injection
techniques are utilized, simulating real-world ECU failures

such as Overvoltage and Under-Voltage conditions, ECU
power loss, and LED circuit failures. The diagnostic response
to these failures is analyzed using a Waveshare USB-to-CAN
module. By implementing UDS on embedded automotive
ECUs, this project aims to demonstrate the practical
application of standardized diagnostic services in real-world
vehicle systems, improving the efficiency of vehicle fault
detection and maintenance processes.

II. LITERATURE SURVEY

The authors Kataria et al. focus on implementing the UDS
protocol over CAN using the ISO 15765-2 (ISOTP) transport
layer. The study presents a robust UDS stack supporting
services like Request Download and Transfer Data,
highlighting ISO-TP's role in handling segmented messages.
It emphasizes UDS importance in advanced diagnostics and
ECU reprogramming in modern vehicles. [1]

The authors M. Kuntoji, V. Medam and Veena Devi S. V,
focus on the design and implementation of the UDS protocol
in a fully integrated automotive electronic system. The
research explores the role of UDS in managing diagnostics,
ECU communication, and fault code retrieval. The authors
present a detailed methodology for developing a UDS stack,
with emphasis on key diagnostic services such as Read DTC
Information (0x19) and Control DTC Setting (0x85). The
study also discusses the challenges faced in resource
constrained embedded environments, providing
recommendations for optimizing UDS performance in
modern automotive ECUs. This paper contributes to the
understanding of UDS implementation within realworld
automotive systems.[2]

The author S. Desai and Y. Bhateshvar explores the
implementation of the UDS protocol on an Arduino platform,
using MATLAB to simulate and test the diagnostic services
over the CAN bus. The research demonstrates a low-cost
approach to understanding UDS by utilizing accessible tools
such as Arduino for embedded system design. The authors
successfully implemented key UDS services, including
Diagnostic Session Control (0x10) and Clear Diagnostic
Information (0x14), highlighting the flexibility of UDS for
educational and prototyping purposes. This work provides a
practical example of UDS implementation in a simplified
environment, offering insights into how UDS functions in
real time systems.[3]

The paper by Chatterjee et al. (2024) investigates
vulnerabilities in diagnostic protocols like UDS used in

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT (ISJEM) ISSN: 2583-6129
 VOLUME: 04 ISSUE: 05 | MAY – 2025 DOI: 10.55041/ISJEM03373

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

commercial vehicle networks. It highlights how insecure
implementations can be exploited to gain unauthorized ECU
access or disrupt vehicle functions. Building on past
automotive security research, the authors focus specifically
on diagnostic service abuse and demonstrate real-world
attack scenarios. Their findings emphasize the need for
stronger authentication and access controls in vehicle
diagnostics.[4]

The study by Krishnamurthy (2021) provides a
comprehensive overview of the UDS protocol used in
automotive systems. It explains the structure, key services,
and operational flow of UDS in ECU diagnostics and
communication. The paper serves as a technical reference for
understanding how UDS enables fault detection, ECU
programming, and system monitoring. It also emphasizes the
importance of proper implementation for reliable and secure
diagnostics.[5]

The ISO 142291:2013 document defines the UDS
protocol, which standardizes communication between
vehicle ECU and external diagnostic tools. UDS is crucial for
performing diagnostics, ECU reprogramming, and fault code
management in modern vehicles. This standard defines a
comprehensive set of services for vehicle diagnostics, such as
Diagnostic Session Control (0x10), ECU Reset (0x11), Read
Data by Identifier (0x22), and Clear Diagnostic Information
(0x14). UDS operates across various communication
channels, including CAN, Ethernet, and FlexRay, enabling
diagnostic tools to interact with a wide range of vehicle
systems. The document ensures that diagnostic tools and
ECUs across different manufacturers can communicate using
a unified and standardized approach, promoting
interoperability in the automotive industry.[6]

The ISO 11898 standard specifies the CAN protocol,
which is widely used for communication between ECUs in
automotive systems. CAN enables real time, low latency
communication in embedded systems, making it ideal for
vehicle applications where reliability and data integrity are
critical. The standard defines both the CAN protocol for data
link and physical layer specifications. CAN is particularly
suited for vehicle diagnostics because it allows multiple
ECUs to communicate on the same bus, reducing wiring
complexity and ensuring prioritized message handling. The
combination of UDS over CAN, known as Diagnostic over
CAN (DoCAN), allows diagnostic tools to access ECU data,
read diagnostic trouble codes (DTCs), and perform other
essential diagnostic functions. [7]

The ISO 15765-2 standard, also known as ISO Transport
Protocol (ISOTP), provides a communication framework for
sending diagnostic messages over the CAN bus. Since CAN
frames have a limited data size (typically 8 bytes), larger
diagnostic messages such as UDS requests need to be
segmented and reassembled. ISOTP ensures the correct
transport of UDS messages by defining a method for
segmenting large messages, flow control, and message
reassembly. This protocol is essential for UDS over CAN, as
it enables diagnostic services to send larger payloads
efficiently, ensuring communication reliability and data
integrity even with the CAN protocol’s bandwidth
constraints. ISOTP plays a pivotal role in making UDS
functional over CAN, as it handles message fragmentation

and ensures that services like Request Download (0x34) and
Transfer Data (0x36) can be executed seamlessly. [8]

The ISO 13400 standard specifies Diagnostic
Communication over Internet Protocol (DoIP), which allows
UDS services to be transmitted over Ethernet instead of
traditional automotive communication buses like CAN. DoIP
offers higher bandwidth, making it ideal for modern vehicles
that require faster and more robust diagnostic
communication, particularly for large data transfers and
remote diagnostics. Ethernet based diagnostic
communication provides significant advantages in terms of
speed and scalability compared to CAN, making it suitable
for more advanced vehicles that support high speed
communication, such as electric and autonomous vehicles.[9]

The ISO 26262 standard for Functional Safety in
automotive systems emphasizes the importance of reliable
diagnostics to ensure that vehicle systems are functioning
safely. While this standard is not directly related to UDS or
communication protocols like CAN or DoIP, it provides
guidelines on ensuring that diagnostic systems, including
UDS-based systems, meet stringent safety requirements.
Implementing UDS in compliance with ISO 26262 helps
ensure that diagnostic communication is reliable, even in
safety-critical systems, contributing to the overall functional
safety of the vehicle. [10]

III. SYSTEM OVERVIEW.

A. UDS Protocol Overview

UDS is a high-level diagnostic communication protocol
defined by the ISO 14229 standard. It is extensively used in
the automotive industry to facilitate standardized
communication between diagnostic tools and vehicle ECU.
UDS operates over the CAN, which serves as the underlying
low-layer protocol, providing the physical and data link
layers necessary for communication.

B. Client Server Architecture

UDS protocol follows Client-Server architecture. In
Client-Server architecture the diagnostic tool acts as the
client, and the ECU acts as the server. The client initiates
diagnostic requests. client sends commands to the ECU for
actions like reading data, clearing diagnostic trouble codes
(DTCs), or performing ECU reprogramming. The client is
typically a diagnostic scanner or testing equipment. The
server, which is the ECU, processes the client’s requests and
responds accordingly. It provides data or executes actions as
specified by the client’s UDS commands, such as responding
with vehicle status or resetting the ECU.

C. UDS Message Structure

UDS protocol is request Based protocol.

Fig.1. UDS Message Frame Format

● CAN ID: The CAN ID is a unique identifier used in
the CAN protocol to distinguish between different
messages on the network. In UDS, CAN ID used to
identify the source and destination of diagnostic

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT (ISJEM) ISSN: 2583-6129
 VOLUME: 04 ISSUE: 05 | MAY – 2025 DOI: 10.55041/ISJEM03373

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

requests and responses. CAN IDs can be either
standard (11-bit) or extended (29-bit), depending on
the network configuration.

● Protocol Control Information (PCI): The PCI field
can be 1-3 bytes long and contains information
related to the transmission of messages that do not fit
within a single CAN frame. PCI helps with message
type identification, segmentation and reassembly,
flow control, and sequence numbering.

● Service Identifier (SID): The SID is a unique code
that specifies the type of diagnostic service being
requested. Each service has a predefined SID, such
as 0x22 for Read Data by Identifier or 0x2E for Write
Data by Identifier. The SID is crucial for the ECU to
understand the nature of the request.

● Sub-Function Byte: The subfunction byte is a single
byte value that follows the SID in the UDS message
structure. It indicates specific actions or modes
within the main service. For example, in the Routine
Control service (0x31), the subfunction byte can
specify different routines to be executed. In case the
response is positive, the tester may want to suppress
the response (as it may be irrelevant). This is done by
setting the 1st bit to 1 in the sub function byte.
Negative responses cannot be suppressed.

● Data Identifier (DID): The DID identifies specific
data elements within the ECU that are being accessed
or modified. For example, a DID might refer to a
particular sensor reading or configuration parameter.
The DID ensures that the correct data is targeted by
the diagnostic service.

● Data Parameters: Data Parameters are additional
data elements required for the service. Parameters
can include values to be written, conditions to be met,
or specific instructions for the ECU. They provide the
necessary context for the SID and DID to perform the
requested operation.

D. UDS Response

In UDS protocol client trigger request and server will
respond to this request as per configuration. The responses
are of two types Positive response and Negative response.

1) Positive response

A positive response indicates that the requested diagnostic
service has been successfully executed by the ECU. The
structure of a positive response typically mirrors the request,
including the Service Identifier (SID) with an added offset of
0x40 to distinguish it as a response. For example, if the
request SID is 0x22 (Read Data by Identifier), the positive
response SID will be 0x62. Positive responses may also
include additional data, such as the requested information or
confirmation of the action performed.

2) Negative response

A negative response indicates that there was an issue with the
requested diagnostic service. Negative responses include a
Negative Response Code (NRC) that specifies the type of
error encountered. The structure of a negative response

includes the original SID, followed by the NRC. Common
NRCs include

● 0x10 (General Reject): The request was rejected for
a general reason not covered by other NRCs.

● 0x11 (Service Not Supported): The requested
service is not supported by the ECU.

● 0x12 (Sub Function Not Supported): The specified
sub function is not supported by the ECU.

● 0x13 (Incorrect Message Length or Invalid Format):
The message length or format is incorrect.

E. Block Diagram

The block diagram illustrates the architecture of the

diagnostic communication system implemented using

the UDS protocol on STM32 microcontrollers. The

system consists of several key components connected in

sequence to facilitate efficient communication and

control.

Fig. 2. UDS implementation Block Diagram

1) Hardware Components
● Computer: The computer acts as the diagnostic tool.

Waveshare USB-CAN-A software tool is installed on
the computer. Computer is interfacing with the
STM32 USB-CAN tool. It sends diagnostic requests
and receives responses, enabling the monitoring and
control of the ECUs.

● Waveshare USB-CAN-A Tool: This tool serves as
the interface between the computer and the CAN
network. It converts USB signals from the computer
into CAN signals and vice versa, allowing seamless
communication between the diagnostic tool and the
ECUs. The Waveshare USB-CAN-A supports
various CAN baud rates and provides a reliable
connection for diagnostic operations.

● CAN Transceiver: The CAN transceiver is
responsible for transmitting and receiving CAN
signals between the Waveshare USB-CAN-A tool
and the ECUs. It ensures reliable data transmission
over the CAN bus.

● STM32 Based LCM ECU: The Light Control
Module (LCM) ECU is based on the STM32
microcontroller. It processes diagnostic requests
related to lighting control and responds accordingly.
The LCM ECU is connected to input and output
devices to perform its functions.

● Potentiometer: The potentiometer is connected
between the LED and an output GPIO pin of the
STM32 Based LCM ECU. It is used to simulate
conditions such as under-voltage and overvoltage to
create faulty conditions

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT (ISJEM) ISSN: 2583-6129
 VOLUME: 04 ISSUE: 05 | MAY – 2025 DOI: 10.55041/ISJEM03373

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

● LED: The LED is connected to the GPIO Pin of ECU
via Potentiometer. It provides visual feedback based
on the potentiometer's settings, allowing for real-time
monitoring of light control and fault

● Switch: The switch is connected to the STM32 Based
LCM ECU and serves as an input device. It is used to
turn on and off LEDs.

2) Software Components
● STM32CubeIDE: STM32CubeIDE is an integrated

development environment (IDE) provided by
STMicroelectronics. It is an Eclipse-based
development environment, offering a
comprehensive platform for developing, debugging,
and testing applications on STM32
microcontrollers. STM32CubeIDE supports code
generation, project management, and debugging
features.

● STM32CubeMX: STM32CubeMX is a graphical
tool that simplifies the configuration and
initialization of STM32 microcontrollers. It allows
developers to configure peripherals, middleware,
and pin assignments through an intuitive interface.
STM32CubeMX generates initialization code that
can be directly used in STM32CubeIDE,
streamlining the development process.

● Waveshare USB-CAN-A: It is a software tool by
Waveshare. This tool is used to send and receive the
CAN message on the computer. This tool can
configure baud rate of CAN protocol. This is the
interface for UDS request and Response.

IV. FLOW CHART

A. Read Data By Identifier (0x22)

 Fig.3. Flowchart for Read Data by Identifier

In the flow chart for UDS Service 0x22 (Read Data by
Identifier), the process begins with the ECU receiving a
request message that includes Service ID 0x22 and a DID
(Data Identifier) to read. The ECU then checks if the
requested DID is supported. If the DID is valid, the ECU
retrieves the corresponding data from memory or storage
associated with that DID and sends a positive response with
Service ID 0x62 followed by the DID and its value. If the
DID is unsupported or unavailable, the ECU responds with a
negative response (0x7F) and an appropriate error code. The
flow then returns to an idle or wait state until a new request
is received.

B. Write Data By Identifier

 Fig.4. Flowchart for Read Data by Identifier
The flow chart for the UDS Service 0x2E (Write Data by

Identifier) begins with the ECU receiving a request
containing the DID (Data Identifier) and data to write. The
ECU first validates the DID to check if it’s supported. If the
DID is valid, it proceeds to write the data to the specified
memory location or register. After writing, the ECU sends a
positive response with a response code (0x6E or 0x62),
indicating success. If the DID is invalid or the data cannot be
written, the ECU sends a negative response (0x7F) with an
error code, such as "Request Out of Range" (0x31) or "Sub-
function Not Supported" (0x12), before ending the process.
This flow ensures data integrity by verifying the DID and
handling errors gracefully.

V. RESULT

The project aims to implement a fully functional UDS
protocol over the CAN bus on an STM32 microcontroller.
The expected results include not only the correct functioning
of the UDS protocol stack but also the successful execution
of UDS services with proper request and response handling.

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT (ISJEM) ISSN: 2583-6129
 VOLUME: 04 ISSUE: 05 | MAY – 2025 DOI: 10.55041/ISJEM03373

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

Below are the key services that will be implemented, along
with their corresponding request and response formats.

1) Read Status of LED

The current status of LED can be retrieved using service read
Data by Identifier (0x22) and DID (0xF100)

Fig. 5. Request and Response for service (0x22)

2) Write Software Version Number

The updated SW version number can be written into the
Software using Write Data by identifier (0x2E) and DID
(0xF200)

Fig.6. Request and Response for service (0x2E)

3) Blinking LED for Testing

To check whether the LED is working correctly or not, a
dedicated blinking led routine can be used with Routine
control SID (0x31).

To start routine sub–Function SID (0x01) and to stop routine
sub function SID (0x02) is used. For Blinking led with 1 sec
delay routine is used 0x2020.

Fig.9. Request and Response for service (0x31)

4) Read DTC to Detect Fault

The fault occurred because voltage and under voltage are
stored in a system with a unique number called Diagnostic
Trouble Code (DTC). The fault in the system can be
understood by reading the stored DTCs using Read DTC
service (0x19) and Sub Functional SID DTC by Status Mask
(0x01) and status mask value (0xFF). This request will read
all the DTC regardless of Status.

Fig.8. Request and Response for service (0x19)

VI. CONCLUSION

In conclusion, this Design and Implementation of UDS
Protocol for Automotive Diagnostic project successfully
implemented diagnostic communication on an STM32F407
controller to interface with a Body Control Module (BCM)
and a Lighting Control Module (LCM) over CAN Bus. Key
UDS services, including Read Data by Identifier (0x22),
Write Data by Identifier (0x2E), and Routine Control (0x31),

were developed to manage and monitor BCM and LCM
functionalities, such as reading status data, configuring
parameters, and controlling routines like turning headlights
on or off. The CAN Bus enabled reliable communication
between ECUs, simulating realistic automotive diagnostic
scenarios. Overall, this project provides a foundational UDS
setup for testing, monitoring, and troubleshooting BCM and
LCM systems within a CAN network, adhering to industry
diagnostic standards.

REFERENCES

[1] [1] U. Kataria, K. Panchal, J. Puvvada, S. Kadlag and S.

Shinde, “ Implement Standard UDS Diagnostics Over

Can for Automotive Actuator ECU”, 2024 International

Journal for Multidisciplinary Research (IJFMR),

Mumbai, India, E-ISSN: 2582-2160, IJFMR240217526.

[2] [2] M. Kuntoji, V. Medam and Veena Devi S. V, “

Design of UDS Protocol in an Automotive Electronic

Control Unit”, 2023 Recent Developments in Electronics

and Communication Systems, Bangalore, India,

doi:10.3233/ATDE221266

[3] [3] S. Desai and Y. Bateshwar, “Development of unified

diagnostic services on CAN using MATLAB and

Arduino”, 2023 Materials Today: Proceedings 72 (2023)

1935–1942, Pune, India,

https://doi.org/10.1016/j.matpr.2022.10.157

[4] [4] R. Chatterjee, C. Green and J. Daily, “Exploiting

Diagnostic Protocol Vulnerabilities on Embedded

Networks in Commercial Vehicles”, 2024, Symposium

on Vehicles Security and Privacy (VehicleSec) 2024,

USA, ISBN 979-8-9894372-7-6.

[5] [5] V. N. D. Krishnamurthy, “ Unified Diagnostic

Services (UDS) in Automotive: A technical Study”,

2021, European Journal of Advances in Engineering and

Technology, 2021, 8(6):70-73, USA, ISSN: 2394-658X

[6] [6] ISO-14229: International Standard - Road vehicles -

Unified diagnostic services (UDS), 2006.

[7] [7] ISO 11898-1:2024 - Road vehicles – Controller area

network (CAN) — Part 1: Data link layer and physical

coding sublayer.

[8] [8] ISO 15765-2:2016 Road vehicles – Diagnostic

communication over Controller Area Network (DoCAN)

-- Part 2: Transport protocol and network layer services.

[9] [9] ISO 13400-1:2011-Road vehicles – Diagnostic

communication over Internet Protocol (DoIP): — Part 1:

General information and use case definition. — Part 2:

Transport protocol and network layer services.

[10] [10] ISO 26262-1:2011- Road vehicles – Functional

Safety

