
 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 03 | March – 2025 DOI: 10.55041/ISJEM02553

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Design and Simulation of 32-Bit RISC Architecture

Based on MIPS using Verilog

Vaishnavi Shinde

Department of Electronics and Telecommunication

ISBM College of Engineering, Pune
vaishnavi0812shinde@gmail.com

Zeba Karpude

Department of Electronics and Telecommunication

ISBM College of Engineering, Pune

entc22_zeba.karpude@isbmcoe.org

Prof. Pooja Kolhe

Department of Electronics and Telecommunication
ISBM College of Engineering, Pune

kolhe.poojajit@gmail.com

Alpesh Wadte

Department of Electronics and Telecommunication

ISBM College of Engineering, Pune

alpeshwadte9@gmail.com

Abstract—VERILOG Very High-Speed Integrated Circuits

Hardware Description Language) is widely used for ASIC

(Application Specific Integrated Circuits) emulation, as well as a

solution for applications with high volatility. FPGA (Field

Programmable Gate Array) give quick time to market, and its

feature of re-programmability often makes them the main part of

the system. This paper presents the design of a RISC (Reduced

Instruction Set Computer) CPU architecture based on MIPS

(Microprocessor Interlock Pipeline Stages) using Verilog. It also

describes the instruction set, architecture and timing diagram of

the processor. Floating point number to fixed number conversion

is the main task while working on this numbers, this conversion

has been achieved by using Float to Fixed number converter

module. Finally, design, synthesis and simulation of the proposed

RISC Processor based on MIPS has been achieved using Xilinx

ISE 13.1i Simulator and coding is written in VERILOG language.

Keywords—Architecture; Instruction Set; RISC;

VERILOG; XILINX 13.1i.

I. INTRODUCTION

Nowadays, designing of RISC processors is been a trend that

are efficient for various application in terms of speed, area, etc.

Performance is the main criteria for designing of any processor.

The proposed RISC processor based on MIPS designed here is

an effort towards efficient processor suitable for various

applications.

CISC processors have received the marketplace over the

years. They support various addressing modes and various data

types like others complex processors. Length of instruction

varies from instruction to instruction. They generally access

data from external memory. They are basically implemented

using micro programmed control. There is little gap between

instructions of CISC processor and higher-level language

statements. However, they may save memory space, its design

is complicated and instructions are variable in length; special

hardware is required for boundary marking of instruction. After

an deep study it is proved that simple instructions have been

used 80% of the time and complex instructions has been

replaced by group of simple instructions.

On the other hand, RISC processor requires very few data

types and performs the simple operations. It also supports very

few addressing modes and mostly based on registers. Many of

the instructions operate on data which are present in internal

registers. LOAD and STORE instructions are the only

instructions which access data from external memory. Here

decoding becomes easier, since the instruction length is fixed.

Execution of instructions in parallel using the pipelined

stages will improves the overall throughput of the processor but

it will introduce some of the hazards in its working operation.

Data hazards are those hazards which are generated due to

sharing of source and destination resources in succeeding

instructions, this will happen in the case when the source for an

instruction is destination for previous instruction. This can be

prevented by using the forwarding method. Structural hazards

are generated when the program and data memory is used

commonly. By designing the prefetch queue in processor,

structural hazards can be removed. Control hazards are

generated in non-sequential executed circuits and to remove this

hazard flushing method is used [5].

RISC architecture’s analysis gives many important issues in

computer architecture. Most RISC computers have the same key

elements:

• A limited and simple instruction set.

• A large number of GPR’s (General Purpose

Registers).

• Optimization of the instruction pipeline.

Organization of RISC computers can be represented by

three main components:

• ALU (Arithmetic Logic Unit): performs the actual

computation and processing of data.

• CU (Control Unit): controls the movement of data and

instructions into and out of the CPU and controls the

operation of the ALU.

• RS (Register Set): a minimal internal memory, which

consists of a set of storage locations [6].

Comparing to CISC, RISC CPU have more advantages, such

as faster speed, simplified structure easier implementation.

RISC CPU is extensive use in embedded system. Therefore,

designing of RISC CPU based on MIPS is the necessary choice.

mailto:vaishnavi0812shinde@gmail.com
mailto:entc22_zeba.karpude@isbmcoe.org
mailto:kolhe.poojajit@gmail.com

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 03 | March – 2025 DOI: 10.55041/ISJEM02553

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

II. INSTRUCTION SET ARCHITECTURE (ISA)

The instructions of RISC Processor based on MIPS are

categories into four different instruction formats; R-Type, I-

Type, J-Type and I/O Type as described in figures below;

a) R-Type Instruction Format

(31 to 26) (25 to 21) (20 to 16) (15 to 11) (10 to 6) (5 to 0)

Opcode Rs Rt Rd Shamt Function

Figure 1. R-Type Instruction Format

Figure 1 shows Register type instruction format. This type

of format has total six fields; Opcode field of 6-bit, used to

select the type of instruction format, Rs (Source register), Rt

(Target register) and Rd (Destination register) are of 5-bit each

which are used for storage of data. Shamt (Shift amount) field

of 5-bit, used for data shifting and last is the Function field of

6-bit used for selection of different functions to be performed.

b) I-Type Instruction Format

(31 to 26) (25 to 21) (20 to 16) (15 to 0)

Opcode Rs Rt Address/Immediate Value

Figure 2. I-Type Instruction Format

Figure 2 shows Immediate type instruction format. This type

of format has total four fields, Opcode field of 6-bit, used to

select the type of Instruction format, Rs (Source register) and

Rt (Target register) are of 5-bit each, used for storage of data

and the last is Address/Immediate Value field of 16-bit, used for

immediate data operations.

c) J-Type Instruction Format

(31 to 26) (25 to 0)

Figure 3. J-Type Instruction Format

Figure 3 shows J-type instruction format. This type of

format has only two fields; Opcode field of 6-bit, used to select

the type of Instruction format. Target address of 26-bit, used to

specify on which address to jump.

d) I/O-Type Instruction Format

(31 to 26) (25 to 21) (20 to 16) (15 to 0)

Opcode Rs Rd Immediate Value

Figure 4. I/O-Type Instruction Format

Figure 4 shows I/O-type instruction format. This type of

format has total four fields; all the fields are same as in R- Type

and I-Type instruction formats. Instructions which require read

and write of data from port uses this type of instruction format.

Execution of any instruction becomes faster by using such

types of instruction formats.

Since, the designed RISC Processor based on MIPS is of 32-

bit. Hence, all the instructions designed are 32-bit in length and

use the different instruction formats for execution of

instructions. It also supports addressing modes viz. Implicit

addressing, Immediate addressing mode, Register addressing

mode, direct addressing mode, and Register indirect addressing.

III. RISC ARCHITECTURE BASED ON MIPS

Figure 5 shows the internal architecture of 32-bit RISC

processor based on MIPS. It consists of memory unit, decoder

unit, execution unit, register unit, address/data bus and pipeline

stages. Register unit consists of MIPS registers, flag Register,

program counter and stack pointer. Similarly, execution unit

consists of control unit/operation select, floating point

conversion unit, floating point ALU and result to destination

unit.

The various instructions are executed in the following

manner; opcode is fetch from the memory and given to pipeline

stages, then after pipelining it is given to decoder unit, then

execution unit and register unit. Finally, the result will be store

by result to destination unit.

Figure 5. Internal Architecture of MIPS RISC Processor

a) ROM

Read Only Memory of RISC processor based on MIPS is of

32-bit. ROM contains the opcode of the instructions to be

executed. The opcode of the instruction is fetch and given to the

pipeline stages.

b) Pipeline Stages

It contains five pipeline stages; IF (Instruction Fetch), ID

(Instruction Decode), OF (Operand Fetch), IE (Instruction

Execute) and WB (Write Back).

c) Decoder Unit

After the pipeline stages, the output is given to decoder unit.

Decoder unit has different instruction formats, depending on the

type of opcode instruction formats will be used and instruction

will be decoded.

Target Address Opcode

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 03 | March – 2025 DOI: 10.55041/ISJEM02553

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

d) Register Unit

The register unit of this system contains following registers;

(i) MIPS Registers

MIPS architecture defines eight 32-bit general purpose

registers which are also called as MIPS Registers viz. Reg A,

Reg B, Reg C, Reg D, Reg E, Reg F, Reg G, and Reg H, which

are used for load and store operations.

(ii) Flag Register

RISC Processor based on MIPS consist of 32-bit flag

register. It has 32 flip flops, out of which 6 flip flops are defined

as flag and rest of the 28 flip flops are undefined. Hence kept as

don’t care. Figure 6 shows the structure of flag register.

(31 to 6) (5) (4) (3) (2) (1) (0)

X CF ACF SF OVF ZF PF

Figure 6. Structure of Flag Register

(1) PF (Parity Flag)

When MIPS performs 16-bit or 32-bit Floating Point

arithmetic or logical operation and the result obtained in

Floating Point ALU contains even number of 1’s then it is called

as even parity result, and parity flag becomes one (PF = 1). But,

if the number of 1’s obtain in result are odd then it is called as

odd parity result, and parity flag remains zero (PF = 0).

(2) ZF (Zero Flag)

When MIPS performs 16-bit or 32-bit Floating Point

arithmetic or logical operation and if the result obtained in

Floating Point ALU is zero (0000H or 00000000H) then zero

flag will become one (ZF = 1). But if the result obtained in

Floating Point ALU is non-zero (0001H to FFFFH or

00000001H to FFFFFFFFH) then zero flag remains zero

indicating result is non-zero (ZF = 0).

(3) OVF (Overflow Flag)

When MIPS performs 16-bit or 32-bit Floating Point

arithmetic or logical operation and if there is carry into MSB as

well as carry out of MSB then overflow flag remains zero (OVF

= 0), indicating result is not overflowed. But if there is carry

into MSB but no carry out of MSB or if there is no carry into

MSB but carry out of MSB then overflow flag becomes one

(OVF = 1), indicating result is overflowed.

(4) SF (Sign Flag)

When MIPS performs 16-bit or 32-bit Floating Point

arithmetic or logical operation on signed number and if the

result obtained is out of the range of signed number then it is

called as incorrect result and signed flag is indicated the

incorrect result i.e. if MSB of the result is one then signed flag

remains one indicating result is negative (SF = 1). But if the

result obtained is within the range of signed number then it is

called as correct result and signed flag is indicated the correct

result i.e. if MSB of the result is zero then signed flag remains

zero indicating result is positive (SF = 0). For unsigned number

operations sign flag is of no use.

(5) ACF (Auxiliary Carry Flag)

When MIPS performs 16-bit or 32-bit Floating Point

arithmetic operation and if there is a carry generated from LSB

or borrow required for LSB then auxiliary carry flag becomes

one (ACF = 1). But if there is no carry generated from LSB or

no borrow required for LSB then auxiliary carry flag remains

zero (ACF = 0).

(6) CF (Carry Flag)

When MIPS performs 16-bit or 32-bit Floating Point

arithmetic operation and if there is a carry generated from MSB

or borrow required for MSB then carry flag becomes one (CF

= 1). But if there is no carry generated from MSB or no borrow

required for MSB then carry flag remains zero (CF

= 0).

(iii) Program Counter

It is a 32-bit register used to store 32-bit address of that

memory location from which an opcode is to be fetched or

readed. After every opcode fetched or readed it is auto

incremented by 1 or 2 (depending on instruction) so as to read

the opcode of next instruction.

(iv) Stack Pointer

Placing of anything one above the other is nothing but stack.

Stack pointer is a 32-bit register used to store 32-bit address of

stack top memory location. After each PUSH operation it is auto

decremented by 2, then stack pointer will store the 32-bit

address of new stack top memory location.

e) Execution Unit

The execution unit of this system contains the following sub-

units;

(i) Control Unit / Operation Select

Decoder unit gets the input from pipeline stages and give it

to execution unit. Control unit gives control signals to those

block which are involve in the current operation. It also selects

the operation to be performed.
(ii) Floating Point Conversion Unit

This unit converts the number into single precision IEEE

754 floating point format for further calculations.
(iii) 32-bit Floating Point ALU

This unit performs arithmetic as well as logical operations

on maximum 32-bit at a time. Arithmetic operations performed

by IEEE 754 standards are as follows;

(1) Floating Point Addition / Subtraction Algorithm

Assuming that the operands are already in the IEEE 754

format, performing floating point addition / subtraction:

Result = X + Y = (Xm x 2Xe) + (Ym x 2Ye) or

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 03 | March – 2025 DOI: 10.55041/ISJEM02553

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

Result = X - Y = (Xm x 2Xe) - (Ym x 2Ye)

The following steps are carried out by this algorithm:

1) Align Binary Point

• Initial result exponent: the larger of Xe, Ye.

• Compute exponent difference: Ye – Xe.

• If Ye > Xe Right shift Xm that many positions to

form Xm 2 Xe - Ye.

• If Xe > Ye Right shift Ym that many positions to

form Ym 2 Ye - Xe.

2) Compute Sum of Aligned Mantissas

• Xm2 Xe-Ye + Ym or Xm + Xm2 Ye-Xe.

3) If Normalization of Result is needed, then

Normalization Step Follows

• Left shift result, decrement result exponent (e.g., if

result is 0.001xx…) or

• Right shift result, increment result exponent (e.g., if

result is 10.1xx…) Continue until MSB of data is 1.

4) Check Result Exponent

• If larger than maximum exponent allowed return

exponent overflow.

• If smaller than minimum exponent allowed return

exponent underflow.

5) If result mantissa is 0, may need to set the exponent

to zero by a special step to return a proper zero.

The flow chart for floating point addition / subtraction is

shown in figure below.

Figure 7. Flow Chart for Floating Point Addition / Subtraction

(2) Floating Point Multiplication Algorithm

Assuming that the operands are already in the IEEE 754

format, performing floating point multiplication:

Result = R=X * Y = (-1)Xs (Xm x 2Xe) * (-1)Ys (Ym x 2Ye)

The flow chart for floating point multiplication is shown in

figure below.

Figure 8. Flow Chart for Floating Point Multiplication

This algorithm involves the following steps:

1) If one or both operands is equal to zero, return the

result as zero, otherwise.

2) Compute the sign of the result Xs XOR Ys.

3) Compute the mantissa of the result:

• Multiply the mantissas: Xm * Ym.

• Round the result to the allowed number of mantissa

bits.

4) Compute the exponent of the result:

Result exponent = biased exponent (X) + biased

exponent (Y) – bias.

5) Normalize if needed, by shifting mantissa right,

incrementing result exponent.

6) Check result exponent for overflow/underflow:

• If larger than maximum exponent allowed return

exponent overflow.

• If smaller than minimum exponent allowed return

exponent underflow.

(3) Floating Point Division Algorithm

Assuming that the operands are already in the IEEE 754

format, performing floating point division:

Result = R = X / Y = (-1)Xs (Xm x 2Xe) / (-1)Ys (Ym x 2Ye)

This algorithm involves the following steps:

1) If one or both operands is equal to zero, return the

result as zero, otherwise.

2) Compute the sign of the result Xs XOR Ys.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 03 | March – 2025 DOI: 10.55041/ISJEM02553

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

3) Compute the mantissa of the result:

• Multiply the mantissas: Xm / Ym.

• Round the result to the allowed number of mantissa

bits.

4) Compute the exponent of the result:

Result exponent = biased exponent (X) + biased

exponent (Y) + bias.

5) Normalize if needed, by shifting mantissa right,

incrementing result exponent.

6) Check result exponent for overflow/underflow:

• If larger than maximum exponent allowed return

exponent overflow.

• If smaller than minimum exponent allowed return

exponent underflow.

The flow chart for floating point division is shown in figure

below.

Figure 9. Flow Chart for Floating Point Division

(iv) Result to Destination Unit

After execution of any instruction, the result must be store

into destination. This mechanism is done by this unit. The

destination can be various MIPS registers, memory location of

32-bit address, etc.

f) RAM

Random Access Memory of RISC processor based on MIPS

is of 32-bit. It stores the data while PUSH operation and other

stack related operation.

IV. TIMING DIAGRAM

The timing diagram of RISC processor based on MIPS

shows the timing of different pipeline stages viz. instruction

fetch, instruction decode, operand fetch, instruction execute and

result to destination as shown in figure 10. It also shows the

pipeline design of RISC processor based on MIPS.

Figure 10. Timing Diagram of MIPS RISC Processor

From figure it has been shown that IF requires delay of

0.01ns. ID, OF, IE and WB stage i.e. Decoder to execution unit

requires delay of 0.748ns. Therefore, total can be calculated as

0.758ns.

V. EXPERIMENTAL RESULTS

A. RTL View

Figure 11. RTL View of MIPS RISC Processor

Figure 11 shows the RTL (Register Transfer Logic) view of

32-bit RISC Processor based on MIPS. It has input pins;

Data_line_in, Clock, Rd_Bar, RESET, Wr_Bar and output pins;

Data_line_out, PC_SIGNAL, Reg_A, Reg_B, Reg_C, Reg_D,

Reg_E, Reg_F, Reg_G, Reg_H, Af, Cf, Check_Bit, Ovf, Pf, Sf

and Zf.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 03 | March – 2025 DOI: 10.55041/ISJEM02553

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

It shows an instruction fetch unit, instruction decoder unit,

execution unit and memory unit. Instruction fetch unit is used

to fetch or read opcode from memory using PC (program

Counter) and then pass the result to instruction decoder unit.

Instruction decoder unit is used to receive the opcode comes

from instruction fetch unit. Depending on the type of opcode,

instruction format will be selected and then it will be given to

execution unit for performing operation of the instruction.

Execution unit is used to perform the various operations

depending upon the opcode of the instruction. This unit

comprises of ALU based on floating point arithmetic, Flag

register of 32-bit, instruction set, MIPS registers for data storage

and Control unit (operation select). Memory unit is used to store

the opcodes and for stack related operations.

B. Simulation Result

Figure 12. Simulation Result of MIPS RISC Processor

Figure 12 shows the simulation result of RISC Processor

based on MIPS. Instruction MUL D, A, B has been performed

here. The operation is carried out such that, firstly register A

data (“00110011001100110011001100110011”) and register B

(“01000101000100101001001000000000”) data is readed

and then floating point multiplication of this two registers data

is done and then the result is stored into the destination register

D (“00111000110011010011001011001100”).

VI. CONCLUSION AND FUTURE SCOPE

In this paper, we use top-down design method in which we

design instruction fetch unit, decoder unit, operand fetch unit,

execution unit and memory unit. VERILOG language has been

used to describe the system. Pipelined design has been achieved

with less clock cycles per instruction. Through pipelining, the

maximum throughput of execution is achieved as one

instruction per machine cycle. This is possible due to hardwired

approach for design of control unit and fixed length instruction

format. To resolve data hazards, result forwarding is efficient

than stalling as it remove the penalty of time in handling such

conflicts. The 32-bit RISC processor based on MIPS with an

instruction set has been designed. Every instruction is

executed based on pipeline approach i.e.

Instruction Fetch, Decode, Operand Fetch, Execution and then

Write Back. The design is verified through exhaustive

simulations. Some of the applications are presented. The design,

synthesis and simulation of the RISC processor based on MIPS

has been achieved using Xilinx 13.1i ISE Simulator. The 32-bit

RISC Processor based on MIPS has achieved combinational

delay of 0.758ns and maximum operating frequency of 1.350

GHz.

If we suppose to implement this processor using FPGA

technology it is possible to upgrade the system with new

features as per user requirements. The hardware complexity can

be reduced and integration of different circuits in a single chip

can be possible on FPGA kit. In the near future applications like

the ATMs, mobile phones, portable gaming kits can be

implemented. Although the future belongs to the super

pipelined/superscalar processors, CISC designs will not

disappear so fast, just because of the enormous installed base of

such computers. RISC and CISC will peacefully coexist until

CISC adopts so many features of RISC that it will be hard to

tell the difference between these two processors. So, in future

developing a RISC Processor is necessary choice because of its

reduced instruction set.

REFERENCES
[1] Mrs. Rupali S. Balpande, Mrs.Rashmi S. Keote, Design of FPGA based

Instruction Fetch & Decode Module of 32-bit RISC (MIPS) Processor,
2011 International Conference on Communication Systems and Network
Technologies, 978-0-7695-4437-3/11, 2011 IEEE.

[2] Mamun Bin Ibne Reaz, MEEE, Md. Shabiul Islam, MEEE, Mohd. S.
Sulaiman, MEEE, A Single Clock Cycle MIPS RISC Processor Design
using VERILOG, ICSE2002 Proc. 2002, Penang, Malaysia, 0-7803-7578-
S/02/S, 2002 IEEE.

[3] Kui YI, Yue-Hua DING, 32-bit RISC CPU Based on MIPS Instruction
Fetch Module Design, 2009 International Joint Conference on Artificial
Intelligence, 978-0-7695-3615-6/09, 2009 IEEE.

[4] Rohit Sharma, Vivek Kumar Sehgal, Nitin Nitin1, Pranav Bhasker, Ishita
Verma, Design and Implementation of a 64-bit RISC Processor using
VERILOG, UKSim 2009: 11th International Conference on Computer
Modelling and Simulation, 978-0-7695-3593-7/09, 2009 IEEE.

[5] Pravin S. Mane, Indra Gupta, M. K. Vasantha, Implementation of RISC
Processor on FPGA, 1-4244-0726-5/06, 2006 IEEE.

[6] Jarrod D. Luker and Vinod B. F’rasad, RISC System Design in an FPGA,
0-7803-7150-X/01/$10.00@20011 IEEE.

[7] Shuchita Pare, Dr. Rita Jain, 32Bit Floating Point Arithmetic Logic Unit
ALU Design and Simulation, Dec 2012, IJETECS.

[8] Bai-ZhongYing, Computer Organization, Science Press, 2000.11.

[9] Wang-AiYing, Organization and Structure of Computer, Tsinghua
University Press, 2006.

[10] Wang-Yuan Zhen, IBM-PC Macro Asm Program, Huazhong University
of Science and Technology Press, 1996.9.

[11] MIPS Technologies, Inc. MIPS32™ Architecture For Programmers
Volume II: The MIPS32™ Instruction Set June 9, 2003.

[12] Zheng-WeiMin, Tang-ZhiZhong, Computer System Structure (The
second edition), Tsinghua University Press, 2006.

[13] Mr. Sagar P. Ritpurkar, Prof. Mangesh N. Thakare, Prof. Girish D. Korde,
Review on 32Bit MIPS RISC Processor using VERILOG, International
Conference on Advances in Engineering & Technology – 2014 (ICAET-
2014), PP 46-50, IOSR.

