
 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02977

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Development of a Lightweight Employee Information System

using Java and MySQL : A Backend Optimization Perspective

Meghaa K Saswati Behera Dr. Krishna Kumar P R

Final year Student, CSE Assistant Professor Professor & Head of Department,

S.E.A College of Engineering & S.E.A College of Engineering & S.E.A College of Engineering &

Technology Technology Technology

ABSTRACT

The Increasing demand for enterprise data

systems has led to continuous use of

relational databases and traditional

programming platforms like java. This

paper presents the development of

lightweight Information management

system using java, JDBC and MySQL. The

project focuses on data filtering, indexing

and backend performance using SQL

queries. Despite of the growing popularity

of NoSQL and ORM tools, this paper

highlights the value of direct SQL

execution for better control, performance

and educational clarity. The Benchmarked

results demonstrate improvements in data

retrieval speed using indexing and

structured query design. Though the

modern tools like NoSQL and frameworks

have become popular, many developers and

learners have advantage of directly

working with SQL.

KEYWORDS

Java, JDBC, MySQL, Indexing, Backend

Development, Data Filtering, Full Stack,

Relational Database, Employee

Management System

I. INTRODUCTION

In 2025, the organizations continue to depend

heavily on structured data for internal decision

making, HR operations and business analytics.

While modern frameworks like Spring Boot

and ORM libraries like Hibernate simplify

database interactions but, they often hide the

underlying SQL behavior. This paper aims to

reduce the gap between low-level database

handling and real world backend applications

by implementing a Java- based employee

information system connected directly via

JDBC to a MySQL database. The system

supports various filtering operations, real-time

data display and query optimization using

indexing.

II. LITERATURE SURVEY

The integration of Java applications with

relational databases has been an important topic

in backend development. Many past research

studies and practices show how java

applications connect with JDBC. JDBC (Java

Database Connectivity) provides a foundational

API that allows Java programs to interact with

various databases using SQL.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02977

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

According to Gollapudi [1], JDBC

simplifies the data exchange process and

provides a standard interface, making it a

reliable choice for many enterprise

applications. JDBC makes easier for

developers to send or receive data from

database, and this is the reason that it was

widely used in enterprise systems.

Sharma and Gupta [2] conducted a

comparative analysis between JDBC and

ORM frameworks, finding that while

ORMs like Hibernate offer abstraction

and ease of use, JDBC outperforms them

in terms of speed and control in data-

intensive applications.

Kaur and Kaur [3] reviewed indexing

techniques and highlighted how simple

indexing strategies (like those

implemented in this paper) can

significantly reduce query latency. Their

findings help to support this paper

results, adding indexes to specific

columns can make search operations

faster.

Singh and Patel [4] emphasized the

importance of understanding low-level

data access logic in educational settings,

suggesting JDBC as an effective teaching

tool. Mohan and Reddy [5] reinforced

this by showcasing teaching models that

use hands-on backend integration

exercises. With cloud adoption

accelerating, Bhatt and Prasad [9]

explored how legacy JDBC systems are

being transformed into cloud-native

microservices, advocating for modular,

RESTful design practices.

reflects both the technological

relevance and pedagogical

effectiveness of this architecture.

III. METHODOLOGY

A. Technology Stack

Programming Language: Java 17

Database: MySQL 8.0 to store

employee details

Connector/Driver : MySQL

Connector/J 9.2.0

Development Tools: Eclipse IDE

Database Tool : MySQL Workbench

Operating System : Windows/Linux

Version Control : Git, Github.

B. Database Design

CREATE TABLE employees (

id INT AUTO_INCREMENT

PRIMARY KEY,

name VARCHAR(100),

department VARCHAR(100),

designation VARCHAR(100),

location VARCHAR(100),

salary DECIMAL(10,2)

);

Moreover, Seltzer and Small [12] and

Cattell [7] explored adaptive systems and

scalability in databases concepts that are

increasingly relevant in dynamic

environments. Thus, this paper’s focus

on JDBC with MySQL

We created a simple table employees with

the columns as given above, The data taken

was realistic names and cities used in the

organizations.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02977

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

C. Core Java Code features

The core java code features include the

JDBC Connection setup, Query

execution using Statements, Result

filtering using WHERE clause, Indexing

using CREATE INDEX and Console

output formatting using Java

Figure of Project Workflow

IV. PERFORMANCE

EVALUATION

The performance evaluation explains

how the project was tested, the speed

and efficiency of the system.

A. Testing Performance

The Java’s System.nanoTime() function

was used to measure how much time

the SQL queries took to run and the

performance of queries was compared.

Before and after using the indexes, we

tested the three main filters

1. Department filter to find the

employees in the IT Department

2. Salary filter to find employees

of the specified salary

3. Location filter to find

employees in a certain location.

V. RESULTS

The results of the query type with or

without index as given as follows,

Query type Without

Index

With

Index

Department

filter

4.654 ms 2.341 ms

Salary filter 6.789 ms 3.459 ms

Location

filter

4.986 ms 2.754 ms

Table showing the performance evaluation

using index and without

using index

In addition to indexing, other factors

affecting the performance are the

choices between the JDBC and ORM

Tools, JDBC performs faster in data

intensive applications compared to the

Hibernate for heavy read operations.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02977

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

Graph showing the indexing impact on

query time

We can see that the time taken to

execute query without indexing is more

compared to the time taken by query to

execute with indexing. In the graph the

x axis reprsents the indexing and y axis

represents the query time in milli

seconds. This graph also shows that the

JDBC gives the good speed for small

and frequent queries, which is helpful in

the real time applications such as

employee management systems.

Comparision between the

performance between the JDBC and

ORM

When building applications that interact

with databases, there are different

methods for connecting Java code to

the database. Two of the most

commonly used methods are JDBC

(Java Database Connectivity) and

ORM (Object-Relational Mapping)

frameworks. These two methods have

different approaches, when it comes to

performance, ease of use and control

over the data access process.

JDBC is a low-level and direct way of

connecting Java programs to databases.

Using JDBC the developers write raw SQL

queries (such as SELECT, INSERT,

UPDATE, DELETE) directly in the code.

This gives the developer full control over

what queries do and how the data is

retrieved or updated. There is no

abstraction layer between the program and

the database, which means that every

query is executed exactly as written by the

developer. This makes JDBC faster as there

is no extra processing needed to convert

the Java code into SQL. It is useful for

applications that need to interact with the

database in real-time or require high

performance for tasks such as filtering data

or running complex queries. In addition,

because the SQL code is visible, debugging

is easier, because developers can directly

see and optimize the queries which are

running. In JDBC, if a developer wants to

filter employees by their department, they

would write a specific SQL query to get

the exact results they need. The query

would execute quickly because there are

no extra layers of processing, DBC

directly communicates with the database.

The ORM frameworks are designed to

automate the connection between the Java

application and the database. Instead of

writing SQL queries directly, developers

interact with Java objects. The ORM

framework handles the process of

converting those objects into SQL queries

behind the scenes. This makes

development easier, as developers don't

need to write SQL queries directly or do

not have to worry about the query syntax.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02977

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

But this automation introduces extra

overhead, as the ORM framework has to

process and convert the objects into SQL

statements and then execute them. As a

result, The ORM frameworks tend to be

slower than JDBC for many operations,

especially, when working with large

datasets or complex queries that require

many joins. The performance cost arises

from the extra steps the ORM takes to

map the Java objects to the database

tables, as well as the abstraction layers

that hide the underlying SQL from the

developer.

One of the drawbacks of ORM

frameworks is that they can be difficult to

debug, especially when performance is

an issue. Since the SQL queries are

generated by the ORM tool, developers

can't always see exactly what queries are

being executed in the background. This

can make it harder to identify

performance bottlenecks, especially in

large applications where complex queries

are generated automatically.

While ORM frameworks are beneficial

for large-scale applications, with

complex relationships between objects,

where writing SQL manually would be

time consuming, they are not always the

best choice when performance and

control over the database are needed the

most. In contrast, JDBC is perfect for

situations where you need to fine-tune

your database interactions, understand

exactly how queries are running and need

the fastest possible performance. It also

serves as a great tool for educational

purposes, where understanding how

databases work at a low level is

important.

Overall, JDBC provides faster, more

transparent and more customizable

database interactions, making it ideal for

applications where speed and direct

control are needed. Meanwhile, ORM

frameworks can simplify

development but come with performance

trade-offs, making them more suitable for

larger applications where development speed

is more important than raw performance.

Feature JDBC

(Direct

Connection

)

ORM

Frame

works

(Auto-

Matic

Handling)

Control

over the

queries

The

developer

writes own

SQL(structu

red Query

Language)

code

SQL is

created

automatical

ly

Speed Usually

faster

Slightly

slower due

to extra

processing

Learning

and

clarity

Easy to

understand

and Learn

More

Complex

and hidden

Setup

and

configur

ation

Simple to

setup

It needs

more setup,

Annotation

s,

Configurati

ons

Debuggi

ng

Easier,

because we

are seeing

what is

happening

in database

Hard, the

actual

queries are

not always

visible

Overhea

d

low High due to

mapping

and
abstraction

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02977

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

C. Observation

After testing, we saw that the usage of

the indexes made the SQL queries run

faster. The Employee filter, department

filter became faster when we used the

indexing, the usage of indexes took

less time compared to those without

using the index, this shows it helps to

improve the speed and performance of

data filtering, using a large databases

shows the results of advantages of

using indexes. Using the JDBC helped

us to write raw SQL queries directly,

which made easier to understand and

control how database worked.

The usage of JDBC (Java database

Connectivity) in our project, wee were

able to connect java directly to the

MySQL database and write SQL

queries manually inside the java code,

this gave us full control over how we

interact with database. Unlike

frameworks that hide the database

layer, JDBC made data operations

easy to debug. The large datasets

benefit more from the indexing than

the smaller datasets.

VI. FUTURE ENHANCEMENTS

While the current implementation

successfully shows the integration of

Java with MySQL using JDBC, for

employee data management but, there

are several other things for future

development. One of the most

impactful enhancements would be the

integration of a graphical user interface

(GUI) using JavaFX or Swing to

provide user-friendly access for non-

technical users. Additionally, the

application can be extended to support

CRUD (Create, Read, Update, Delete)

operations through a web interface using

technologies such as JSP, Servlets or

modern frontend frameworks like React or

Angular.

REFERENCES

[1] Gollapudi, S. (2014). Java: JDBC,

JNDI, and SQL. Packt Publishing.

[2] Sharma, R., & Gupta, M. (2021).

Performance Analysis of JDBC vs

Hibernate for Data-Intensive Applications,

International Journal of Computer

Applications, 183(35), 12–

18.

[3] Kaur, P., & Kaur, R. (2019). A

Review on Indexing Techniques in

Relational Databases, International Journal

of Scientific Research in Computer

Science, Engineering and Information

Technology, 5(1), 2456–

3307.

[4] Singh, A., & Patel, B. (2022).

Comparative Study of JDBC and ORM-

Based Data Access in Java Web

Applications, Springer Advances in

Computer Science, 121– 130.

[5] Mohan, A., & Reddy, V. (2020).

Teaching Backend Integration Using

JDBC and MySQL, Journal of Educational

Computing Research, 58(3), 654–669.

[6] Redmon, D. (2021). SQL

Performance Tuning. O’Reilly Media.

[7] Cattell, R. (2011). Scalable SQL and

NoSQL Data Stores, ACM SIGMOD

Record, 39(4), 12–27.

[8] IEEE. (2020). Database Query

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02977

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 7

Optimization Techniques: Current

Trends, IEEE Access, 8, 192211–

192222.

[9] Bhatt, S., & Prasad, S. (2023).

Migrating Legacy JDBC Applications

to Cloud-Native Microservices, IEEE

International Conference on Cloud

Computing, 101–110.

[10] Date, C. J. (2012). An Introduction

to Database Systems. Pearson

Education.

[11] Chavan, S., & Patil, K. (2023). A

Framework for Efficient Backend

Integration Using Java JDBC and

MySQL in Full Stack Development,

IJERT, 12(2).

[12] Seltzer, M., & Small, C. (1997).

Conference on Data Engineering,

IEEE.

[13] Yao, S., & Kumar, V. (2021).

Query Execution and Optimization in

Modern Database Engines, Springer

Lecture Notes in Computer

Science, 98–112.

[14] Desai, B. C. (2012). An

Introduction to Database Systems.

Galgotia Publications.

[15] Beighley, L., & Morrison, M.

(2020). Head First SQL. O’Reilly

Media.

[16] Bender, M., & Spacco, J. (2017).

Using JDBC for Teaching Database

Concepts. Proceedings of the 48th

ACM Technical Symposium on

Computer Science Education.

[17] Tiwari, R. (2020). SQL Indexing

and Tuning Book: Use the Index, Luke.

Self-Published.

[18] Oracle. (2021). Java Platform,

Standard Edition JDBC Guide.

Retrieved from

https://docs.oracle.com/javase/tutorial/ jdbc/

[19] Sadalage, P. J., & Fowler, M. (2012).

NoSQL Distilled: A Brief Guide to the

Emerging World of Polyglot Persistence.

Addison-Wesley.

[20] Thomas, D., & Hunt, A. (2019). The

Pragmatic Programmer. Addison- Wesley.

[21] Ahmad, M., & Jain, P. (2022).

Analysis of SQL Query Optimization

Techniques in Relational Databases. Journal

of Data Management, 7(3), 112–121.

[22] Kumar, R., & Mehta, A. (2023).

Efficient Backend Design Using JDBC and

MVC Pattern. International Journal of Web

Engineering, 15(1), 34–42.

[23] Singh, N., & Yadav, R. (2021).

Educational Impact of Teaching Core SQL

Using JDBC over ORM Abstractions.

Advances in Educational Technology, 9(4),

45–53.

