
 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02922

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Development of Web-Based Multi-Restaurant Management System
Madhuri Borawake1, Shruti Bhosale2, Siddhesh Ghare3, Vaibhav

Khose4, Aarti Wamane5

1,2,3,4,5Department of Computer Engineering,

Pune District Education Association’s College of Engineering, Manjari Bk.,

Hadapsar, Pune, Maharashtra, India – 412307

Abstract - This research presents the design and development

of a full-featured Multi-Restaurant Management Web

Application aimed at revolutionizing how restaurants and users

interact in a digital ecosystem. With the increasing demand for

digital dining solutions and the growing popularity of food

delivery and smart dining systems, our system offers a one-stop

solution that bridges the gap between physical restaurant

services and online convenience. Built using the MERN stack—

MongoDB, Express.js, React.js, and Node.js—the platform

offers a robust, scalable, and modular architecture. The

application allows users to register, browse through multiple

restaurants, view dynamic menus with real-time pricing, and

either place online orders or opt for dine-in reservations. Each

restaurant, once registered through a secure authentication

process, gains access to an extensive suite of tools for managing

their day-to-day operations. This includes CRUD functionality

for menu and pricing updates, staff and table management, order

tracking, and integrated parking slot systems. Furthermore, the

platform includes secure payment systems, real-time

notifications, and personalized user dashboards. This paper

elaborates on the platform’s architecture, implementation

methodologies, database design, core functionalities, testing

strategies, and deployment infrastructure. Through agile

development practices and cloud-based deployment, the system

provides a modern and practical solution to the complex

requirements of running multi-restaurant services digitally. It

stands as a scalable and extensible base for future enhancements

such as AI-driven recommendations, loyalty systems, and

advanced analytics.

Keywords: Multi-restaurant system, MERN stack, dining

system, restaurant management, online ordering, CRUD

operations, web application.

1. INTRODUCTION
With increasing digitization in the food and hospitality industry,

customers now expect restaurant services to be available online.

Traditional systems that only provide menu displays or booking

features fail to offer a comprehensive user and vendor

experience. This research proposes a Multi-Restaurant

Management Web Application, allowing end users to explore and

interact with various restaurants, and empowering restaurant

owners to digitally manage their daily operations. The project

adopts a full-stack MERN approach and incorporates modern

technologies for real-time updates, secure authentication, and

scalable deployment.

2. SYSTEM OVERVIEW

2.1 System Architecture

Figure 2.1 System Architecture

The system is divided into two main modules: User-facing and

Restaurant-facing. Users can register or login to browse

restaurants, view services, and place orders. Restaurants can

register and manage services via a secure dashboard. Data

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02922

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

exchange between client and server occurs through RESTful

APIs. The architecture is modular and scalable, using a

decoupled frontend and backend with MongoDB Atlas as the

central database.

2.2 User & Restaurant Modules

User Module:

- Register/Login

- Browse Restaurants

- View Menus & Prices

- Place Online Orders or Reserve Tables

- Make Secure Payments

Restaurant Module:

- Register/Login with Verification

- Dashboard for Menu CRUD

- Order & Staff Management

- Table and Parking Management

- Payment Tracking

3. FRONTEND &

BACKEND

IMPLEMENTATION

3.1 React.js Frontend

The frontend of the Multi-Restaurant Management System is

developed using React.js, a popular JavaScript library for

building highly dynamic and responsive user interfaces. The

use of React Context API allows centralized management of

global states such as user authentication, session status, and

selected restaurant context. State management ensures a

seamless user experience when switching between

components or navigating between authenticated and

unauthenticated views.

To handle asynchronous HTTP requests to the backend API,

Axios is utilized. Axios is configured globally with

interceptors to manage authorization tokens and handle error

responses, such as session timeouts or invalid credentials.

The frontend offers multiple views and interfaces tailored for

different users:

• User Interfaces: Includes components for home

page browsing, menu viewing, item filtering, cart

management, and online order placement. It

provides real-time order tracking through polling or

socket integration.

• Authentication Pages: Includes login, registration,

and password recovery components with proper

input validation and error feedback.

• Restaurant Dashboard: A role-specific interface

for restaurant owners that includes facilities for

CRUD operations on menu items (with image

upload), order monitoring, table allocation, staff

details editing, and parking slot management.

Responsive design is achieved using CSS Flexbox/Grid,

Tailwind CSS, or Material UI, allowing smooth functionality

across devices such as desktops, tablets, and mobile phones.

Client-side routing is managed using React Router, ensuring

a single-page application experience.

3.2 Node.js & Express Backend

The backend of the application is implemented using

Node.js, with Express.js as the web framework. It serves

as the backbone of the system, managing all API routes,

authentication logic, business rules, and database

interactions.

• Routing Layer: Express routes are

modularized into different routers based on

functionality, such as /auth,

/restaurants, /orders, /menu, and /users. This

keeps the codebase maintainable and logically

structured.

• Authentication and Authorization: The

system uses JWT (JSON Web Tokens) to

ensure secure, stateless user sessions. Tokens

are issued at login and required for accessing

protected routes. Middleware functions verify

user roles and permissions before granting

access to sensitive endpoints (e.g., menu

modification or table assignment).

• Form Data and Image Uploads: Menu

images or restaurant logos are uploaded using

multipart/form- data requests. The backend

handles file parsing using libraries like multer

or cloud integrations (e.g., Cloudinary or AWS

S3).

• Data Validation: Incoming data is validated

using express-validator to ensure integrity

and prevent malformed input or injection

attacks.

• Error Handling: Centralized error-handling

middleware ensures uniform error messages and

status codes throughout the application.

Additionally, the backend is built with scalability in

mind— ready for future enhancements like integrating

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02922

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

payment gateways, adding socket-based real-time

updates, and scaling across distributed environments.

4. DATABASE DESIGN (MongoDB)

The application uses MongoDB Atlas, a fully

managed cloud NoSQL database, to store and

manage all persistent data for the system.

MongoDB is chosen for its flexibility in

handling nested documents and scalability in

real-time applications.

4.1 Data Models and Relationships

The application uses Mongoose ODM (Object Document

Mapper) to define and interact with schemas representing

various collections:

• User Collection: Stores user details including email,

name, password hash, role (user or restaurant

owner), and order history.

• Restaurant Collection: Contains data about each

restaurant, including name, contact info, location,

owner (referenced via ObjectId to the User

model), and the restaurant’s current status

(active/inactive).
• Menu Items Collection: Embedded within the

Restaurant document or linked as a separate

collection. Each item includes name, price, image

URL, category, and availability.

• Orders Collection: Linked to both User and

Restaurant collections. Contains information on

order items, status (pending, preparing, completed),

payment method, timestamps, and total amount.

• Staff Collection: Optional collection linked to

Restaurant. Holds details such as staff name,

designation, shift timings, and contact info.

• Table Management Collection: Stores the state of

tables (available, reserved, occupied) with booking

time, number of seats, and user references.

• Parking Collection: Tracks available and booked

parking slots assigned to a specific restaurant, with

optional vehicle data and timestamps.

4.2 Indexing and Optimization

To optimize query performance, especially for frequent

lookups (e.g., restaurants by name, location, or category),

indexes are created on critical fields. For example:

• restaurant.name (text index)

• menu.category (compound index)

• orders.status, orders.createdAt (for filtering and

sorting)

Pagination is implemented using MongoDB’s limit and

skip functions, which are essential for handling large

datasets like restaurant listings and order histories.

4.3 Data Security and Redundancy

MongoDB Atlas provides:

• End-to-end encryption

• Automatic backups

• Failover protection

• Replica sets for high availability

Role-based access ensures that the backend application can

only read/write specific collections with appropriate

privileges.

5. KEY FEATURES

- Restaurant Menu Management (CRUD)

- Real-Time Order Management

- Table Booking System

- Staff Allocation & Parking Slot Integration

- Secure Online Payment Gateway

- Role-Based Authentication and Dashboard Views

- Dynamic Homepage with Restaurant Filtering

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02922

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

6. AUTHENTICATION & ROLE-

BASED ACCESS

The system employs a JWT (JSON Web Token) based

authentication mechanism for both users and restaurant

administrators to ensure secure, stateless sessions. Upon

successful login, the backend issues a signed JWT token

that is stored on the client side (typically in local Storage

or Http Only cookies) and appended to the Authorization

header of every subsequent API request.

Authentication Flow:

1. User/restaurant submits login credentials.

2. Backend verifies credentials, generates a signed

token with an expiration time.
3. Client stores the token securely.

4. Protected routes check token validity and decode

user role from the token payload.

Role-Based Access Control (RBAC):

• User (Customer): Can browse restaurants, view

menus, place orders, and manage their profile.

• Restaurant Owner: Can manage restaurant

data, menu items (CRUD), staff assignments,

tables, and parking slots.

• Admin (optional future role): Can monitor and

manage system-level tasks such as user reports

or flagged content.

Each protected route is guarded with middleware that

decodes the JWT and checks the role of the requester.

Unauthorized users are blocked with an appropriate error

response. This prevents security breaches and ensures

only authorized users access relevant functionalities.

7. AGILE DEVELOPMENT & TESTING

The system was developed using the Agile Scrum

methodology, allowing the development team to iterate

quickly and gather feedback after each cycle.

Agile Workflow:

• Development was broken into 2-week sprints.

• Daily stand-up meetings (if in a team setting)

ensured continuous alignment.

• Sprint planning and retrospectives helped adapt

based on progress and feedback.

• Feature backlogs were managed using GitHub

Issues or Trello boards.

Testing Strategies:

Unit Testing:

Logic functions such as price calculations, availability

checks, and JWT token verification were tested using

JavaScript testing libraries like Jest.

Integration Testing:

• API endpoints were tested with Postman collections.

• Edge cases like invalid tokens, expired sessions,

and bad input were validated.

User Acceptance Testing (UAT):

• End-to-end flows were manually tested in the

browser by acting as both a user and a restaurant

owner.

• Real-world scenarios like order placement, table

booking, and simultaneous logins were tested to

ensure system stability.

Bug Tracking & Version Control:

• GitHub was used for source code control and pull

request reviews.

• Bugs and improvements were tracked using GitHub

Projects or similar tools.

This approach ensured the delivery of high-quality code with

traceable updates, and minimal regressions across versions.

8. DEPLOYMENT & HOSTING

To ensure seamless user experience and scalability, the

project is deployed using modern cloud platforms with

continuous delivery pipelines.

Frontend Deployment:

• Hosted on Vercel or Netlify.

• Offers global CDN for lightning-fast asset delivery.

• Supports atomic deployments with

rollback capabilities.

• Automatic preview URLs for testing

before production pushes.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02922

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

Backend & API Hosting:

• Hosted on Render, Railway, or AWS EC2
depending on scalability requirements.

• Node.js backend is containerized using

Docker (optional).

• Automatic restarts and horizontal scaling supported

by platform.

Database (MongoDB Atlas):

• Cloud-hosted MongoDB Atlas used for high

availability, automatic backups, and replication.

• Integrated with IP whitelisting and role-based

access for secure access from backend.

CI/CD Pipeline:

• Linting & build checks.

• Unit tests execution.

• Deployment to staging or production environments.

Monitoring tools like LogRocket or Sentry can be

integrated to track frontend issues, while Render logs or

Railway CLI help track server health and API

performance.

9. FUTURE SCOPE

The Multi-Restaurant Management System provides a

solid foundation for current operations but also presents

exciting opportunities for future advancements and

enhancements. With growing trends in smart dining and

customer personalization, the following additions could

elevate the platform into a next- generation digital

ecosystem:

1. AI-Based Restaurant Recommendation Engine

Integrating artificial intelligence and machine learning

models can significantly improve user engagement. By

analyzing user behavior, previous orders, preferences,

time of day, and location, the system can recommend

personalized restaurant options, menu items, and deals—

enhancing the user experience and increasing order

volume.

2. QR Code-Based Dining Experience

Restaurants can implement QR code systems at each

table, allowing customers to:

• Instantly access the menu

• Place orders without waiting for staff

• Make digital payments

• Provide quick feedback This not only improves

customer satisfaction but also reduces labor

dependency during peak hours.

3. Live Kitchen Tracking

Providing real-time status updates on order preparation

and kitchen activities can create transparency and reduce

anxiety for waiting customers. A simple dashboard

showing whether an order is being prepared, cooked, or

packed can significantly enhance user trust and

satisfaction.

4. Loyalty Points & User Analytics

By tracking user interactions and order history, the platform

can introduce loyalty programs that reward frequent users

with points, discounts, or exclusive offers. Additionally,

restaurant owners can leverage analytics to understand

customer trends, peak order times, popular dishes, and user

retention patterns.

5. Feedback & Rating System

A robust feedback and rating module will help:

• Users express satisfaction or

 dissatisfaction transparently

• Restaurants identify areas for improvement

• New users make informed choices based on real

customer experiences

These future features, if integrated thoughtfully, can greatly

enhance the competitiveness and utility of the platform in a

crowded food tech market.

10. CONCLUSION

The Web-Based Multi-Restaurant Management System is a

comprehensive digital solution that addresses the

multifaceted needs of both restaurants and customers. From

the user perspective, it offers a seamless experience for

browsing, ordering, dining, and interacting with restaurants

digitally. For restaurant owners, it serves as a powerful

administrative tool to handle day-to-day operations such as

menu updates, order management, table reservations, staff

tracking, and even parking slot coordination.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129

 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02922

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

The system is built on the robust MERN stack architecture,

leveraging MongoDB for flexible data handling, Express.js

and Node.js for scalable backend logic, and React.js for a

responsive, interactive frontend. Cloud-based deployment

ensures availability and easy scaling, while JWT-based

authentication guarantees secure and role-specific access.

The agile development lifecycle allowed the platform to

evolve rapidly through iterative feedback, continuous testing,

and real- world simulations. With features like CRUD-

enabled dashboards, real-time order tracking, and modular

architecture, the application delivers both usability and

maintainability.

As outlined in the future scope, the platform is well-

positioned for growth through the integration of AI, data

analytics, and user engagement tools. By embracing these

innovations, the Multi- Restaurant Management System can

continue to improve customer satisfaction, operational

efficiency, and business outcomes in the modern digital food

service landscape.

REFERENCES

[1] React.js Documentation. (2024). The

React Framework for Production.

Retrieved from https://reactjs.org/docs

[2] Express.js Documentation. (2024). Fast,

unopinionated, minimalist web framework for

Node.js.

Retrieved from https://expressjs.com

[3] MongoDB Atlas. (2024). Cloud Database Service.

Retrieved from

https://www.mongodb.com/cloud/atlas

[4] JWT.io – JSON Web Token Introduction.

Retrieved from https://jwt.io/introduction

[5] Razorpay Documentation. (2024). Payment

Gateway Integration for Developers. Retrieved

from https://razorpay.com/docs

[6] Stripe Developer Guide. (2024). Online

Payment APIs. Retrieved from

https://stripe.com/docs

[7] Vercel Deployment Platform. Retrieved

from https://vercel.com/docs

[8] Netlify. (2024). Web Hosting and CI/CD

Platform for Frontend Projects. Retrieved from

https://docs.netlify.com

[9] Render Deployment Platform. (2024).

Retrieved from https://render.com/docs

[10] Mongoose ODM. (2024). Elegant MongoDB

object modeling for Node.js. Retrieved from

https://mongoosejs.com/docs

[11] Postman. (2024). API Testing & Collaboration Tool.

Retrieved from https://www.postman.com

[12] Scrum Guide. Schwaber, K. & Sutherland, J.

(2020). The Definitive Guide to Scrum: The

Rules of the Game. Retrieved from

https://scrumguides.org

[13] Jest Testing Framework. (2024).

Delightful JavaScript Testing.

Retrieved from https://jestjs.io/docs

[14] GitHub Docs. (2024). Collaboration and

CI/CD Features. Retrieved from

https://docs.github.com

[15] Tailwind CSS. (2024). Utility-First CSS

Framework.

Retrieved from https://tailwindcss.com/docs

[16] Cloudinary. (2024). Image and Video Upload API.

Retrieved from https://cloudinary.com/documentation

[17] OpenAPI Specification. (2024). Standard for

REST API Definitions. Retrieved from

https://swagger.io/specification

https://expressjs.com/
https://www.mongodb.com/cloud/atlas
https://stripe.com/docs
https://www.postman.com/
https://scrumguides.org/
https://docs.github.com/
https://tailwindcss.com/docs

