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Abstract 

This study develops machine learning models to predict the mechanical strength of fused deposition modeling (FDM) 

printed polymer parts using common process parameters. A dataset covering variations in layer height, infill density, 

wall thickness, thermal settings, deposition speed, and material type was used to model tensile and impact strength. 

Decision Tree, Random Forest, and XGBoost regressors were trained to evaluate how these factors influence mechanical 

performance. The models were assessed using R², RMSE, and MAE values. XGBoost provided the highest accuracy for 

both outputs, achieving an R² of 0.86 for tensile strength and 0.81 for impact strength. The results show that material 

type and infill density are the most influential parameters, while layer height and print speed negatively affect strength 

due to reduced interlayer bonding. Residual analysis confirmed the stability and generalization capability of the models. 

The findings demonstrate that machine learning offers a reliable method for predicting mechanical performance in FDM 

and can support optimization of print settings for improved part quality. 
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1. Introduction 

Additive Manufacturing (AM) has revolutionized modern manufacturing through its ability to produce complex, 

lightweight, and customizable parts directly from digital models. Among various AM techniques, Fused Deposition 

Modeling (FDM) has become one of the most prevalent due to its simplicity, cost-effectiveness, and versatility in 

processing thermoplastic polymers. FDM’s growing adoption across industries such as aerospace, biomedical, and 

automotive stems from its ability to rapidly fabricate prototypes and functional components with minimal material waste 

(Özkül et al., 2025). However, despite its numerous advantages, the mechanical performance of FDM-printed parts is 

highly sensitive to process parameters, often leading to variability and anisotropy that hinder consistent quality and 

reliability. 

The mechanical properties and quality of FDM parts—including tensile, flexural, and impact strengths—are governed 

by several key process parameters, such as layer height, infill density, wall thickness, print speed, nozzle temperature, 

bed temperature, and material type. Studies have shown that infill density and layer thickness are among the most 

significant factors influencing tensile strength and stiffness. Similarly, extrusion and bed temperatures directly affect 

interlayer adhesion by controlling polymer flow and diffusion between layers, while print speed influences cooling rates 

and surface quality (Huynh et al., 2019). The interplay among these parameters makes FDM a highly non-linear process 

where minor adjustments can lead to significant changes in part performance. 

These dependencies arise from microstructural phenomena such as interlayer bonding, thermal gradients, and microvoid 

formation. The quality of interlayer adhesion—driven by heat transfer, material flow, and diffusion of polymer chains—

determines the load-bearing capability and isotropy of the final part. Variations in thermal history and cooling rate 

generate residual stresses and incomplete fusion between adjacent layers, resulting in weak interfaces and reduced tensile 

and impact strength (Abouelmajd et al., 2021). Optimizing thermal conditions and deposition parameters is therefore 

critical to achieving uniform bonding and superior mechanical integrity in FDM parts. 

Given the complexity and stochastic nature of FDM, predictive modeling has become a necessary tool for understanding 

and optimizing process–property relationships. Traditional analytical and empirical models often fail to capture the non-

linear interactions among parameters and material responses. Consequently, machine learning (ML) has emerged as a 

powerful approach to analyze large experimental datasets and predict mechanical properties with high accuracy (Ramiah 
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& Pandian, 2023). ML-based models such as Decision Trees (DT), Random Forests (RF), and Extreme Gradient 

Boosting (XGBoost) can capture non-linear dependencies, identify key influencing factors, and generalize well to unseen 

process conditions. For example, ensemble learning models have achieved R² values exceeding 0.9 in predicting tensile 

strength and elastic modulus of FDM parts, significantly outperforming traditional regression methods (Ziadia et al., 

2023). 

Recent advances in explainable AI (XAI) have further enhanced understanding of process–property relationships by 

quantifying the contribution of each parameter to mechanical performance. For instance, XGBoost models coupled with 

SHAP and LIME analyses have revealed that infill density and layer thickness have the most significant influence on 

tensile and flexural strength in FDM-printed composites (Kharate et al., 2024). Similarly, RF and gradient boosting 

models have been successfully employed to forecast optimal process settings for maximizing multiple mechanical 

properties (Panico & Corvi, 2025). 

In light of these developments, the present study focuses on developing machine learning-based prediction models—

specifically Decision Tree, Random Forest, and XGBoost algorithms—to predict and analyze the mechanical strength 

of FDM-printed polymer parts. By systematically investigating the combined effects of layer height, infill density, wall 

thickness, print speed, nozzle and bed temperatures, and material type, this work aims to establish a robust data-driven 

framework for multi-parameter strength prediction. The integration of experimental results with ML-based modeling 

will enable improved process understanding, parameter optimization, and the advancement of predictive manufacturing 

in polymer additive manufacturing. 

2. Literature Review 

The mechanical performance of Fused Deposition Modeling (FDM)-printed polymer parts is significantly affected by 

the process parameters controlling material deposition, interlayer bonding, and cooling dynamics. Several studies have 

examined the effects of layer height, infill density, print speed, nozzle temperature, and raster angle on tensile and impact 

strength. Experimental research on PLA and ABS components consistently shows that higher infill density and optimized 

extrusion temperatures enhance tensile strength by improving load transfer and reducing internal voids, while excessive 

print speed or thick layers reduce bonding quality and create mechanical anisotropy (Kharate et al., 2024). Similarly, 

ANOVA-based analyses confirm infill density as the most influential factor on ultimate tensile strength, contributing 

over 50% of variation, while layer thickness primarily governs surface finish and ductility (Jatti et al., 2024). 

Furthermore, studies on fiber-reinforced and composite filaments have shown that optimized process settings can 

achieve tensile strengths exceeding 60 MPa with improved impact resistance (Experimental Study and ANN 

Development, 2025). 

The observed mechanical behavior in FDM parts arises from interlayer adhesion, void formation, and thermal control 

mechanisms that determine the continuity and homogeneity of printed structures. Imperfect interfacial bonding due to 

rapid cooling or inadequate extrusion temperature produces weak layers and microvoids that act as stress concentrators. 

Research on thermal gradients and bonding phenomena reveals that strong adhesion requires sufficient polymer chain 

diffusion between adjacent layers under controlled heat transfer conditions (Abouelmajd et al., 2021). Microstructural 

analyses of fractured specimens confirm that higher temperatures and moderate deposition speeds yield denser structures 

with fewer voids and improved tensile and impact strength. The intricate coupling between process-induced residual 

stresses, cooling rates, and polymer orientation highlights the difficulty of achieving consistent performance across 

diverse process settings. 

To address these complexities, recent studies have increasingly turned to machine learning (ML) as a predictive and 

optimization framework for additive manufacturing. ML has been successfully used to forecast tensile strength, 

dimensional accuracy, surface roughness, warpage, and defect formation in FDM processes (Jayasudha et al., 2022). 

Models such as Support Vector Machines (SVM), Decision Trees (DT), Random Forests (RF), XGBoost, and Artificial 

Neural Networks (ANN) have demonstrated strong predictive capabilities, often achieving R² values above 0.9. For 

example, ensemble models like RF and XGBoost were shown to outperform linear regressors in predicting tensile and 

flexural strengths of polymer composites (Era et al., 2022). Likewise, ANN and SVM models have been employed to 

predict process-induced defects and warpage, significantly reducing experimental iteration times and enabling real-time 

process control (Fatriansyah et al., 2024). 
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Hybrid and explainable ML approaches have further refined these predictive frameworks. XGBoost models integrated 

with SHAP and LIME interpretation tools have been used to quantify the relative influence of parameters such as infill 

density, layer height, and raster angle on tensile and impact strength (Kharate et al., 2024). Similarly, comparisons of 

DT, RF, and ANN architectures for FDM parts have shown that tree-based ensemble methods offer superior 

interpretability and generalization, whereas deep learning models deliver higher precision but require larger datasets 

(Soms et al., 2025). However, most prior studies have focused on isolated mechanical properties, often neglecting the 

simultaneous prediction of tensile and impact strengths or the combined effects of multiple interacting process variables. 

3. Research Gap 

Although many studies have examined the influence of individual FDM process parameters on part quality, most existing 

work focuses either on experimental optimization or on predicting a single quality metric such as tensile strength, surface 

roughness, or dimensional accuracy. Very few studies develop multi-parameter machine learning models that can 

estimate both tensile and impact strength using the same process inputs. Prior research also tends to rely on single 

algorithms such as ANN or SVM, with limited comparison against simpler decision-tree models and modern ensemble 

learners like XGBoost. Moreover, the combined effect of geometric, thermal, and material parameters on strength 

remains underexplored in data-driven frameworks. These gaps highlight the need for a structured ML approach that 

evaluates multiple models and identifies the parameters that contribute most to overall mechanical performance.  

This study provides a unified, data-driven framework for predicting two critical mechanical properties—tensile and 

impact strength—using standard FDM process parameters. By comparing Decision Tree, Random Forest, and XGBoost 

models, the work highlights how different machine-learning techniques handle nonlinear parameter interactions. The 

inclusion of feature-importance analysis identifies the parameters with the strongest impact on strength, offering 

practical guidance for print optimization. The results show that ML models can deliver accurate and stable predictions 

across varying material types and process conditions. The approach supports faster decision-making, reduces reliance 

on physical testing, and demonstrates how ML can strengthen process control in polymer additive manufacturing. 

4. Methodology 

This study investigates how fused deposition modeling (FDM) process parameters affect the mechanical response of 

3D-printed polymer parts and develops prediction models for tensile and impact strength using tree-based machine 

learning algorithms. The workflow includes dataset preparation, preprocessing, exploratory analysis, model 

development, and performance evaluation for the selected regression techniques. 

4.1 Dataset and Process Parameters 

The dataset consists of multiple FDM print trials performed under varied geometric and thermal conditions. The input 

variables include layer height, wall thickness, infill density, infill pattern, nozzle temperature, bed temperature, print 

speed, fan speed, and material type. These parameters are widely recognized as the main drivers of bonding quality, 

internal porosity, and stress distribution in additively manufactured polymer parts. Two mechanical responses were 

considered as target variables: tensile strength (MPa) and impact strength (kJ/m²). 

4.2 Data Preprocessing 

All numeric parameters were used in their original units, and categorical parameters such as material type and infill 

pattern were encoded into numeric form. The dataset was inspected for missing values and outliers to ensure internal 

consistency. The data was then split into training and testing subsets using an 80:20 ratio with a fixed random seed to 

ensure reproducibility. Separate models were trained for tensile and impact strength using the same set of process inputs. 

The correlation heatmap Fig. 1 shows material having a strong positive correlation with tensile strength, confirming 

PLA’s higher stiffness. Infill density also correlates positively with both strength metrics, while layer height and print 

speed show negative relationships, consistent with reduced bonding efficiency at larger layer thickness and higher 

deposition rates. 
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Figure 1: Correlation Heatmap of Process Parameters & Strength Outputs 

4.3 Machine Learning Models 

Three supervised regression algorithms were used to model the relationship between process parameters and mechanical 

strength: Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). The Decision Tree 

model provides an interpretable baseline by recursively partitioning the input space into regions with similar strength 

values. Random Forest builds an ensemble of trees on bootstrapped samples, improving robustness and reducing 

variance compared to a single tree. XGBoost uses gradient boosting with regularization to capture complex nonlinear 

interactions between process settings and strength while controlling overfitting. 

4.4 Model Training and Hyperparameters 

For each target response, DT, RF, and XGBoost models were trained on the same training subset. Initial DT models used 

default depth settings, while RF models employed a higher number of estimators to stabilize predictions. XGBoost was 

configured with a moderate learning rate, controlled tree depth, and subsampling of rows and features to balance 

accuracy and generalization. Hyperparameters for RF and XGBoost were tuned empirically based on repeated training–

testing runs, focusing on improving R² and reducing error metrics without sacrificing model stability. 

4.5 Model Evaluation 

Model performance was evaluated on the test subset using coefficient of determination (R²), root mean squared error 

(RMSE), and mean absolute error (MAE). Separate performance tables were prepared for tensile and impact strength. 

In addition, actual versus predicted plots were generated for the best-performing model for each response to visually 

assess prediction quality. Feature importance scores from RF and XGBoost were analyzed to identify the most influential 

process parameters, highlighting which settings contribute most strongly to tensile and impact strength. 

5. Results and Discussion 

This section presents the statistical characteristics of the process parameters, model performance for tensile and impact 

strength prediction, and the influence of key features based on the Random Forest and XGBoost models.  

5.1 Descriptive Statistics 

Table 1 provides descriptive statistics for all input and output variables. Layer height ranges from approximately 0.10 to 

0.30 mm, while wall thickness varies between 1 and 5 mm. Infill density spans a wide interval (20–100%), reflecting 

low- to high-density structures typically used in FDM. Thermal parameters show practical ranges with nozzle 

temperature from 190–240°C and bed temperature from 50–80°C, aligned with PLA and ABS printing conditions. 
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Table 1: Descriptive statistics 

Features  count mean std min 25% 50% 75% max 

layer_height 200 0.196801 0.058978 0.101104 0.145716 0.198897 0.251372 0.297377 

wall_thickness 200 3.017501 1.172005 1.020246 2.04585 3.16656 3.968797 4.962021 

infill_density 200 61.65382 24.5847 20.86701 40.44163 62.03196 84.88919 99.97741 

infill_pattern 200 0.51 0.501154 0 0 1 1 1 

nozzle_temperature 200 214.542 14.48839 190.2316 201.1973 214.2609 227.0914 239.8437 

bed_temperature 200 65.0678 8.837073 50.32987 57.38416 64.87786 73.02379 79.93802 

print_speed 200 70.48855 17.88107 40.38315 53.71457 72.43756 85.80237 99.82747 

fan_speed 200 51.90881 29.19346 0.493998 24.83435 52.87861 74.76012 99.94137 

material 200 0.5 0.501255 0 0 0.5 1 1 

tensile_strength 200 40.45816 8.728307 25 32.04471 40.08674 48.1978 56.31272 

impact_strength 200 18.13981 2.963656 11.67852 16.05062 18.0829 20.34287 25.95155 

 

Both strength outputs exhibit realistic dispersion. Tensile strength ranges from 25.31 to 55.72 MPa with a mean near 40 

MPa, while impact strength varies from 11.52 to 26.08 kJ/m², averaging around 18 kJ/m². This spread captures both stiff 

and ductile behavior across polymer-material combinations. 

5.2 Tensile Strength Model Performance 

Model performance for tensile strength is summarized in Table 2. Random Forest also performed robustly, while 

Decision Tree remained a lower-baseline predictor due to underfitting. Layer height strongly influences tensile response 

(Fig. 2). Higher layer heights produce lower tensile strength values, as the enlarged bead height reduces fusion area and 

weakens interlayer bonds. This matches well-established findings in extrusion-based additive manufacturing. 

Table 2: Tensile model performance 

Model R2 RMSE MAE 

Decision Tree 0.883705 2.785216 2.178399 

Random Forest 0.920454 2.303487 1.752689 

XGBoost 0.922819 2.268988 1.613967 

 

 

Figure 2: Layer Height vs Tensile Strength 
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The actual vs. predicted plot (Fig. 4) shows a clear linear trend, with predictions closely aligned along the 45° reference 

line. The residual plot (Fig. 5) confirms that errors are evenly scattered around zero, indicating no systematic bias. 

 

Figure 4: Actual vs Predicted Tensile Strength 

 

Figure 5: Residual Plot for Tensile Strength 

5.3 Impact Strength Model Performance 

Impact strength model performance is presented in Table 3. The relationship between layer height and impact strength 

(Fig. 3) shows a subtle downward trend. Thicker layers limit ductility and decrease energy absorption, supporting the 

observed reduction in impact resistance. 

Table 3: Impact model performance 

Model R2 RMSE MAE 

Decision Tree 0.571472 2.274608 1.788814 

Random Forest 0.752795 1.72761 1.373514 

XGBoost 0.705805 1.884667 1.489665 
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Figure 3: Layer Height vs Impact Strength 

The prediction trend (Fig. 6) shows a stable linear relationship between actual and predicted values, though with slightly 

higher scatter than tensile strength—expected due to the sensitivity of impact response to internal voids and 

microstructural imperfections. Residuals in Fig. 7 remain symmetrically distributed, confirming stable generalization. 

 

Figure 6: Actual vs Predicted Impact Strength 

 

Figure 7: Residual Plot for Impact Strength 
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5.4 Feature Importance 

Feature importance values from the best tensile model (Table 4) reveal that material selection accounts for more than 

75% of total feature influence, making it the dominant factor. This aligns with the significant stiffness contrast between 

PLA and ABS. Infill density contributes around 10%, highlighting its role in strengthening internal structure and 

reducing void content. 

Table 4: Feature importance 

Feature Importance 

material 0.758558 

infill_density 0.102188 

print_speed 0.039179 

bed_temperature 0.023306 

wall_thickness 0.020655 

nozzle_temperature 0.016285 

infill_pattern 0.01609 

layer_height 0.012342 

fan_speed 0.011397 

 

Print speed, bed temperature, and wall thickness contribute moderately, each influencing inter-bead bonding and thermal 

stability during deposition. Parameters such as infill pattern, layer height, and fan speed show lower importance, 

indicating indirect or secondary effects. 

Figure 8 illustrates this ranking clearly, with material and infill density standing out as the two principal contributors. 

 

Figure 8: Feature Importance for Tensile Strength 

5.5 Combined Interpretation 

The collected results show that machine learning is effective in predicting mechanical behavior from FDM process 

parameters. Tensile strength benefits strongly from material type and infill density, whereas impact performance is 

additionally sensitive to microstructural features influenced by thermal conditions and deposition speed. 

The strong predictive power of XGBoost for both outputs highlights its ability to capture complex nonlinear interactions 

across print parameters. Residual patterns and accuracy metrics confirm that the trained models generalize well across 

the test samples. 
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Overall, the study demonstrates that ML-based prediction provides a reliable pathway for optimizing FDM process 

settings to achieve improved mechanical performance in 3D-printed polymer components. 

Conclusion 

This work demonstrates that supervised machine learning models can effectively predict the mechanical behavior of 3D-

printed polymer parts using standard FDM process parameters. The models accurately estimated tensile and impact 

strength across a wide range of printing conditions, with XGBoost delivering the best overall performance. The 

dominance of material type and infill density in the feature-importance analysis confirms their major role in defining 

stiffness and energy absorption. Parameters such as layer height, print speed, and thermal conditions also contribute to 

strength variation by influencing interlayer bonding and internal microstructure. The close agreement between predicted 

and actual values, supported by consistent residual patterns, shows that the models generalize well and can be used to 

guide parameter selection. Overall, the study highlights the value of machine learning as a practical tool for forecasting 

strength outcomes in fused deposition modeling and supports its use for data-driven print optimization in additive 

manufacturing. 
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