
 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 08 | AUG – 2024 DOI: 10.55041/ISJEM02103

. AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Enhancing Class Functionality with Kotlin Extensions

Nilesh Jagnik

Los Angeles, USA

nileshjagnik@gmail.com

Abstract—Kotlin has many features that make

code simpler to develop and read. One such feature

is the support for extension functions. Extension

functions allow extending the capability of a class or

interface, without the need for coding pattern like

the decorator pattern and utilities, which add a lot

of complexity to code. In this paper we study the

decorator pattern which is the primary tool used for

class extension. We discuss the disadvantages of

using the decorator pattern and how extensions can

be used to overcome them. We review how

extensions work and how they can used. Finally, we

present some benefits and drawbacks of extension

functions.

Keywords—decorator pattern, class extension,

code readability, code reuse

I. INTRODUCTION

Kotlin has many features that make development

and maintenance of code simple and easy. This includes

the support for lightweight coroutines, structured

concurrency, Flows for streaming and Channels for

inter-coroutine data transfer. Extensions are another

feature in Kotlin that allow extending the capabilities of

a class or interface in a simple manner.

Often in software development, it is required to alter

or add functionality to preexisting classes and

interfaces. This is done to support evolving

requirements from applications or to improve or

optimize runtime behavior, debuggability, error

handling, etc.

In Java and other languages lacking extensions,

when it is required to extend the functionality of a class,

developers have to use the decorator pattern and

composition to create wrappers around the base class.

Over time, this can lead to increased code complexity

and other issues associated with complexity.

Extensions in Kotlin provide the capability of extend

the functionality of classes and interfaces in a simple

way. However, the power of extensions come with

some drawbacks. There certain scenarios they are not

suited for. In this paper we take a look at Kotlin

extensions, their uses, benefits and caveats to be aware

of when using them.

II. DECORATOR PATTERN

The decorator pattern is a design pattern that allows

adding functionality to classes and interfaces without

altering their definition. This allows adding

functionality to an object at runtime without affecting

the other instances of its’ class.

The decorator pattern usually involves creating

wrapper classes following the same interface as the

class being wrapped. This allows re-implementing the

functionality of member functions that need to be

modified. This wrapper can use composition to re-use

logic from the base class wherever required. Fig. 1

shows an example of the decorator pattern. In this

interface Person {

 fun name(): String

}

class Male

 (private val name: String) : Person {

 override fun name() = name

}

abstract class PersonDecorator

 (private val person: Person) : Person {

 override fun name() = person.name()

}

class TitleMrDecorator

 (person: Person) : PersonDecorator(person) {

 override fun name() = "Mr. " + super.name()

}

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 08 | AUG – 2024 DOI: 10.55041/ISJEM02103

. AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

example, an object of the Person interface has been

decorated to add a title before the name.

Fig. 1. Using decorator pattern to modify object

behavior.

III. PROBLEMS WITH THE DECORATOR PATTERN

A. Complexity

The overuse of decorators can lead to increased code

complexity. This is because decorators add many layers

of wrappers on the original class. This makes code quite

hard to read and extend.

B. Debugging

A high number of nested decorators can create deep

call stacks and subsequently make it harder to debug

issues using stack traces.

C. Decoration Order

The order in which decorators are applied to an

object can determine the end result. This can cause

confusion and errors if the order is not properly

documented and management.

D. Removal

It can be quite difficult to remove a decorator if the

code uses many decorators in a chain. Removal can

cause unexpected behavior due to complex code

structure.

E. Performance

Although small, each decorator adds a small

performance overhead since it new objects are created

after decoration. This could add up if several decorators

are used.

IV. KOTLIN EXTENSION FUNCTIONS

Extension functions in Kotlin allow extending the

functionality of a class or interface without the need for

the decorator pattern. It is possible to write new

functions for classes that are obtained from external

libraries/code.

A. Declaration

Kotlin provides in-built support for extensions. To

declare an extension, the type of the class being

extended is prepended to the name of the function. Fig.

2 shows an example of an extension function. We use

extensions to achieve the same result as we did with

decorators in Fig. 1.

Fig. 2. Using extensions in Kotlin.

The “this” keyword can be used inside the function

to refer to the object at runtime on which the extension

function is invoked. Extension functions can also be

declared for generic classes.

B. Static Resolution

One thing to note about extensions do not actually

alter the definition of the class. The simply static

methods that are callable with the dot notation on a class

instance. So, if a class has a subclass and both have a

similar extension, the compile time object type will

determine which extension function will be called.

C. Nullable Object Extension

It is possible to define an extension with the receiver

object being nullable. In this case, the extension

function should perform null checks. Fig. 3 shows an

example of an extension with a nullable receiver.

Fig. 3. Extension function with nullable receiver type.

D. Extension Properties

Similar to extension function, extension properties

can also be defined. These properties do not have a

backing field however, and thus cannot be used in

initializer blocks. Developers have to create setter and

getters for these properties.

fun Male.nameWithTitleMr() : String {

 return "Mr. " + this.name()

}

fun main() {

 val john = Male("John")

 // The decorator and extension print the same string.

 print(TitleMrDecorator(john).name())

 print(john.nameWithMrTitle())

}

fun Person?.nameWithTitleMr() : String {

 if (this == null) return "Null Person"

 return "Mr. " + this.name()

}

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 08 | AUG – 2024 DOI: 10.55041/ISJEM02103

. AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

E. Companion Objects

Extensions can also be defined for the companion

object of a class. These can be called using only the

class name much like other companion object members.

F. Extension Scope

Extensions should be defined directly under

packages at the top of a file. To use extension outside of

the package where it is declared, simply import where

it needs to be used.

G. Visibility

An important thing to note is that visibility for

extensions work similar to visibility for normal

functions. E.g., an extension defined outside the class

definition can not access the private members of the

class.

V. BENEFITS OF KOTLIN EXTENSION FUNCTIONS

A. Improved Readability and Conciseness

Extension functions reduce the boilerplate of

decorators and utility classes needed for extending

functionality of objects. The syntax of extensions is also

more natural and concise, leading to improved

readability.

B. Debuggability

As opposed to decorators, extensions do not create

deep call stacks. This leads to easier debugging.

C. Code Reuse

Extensions once built can be re-used in multiple

packages across the code base by importing them. This

increases code reuse and reduces duplication.

D. Extending External Libraries

Extensions can be used to enhance functionality of

objects created by external libraries not owned by your

project.

E. Performance

Since extension functions are statically resolved,

they are more performant in comparison to decorators.

VI. CAVEATS OF KOTLIN EXTENSION FUNCTIONS

A. Name Conflicts

It is possible to have conflicts between member

functions and extensions for a class being extended.

E.g., if an extension was created for a class, but then

later a member function with the same signature was

defined. In this case, the member function is executed

and not the extension. Change in base class functions

could lead to confusion and unexpected behavior.

B. Static Dispatching

Because extension functions are statically resolved,

depending on the variable declarations in code, it is

possible that the extension function of the base class

will be invoked and not the subclass (even though the

object is of the subclass type).

C. Private Member Visbility

If extension functions are declared outside the class

file, they will not have access to private members. They

may also not have access to internal members if they are

defined outside the class module.

CONCLUSION

Kotlin extension functions are a powerful tool that

can make it quite simple to extend functionality of

classes and interfaces, even those that are created by

external libraries. They offer a simpler alternative to

decorators and utilities which are often used for adding

and modifying object functionality. They require

minimal boilerplate and fulfill quite a lot of

requirements related to class extension. However, they

do have several nuances to be aware of. Improper or

excessive use of extensions can lead to unexplained

behavior and runtime issues. So, it is best to use

extension functions with care and in moderation.

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 03 ISSUE: 08 | AUG – 2024 DOI: 10.55041/ISJEM02103

. AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

REFERENCES

[1] Rahul Chowdhury, “The Ugly Truth about

Extension Functions in Kotlin (Jun 2017),”

https://medium.com/android-news/the-ugly-truth-

about-extension-functions-in-kotlin-486ec49824f4

[2] “Extensions (Jul 2021),”

https://kotlinlang.org/docs/extensions.html

[3] Diego Torres, “The Decorator Pattern in Kotlin

(Mar 2024),”

https://www.baeldung.com/kotlin/decorator-

pattern

[4] Sena Zincircioğlu, “Extension Functions in Kotlin

(Dec 2022),”

https://medium.com/@senazincircioglu/extension-

functions-of-kotlin-c66862737868

[5] Sahil Thakar, “Kotlin Extension functions under the

hood. (Apr 2024),”

https://medium.com/@sahilthakar10/extension-

function-under-the-hood-a081ddf02567

[6] Nidhi Sorathiya, “Kotlin Extension Function:

Enhancing Classes, Streamlining Code (May

2024),” https://www.dhiwise.com/post/kotlin-

extension-function-enhancing-classes-

streamlining-code

[7] Graham Cox, “Extension Functions in Kotlin (Apr

2024),”

https://www.baeldung.com/kotlin/extension-

methods

https://medium.com/android-news/the-ugly-truth-about-extension-functions-in-kotlin-486ec49824f4
https://medium.com/android-news/the-ugly-truth-about-extension-functions-in-kotlin-486ec49824f4
https://kotlinlang.org/docs/extensions.html
https://www.baeldung.com/kotlin/decorator-pattern
https://www.baeldung.com/kotlin/decorator-pattern
https://medium.com/@senazincircioglu/extension-functions-of-kotlin-c66862737868
https://medium.com/@senazincircioglu/extension-functions-of-kotlin-c66862737868
https://medium.com/@sahilthakar10/extension-function-under-the-hood-a081ddf02567
https://medium.com/@sahilthakar10/extension-function-under-the-hood-a081ddf02567
https://www.dhiwise.com/post/kotlin-extension-function-enhancing-classes-streamlining-code
https://www.dhiwise.com/post/kotlin-extension-function-enhancing-classes-streamlining-code
https://www.dhiwise.com/post/kotlin-extension-function-enhancing-classes-streamlining-code
https://www.baeldung.com/kotlin/extension-methods
https://www.baeldung.com/kotlin/extension-methods

