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Abstract 

This project investigates the enhancement of user experience and engagement on the social media platform X (formerly 

Twitter) and Sentiment Analysis through the strategic application of advanced Machine Learning (ML) techniques. 

Despite its prominence as a communication tool for government agencies, policymakers, and influential figures—such 

as Heads of State—for disseminating critical announcements and shaping public perception during emergencies, 

Twitter (X) struggles with limited user engagement and lower adoption rates among the general public in many 

countries, including India, compared to platforms like Facebook and Instagram. This gap is primarily attributed to 

deficiencies in user experience, which this study seeks to address.  

This study also undertakes Twitter Sentiment Analysis to demonstrate the application of machine learning in real-

world social media data. Sentiment analysis helps classify tweets as positive, negative, or neutral, offering valuable 

insights into public mood, brand perception, and reactions to events. Using Python libraries such as Pandas, Scikit-learn, 

and TF–IDF vectorization, a supervised ML model was implemented and tested on the Sentiment140 dataset. The 

process involved data cleaning, feature extraction, and training classification models, which achieved reliable accuracy 

in distinguishing user opinions. This implementation showcases how machine learning can convert massive, 

unstructured tweet streams into actionable knowledge for businesses, researchers, and policymakers. 

The research examines the current application of ML algorithms on X, focusing on features such as personalised content 

recommendations for a twitter user and undertaking sentiment analysis of a post with ML Model. Also, It identifies key 

challenges contributing to X’s suboptimal engagement and analyse the following challenges - Limited cross-platform 

integration (e.g., with WhatsApp) and possible solution and Text Length Restriction in a Tweet. Pros & Cons. 

While policy-related concerns (e.g., phone-number-based authentication for new accounts) fall outside the study’s 

scope, the work emphasizes feasible, ML-driven solutions. 

The findings and proposed models aim to bridge the gap between high-profile users (leaders, researchers, military 

organizations) and the general public, fostering a more interactive, inclusive, and user-centric ecosystem. By aligning 

Twitter’s design with evolving user expectations, this research positions X as a more dynamic and accessible social 

media platform. 
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Literature Review 

Machine learning (ML) plays a crucial role in analysing various sentiments of twitter reactions and also improving 

various features of Twitter, such as content recommendation, sentiment analysis, and trending topic identification. 

Research shows that Twitter uses advanced ML models to enhance user experience by making content more relevant 

and engaging. However, several challenges impact its effectiveness, including limited engagement features and evolving 

user behaviour.One of the key applications of ML in Twitter is personalized content recommendation. The platform uses 

deep learning models, such as Neural Networks and MaskNet, to predict which tweet would be interesting to a particular 

user. Additionally, graph-based models like TwHIN (Twitter’s Heterogeneous Information Network) help identify 

relevant posts by analysing user interactions. While these techniques improve content discovery, some users feel that 

Twitter’s algorithm-driven feed lacks personalization compared to other social media platforms.(1. Cornell University 

research paper - https://arxiv.org/abs/2202.05387?utm_source=chatgpt.com) 

Another significant area of ML usage is sentiment analysis, which helps to classify tweets as positive, negative, or 

neutral. Traditional models like Naïve Bayes and Support Vector Machines (SVM) are commonly used for basic 

classification, while more advanced models like LSTM (Long Short-Term Memory) and BERT(Bidirectional Encoder 

Representations from Transformers) provide deeper contextual understanding. These ML techniques allow businesses, 

researchers, and policymakers to analyse public opinion in real time. However, sentiment analysis still faces challenges 

in accurately detecting sarcasm, slang, and mixed sentiments, reducing its reliability. (Jounal of Big Data – Springer 

Open- https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00781-w 

Despite these advancements, Twitter faces several engagement challenges that limit its popularity among the general 

public. To provide a more accurate representation of social media usage in India and globally, here is a table based on 

data from reputable sources: Sources: India-specific data: Statcounter Global Stats / Global data: Statcounter Global 

Stats) 

 

Figure 1- Population in Social Media (India : 2025) 

https://arxiv.org/abs/2202.05387?utm_source=chatgpt.com
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00781-w
https://gs.statcounter.com/social-media-stats/all/india
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Unlike platforms like Instagram and WhatsApp, Twitter offers limited reaction options, allowing only "likes" without 

additional responses like emojis or reactions. Users also cannot see who liked a post, reducing transparency and social 

interaction. Another issue is the lack of a temporary post feature, such as WhatsApp Status or the discontinued Twitter 

Fleets, which many users prefer for sharing short-lived updates. (Blogs – Good Bye – Twitter Fleets -

https://blog.x.com/en_us/topics/product/2021/goodbye- fleets?utm_source= chatgpt.com ) 

Moreover, privacy and real-time data processing remain major challenges. While Twitter has started integrating phone 

number verification for security, it does not link accounts to phone numbers the way WhatsApp does, which could 

impact user acquisition and engagement. Additionally, processing vast amounts of data in real-time requires constant 

model updates, which can be computationally expensive and prone to errors. (Electronics Frontier Foundation - 

https://www.eff.org/deeplinks/2020/02/how-twitters-default-settings-can-leak-your-phone-

number?utm_source=chatgpt.com ) 

 GeeksforGeeks: Sentiment Analysis – Step by Step Implementation 

The article “Sentiment Analysis – Step by Step Implementation” by GeeksforGeeks provides a practical, hands-on 

approach to conducting sentiment analysis on Twitter data using Python. It systematically explains preprocessing steps 

such as tokenization, stop-word removal, and text vectorization techniques (Bag of Words, TF–IDF), followed by 

supervised machine learning model training using libraries like Scikit-learn. The implementation emphasizes clarity in 

handling real-world social media datasets, making it particularly useful for beginners and practitioners aiming to 

replicate sentiment analysis pipelines. This work is relevant to the project as it offers both the technical methodology 

and coding framework required to implement end-to-end sentiment classification, ensuring reproducibility and practical 

application on Twitter datasets. Twitter Sentiment Analysis using Python - GeeksforGeeks 

 

Sentiment140 Dataset (1.6 Million Tweets) 

The Sentiment140 dataset is a widely used benchmark corpus created by extracting 1.6 million tweets via the Twitter 

API and annotating them with sentiment labels, where 0 represents negative and 4 represents positive. Designed for 

large-scale sentiment analysis research, it provides a balanced and diverse set of user-generated content, making it 

suitable for training and evaluating machine learning models. Its large volume of annotated data enables robust model 

performance and helps in addressing challenges such as sarcasm, informal language, and noisy text common in Twitter 

posts. For this project, Sentiment140 serves as the foundational dataset for building and testing supervised ML models, 

ensuring that the sentiment analysis implementation is based on a standardized and validated resource widely 

recognized in the academic and research community. - Sentiment140 dataset with 1.6 million tweets 

In summary, Twitter effectively uses ML to enhance user experience through personalized recommendations, sentiment 

analysis, and trend predictions. However, challenges like limited user engagement features, privacy concerns, and real-

time data processing difficulties hinder its widespread adoption. Future research should focus on improving engagement 

strategies, refining content recommendations, and balancing privacy with personalization to make the platform more 

user-friendly. 

Chapter 1 – Content Recommendation For a Twitter User 

Twitter employs a complex algorithm for ranking content on the "For You" timeline, using machine learning techniques 

to predict content relevance. The algorithm selects content from both followed and non-followed accounts, ranking them 

based on predicted engagement. 

https://blog.x.com/en_us/topics/product/2021/goodbye-%20fleets?utm_source=%20chatgpt.com
https://www.eff.org/deeplinks/2020/02/how-twitters-default-settings-can-leak-your-phone-number?utm_source=chatgpt.com
https://www.eff.org/deeplinks/2020/02/how-twitters-default-settings-can-leak-your-phone-number?utm_source=chatgpt.com
https://www.geeksforgeeks.org/python/twitter-sentiment-analysis-using-python/
https://www.kaggle.com/datasets/kazanova/sentiment140
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Figure 2- Left - Usage of ML in Feed Ranking R - Screen Shot of  For You 

Key machine learning techniques used in feed ranking include neural networks and graph-based models. Twitter utilizes 

a deep neural network with approximately 48 million parameters to score tweets. This model considers factors such as 

user history, tweet content, and the social graph to predict engagement levels. A specific variant known as MaskNet 

plays a crucial role in optimizing feed ranking. 

Twitter uses different machine learning algorithms to manage and organize content, including tweets in notifications. 

These algorithms help decide which tweets appear in a user's feed or notifications based on engagement and relevance. 

Machine Learning Algorithms Used 

Logistic regression helps rank tweets by predicting user engagement. Neural networks, with around 40 million 

parameters, analyze tweet relevance and engagement. Embedding spaces create numerical representations of users' 

interests and tweet content for better content matching. RealGraph, a graph-based model, maps relationships between 

users, tweets, and hashtags to improve recommendations.  

Implementation – Content Recommendation 

To explain how Twitter (X) might implement a Content Recommendation (Feed Ranking) algorithm in Python, let’s 

simplify the concept. The "For You" timeline uses machine learning to show posts that are likely to interest a user, 

whether from accounts they follow or others. The algorithm predicts how engaging a post will be based on factors like 

user interactions (likes, retweets, replies), post content, and user preferences. Below is a simplified explanation and a 

basic Python example of how such an algorithm could work. 

• Data Collection: The algorithm gathers data about posts (e.g., text, likes, retweets) and user behavior 

(e.g., what they liked or retweeted). 

• Feature Extraction: It identifies key features, like: 

• Post Features: Number of likes, retweets, or if it contains trending hashtags. 

• User Features: What topics or accounts the user interacts with. 

• Context Features: Time of day, user’s location, or recent trends. 

• Scoring Posts: A machine learning model (e.g., a neural network or decision tree) assigns a "relevance 

score" to each post based on these features. 

• Ranking: Posts are sorted by their relevance scores, and the top ones appear on the "For You" timeline. 
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• Personalization: The model learns from user feedback (e.g., likes or skips) to improve future 

recommendations. 

Simplified Python Example given below is a basic Python code snippet that demonstrates how a content 

recommendation system might work using a simple machine learning approach. This example uses a logistic regression 

model to predict whether a post is relevant to a user, but in reality, X uses more complex models like neural networks. 

python 

import pandas as pd 

from sklearn.linear_model import LogisticRegression 

from sklearn.preprocessing import StandardScaler 

# Sample data: Features of posts and whether the user engaged with them 

data = {  'post_likes': [100, 50, 200, 10, 300],  # Number of likes on the post 

    'post_retweets': [20, 10, 50, 5, 100],  # Number of retweets 

    'has_trending_hashtag': [1, 0, 1, 0, 1],  # 1 if post has trending hashtag, 0 if not 

    'user_follows_author': [1, 0, 1, 0, 0],  # 1 if user follows the post's author, 0 if not 

    'engaged': [1, 0, 1, 0, 1]  # 1 if user engaged (liked/retweeted), 0 if not 

} 

# Create a DataFrame 

df = pd.DataFrame(data) 

# Features (inputs) and target (output) 

X = df[['post_likes', 'post_retweets', 'has_trending_hashtag', 'user_follows_author']] 

y = df['engaged'] 

# Scale the features (important for ML models) 

scaler = StandardScaler() 

X_scaled = scaler.fit_transform(X) 

 

# Train a simple logistic regression model 

model = LogisticRegression() 

model.fit(X_scaled, y) 
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# Sample new posts to rank 

new_posts = pd.DataFrame({ 

    'post_likes': [150, 30, 500], 

    'post_retweets': [25, 5, 200], 

    'has_trending_hashtag': [1, 0, 1], 

    'user_follows_author': [0, 1, 1] 

}) 

 

# Scale the new posts 

new_posts_scaled = scaler.transform(new_posts) 

 

# Predict relevance scores (probability of engagement) 

relevance_scores = model.predict_proba(new_posts_scaled)[:, 1]  # Get probability of 'engaged' = 1 

 

# Rank posts by relevance score 

new_posts['relevance_score'] = relevance_scores 

ranked_posts = new_posts.sort_values(by='relevance_score', ascending=False) 

 

# Display ranked posts 

print("Ranked Posts for 'For You' Timeline:") 

print(ranked_posts[['post_likes', 'post_retweets', 'has_trending_hashtag', 'user_follows_author', 'relevance_score']]) 
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Simple Content recommendation Example in Python 

# Simple Content Recommendation Example in Python 

# Copy-paste this into PyCharm and run it 

 

# Import libraries we need 

import pandas as pd  # for working with tables (DataFrame) 

from sklearn.linear_model import LogisticRegression  # our ML model 

from sklearn.preprocessing import StandardScaler  # for scaling numbers 

 

# Step 1: Create sample data (like past posts and user engagement history) 

data = { 

    'post_likes': [100, 50, 200, 10, 300],        # number of likes each post got 

    'post_retweets': [20, 10, 50, 5, 100],        # number of retweets 

    'has_trending_hashtag': [1, 0, 1, 0, 1],      # 1 = post has trending hashtag, 0 = no 

    'user_follows_author': [1, 0, 1, 0, 0],       # 1 = user follows the author, 0 = no 

    'engaged': [1, 0, 1, 0, 1]                    # 1 = user engaged (liked/retweeted), 0 = did not 

} 

 

# Step 2: Convert dictionary into a DataFrame (table format) 

df = pd.DataFrame(data) 

print("Training Data:") 

print(df, "\n") 

 

# Step 3: Split into inputs (X) and output (y) 

X = df[['post_likes', 'post_retweets', 'has_trending_hashtag', 'user_follows_author']]  # inputs 

y = df['engaged']  # output (target we want to predict) 

 

# Step 4: Scale the features (important so that likes/retweets don’t dominate over yes/no values) 

scaler = StandardScaler() 

X_scaled = scaler.fit_transform(X)  # fit (learn scaling) and transform (apply scaling) 

 

# Step 5: Train a simple logistic regression model 

model = LogisticRegression() 

model.fit(X_scaled, y)  # train the model on old data 

 

# Step 6: Make a new post to test the model 

new_posts = pd.DataFrame({ 

    'post_likes': [150],             # new post has 150 likes 

    'post_retweets': [25],           # new post has 25 retweets 

    'has_trending_hashtag': [1],     # yes, it has a trending hashtag 

    'user_follows_author': [0]       # no, user doesn’t follow the author 

}) 

 

print("New Post Details:") 

print(new_posts, "\n") 

 

# Step 7: Scale the new post (so it matches the training data scale) 

new_posts_scaled = scaler.transform(new_posts) 

 

# Step 8: Predict probability of engagement 
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relevance_score = model.predict_proba(new_posts_scaled)[:, 1][0]  # probability of engagement (1) 

 

# Step 9: Print result 

print(f"Predicted relevance score (chance user will engage): {relevance_score:.2f}") 

print("GK Sridharan's project completed and results are as shown") 

Figure 3 –Screen Shot From Python – Content Recommendation for an user 

 

Output as shown on Python Console 

 

Figure 4 – Screen Shot showing Output obtained in Console of Python 

 

"C:\Users\acer\PycharmProjects\M Tech CST Twitter 1\.venv\Scripts\python.exe" 

"C:\Users\acer\PycharmProjects\M Tech CST Twitter 1\APP.py"  

Training Data: 

   post_likes  post_retweets  ...  user_follows_author  engaged 

0         100             20  ...                    1        1 

1          50             10  ...                    0        0 

2         200             50  ...                    1        1 

3          10              5  ...                    0        0 

4         300            100  ...                    0        1 
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[5 rows x 5 columns]  

 

New Post Details: 

   post_likes  post_retweets  has_trending_hashtag  user_follows_author 

0         150             25                     1                    0  

 

Predicted relevance score (chance user will engage): 0.67 

GK Sridharan's project completed and results are as shown 

Process finished with exit code 0 

How This Code Works 

• Data: The sample dataset includes features like post_likes, post_retweets, whether the post has a 

trending hashtag, and whether the user follows the post’s author. The engaged column indicates if the user liked 

or retweeted the post. 

• Model: A logistic regression model is trained to predict the likelihood of user engagement based on 

these features. 

• Scaling: Features are scaled (normalized) to ensure fair comparison, as ML models perform better with 

standardized data. 

• Prediction: For new posts, the model calculates a "relevance score" (probability of engagement). 

• Ranking: Posts are sorted by their relevance scores, with the highest-scoring posts appearing at the top 

of the "For You" timeline. 

Real-World Notes 

• Complexity: Twitter’s actual algorithm is far more complex, using deep learning models (e.g., neural 

networks) and handling millions of posts and users in real-time. 

• Additional Features: It considers more features, like post text analysis (using natural language 

processing), user’s past interactions, and even the time since the post was created. 

• Feedback Loop: The algorithm continuously updates based on user actions (e.g., liking a post improves 

its ranking for similar users). 

• Scale: Twitter processes vast amounts of data, so the system uses distributed computing frameworks 

(e.g., Apache Spark) and real-time processing. 

This simplified example gives a glimpse into how ML can rank posts, but Twitter’s real system involves advanced 

techniques and infrastructure to handle its massive scale and personalization needs. 

How to make it effective for an Indian User 

Let us see, how to enhance the user experience in Feed Recommendation / ‘For You’ recommendations 

Let’s make our project advanced by adding extra features that could matter more for Indian users. For example: 
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Engagement Features for Indian Users 

1. Post language – Hindi/Tamil/Telugu posts often get more engagement in regional clusters. 

2. Time of posting – Engagement is higher during morning/evening in India. 

3. Festival/occasion – Tweets on Diwali, Independence Day, Cricket matches get more reach. 

4. Cricket hashtags – Always a booster         

We can simulate this in Python by adding new columns to your dataset and then training a model. 

import pandas as pd 

from sklearn.linear_model import LogisticRegression 

from sklearn.preprocessing import StandardScaler 

 

# Sample dataset (with India-specific features) 

data = { 

    'post_likes': [100, 50, 200, 10, 300, 400], 

    'post_retweets': [20, 10, 50, 5, 100, 150], 

    'has_trending_hashtag': [1, 0, 1, 0, 1, 1], 

    'user_follows_author': [1, 0, 1, 0, 0, 1], 

    'post_in_regional_lang': [1, 0, 1, 0, 1, 1],   # Hindi/Tamil/Telugu = 1 

    'posted_at_peak_time': [1, 0, 1, 0, 1, 1],     # Peak = 1 (morning/evening India) 

    'cricket_related': [0, 0, 1, 0, 1, 1],         # Cricket tweets more engaging 

    'engaged': [1, 0, 1, 0, 1, 1] 

} 

 

# Create DataFrame 

df = pd.DataFrame(data) 

 

# Features (X) and Target (y) 

X = df[['post_likes', 'post_retweets', 'has_trending_hashtag', 

        'user_follows_author', 'post_in_regional_lang', 

        'posted_at_peak_time', 'cricket_related']] 

y = df['engaged'] 

 

# Scale the features 

scaler = StandardScaler() 

X_scaled = scaler.fit_transform(X) 

 

# Train logistic regression model 

model = LogisticRegression() 

model.fit(X_scaled, y) 

 

# New sample posts (to test) 

new_posts = pd.DataFrame({ 

    'post_likes': [150, 30, 500], 

    'post_retweets': [25, 5, 200], 

    'has_trending_hashtag': [1, 0, 1], 

    'user_follows_author': [0, 1, 1], 

    'post_in_regional_lang': [1, 0, 1], 

    'posted_at_peak_time': [1, 0, 1], 

    'cricket_related': [0, 0, 1] 
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}) 

 

# Scale new posts 

new_posts_scaled = scaler.transform(new_posts) 

 

# Predict relevance scores 

relevance_scores = model.predict_proba(new_posts_scaled)[:, 1] 

 

# Add scores to DataFrame 

new_posts['relevance_score'] = relevance_scores 

 

# Rank posts 

ranked_posts = new_posts.sort_values(by='relevance_score', ascending=False) 

 

# Show result 

print("Ranked Posts for Indian User Engagement:") 

print(ranked_posts[['post_likes', 'post_retweets', 'has_trending_hashtag', 

                    'user_follows_author', 'post_in_regional_lang', 

                    'posted_at_peak_time', 'cricket_related', 'relevance_score']]) 

Figure 5 – Screen Shot showing Adding new Columns and Training models 

Output as shown in Console 

 

Figure 6 – Screen Shot from Pycharm/ Console showing Ranked posts for Indian User Engagement 

Chapter 2 – An Overview of Twitter Engagement Issues 

Despite being a global platform for real-time communication, Twitter (X) faces persistent engagement challenges in 

India. While WhatsApp reaches over 60% of the Indian population and Facebook/Instagram command vast user bases, 

Twitter accounts for only about 2–3% of users. This limited penetration weakens its ability to serve as a mass 

communication medium, particularly when compared to WhatsApp’s dominance in day-to-day conversations and group 

interactions. 
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A closer look at government and institutional use further illustrates this gap. For example, condolence messages from 

national leaders such as the Prime Minister, or recruitment drives by the Indian Navy, receive disproportionately low 

engagement on Twitter compared to similar posts on Instagram or WhatsApp forwards. This discrepancy highlights a 

structural issue: Twitter has become the platform of choice for elites, policymakers, and media professionals, but fails to 

foster interaction with the wider public. 

The engagement challenge is compounded by technical and design limitations, including minimal cross-platform 

integration, restrictions on expressive content (e.g., short text length), and limited modes of reaction (currently confined 

to a single "Like"). These shortcomings make Twitter less inclusive and less interactive, reducing its effectiveness as a 

two-way communication channel. 

From a machine learning perspective, these gaps represent opportunities. By applying ML models to predict user 

interest, tailor recommendations, and evaluate optimal design features (e.g., tweet length, reaction variety, or platform 

integration), Twitter can enhance engagement beyond its traditional user base and become more relevant to the broader 

population. 

 

Chapter 3  – Machine Learning-Aided  

Twitter Link Sharing in WhatsApp 

Among the various social media platforms in India, WhatsApp records the highest user engagement, with approximately 

60% of the population actively using it, while Twitter accounts for only 2–3% of active users. To leverage WhatsApp’s 

widespread reach, Twitter should integrate a WhatsApp Share button next to the “Retweet icon”. This feature would 

enable seamless sharing of tweets directly via WhatsApp, allowing users to distribute Twitter content efficiently within 

their personal and professional networks. By facilitating cross-platform content distribution, this enhancement could 

significantly expand Twitter’s reach and engagement. 

A relevant analogy can be observed in the Indian Navy’s recruitment campaigns, where identical posts on Twitter and 

Instagram show a stark disparity in engagement. While Instagram posts receive significantly higher interactions, 

Twitter’s lower engagement is partly due to the absence of a convenient WhatsApp-sharing option, which could help 

amplify its reach among the target audience, particularly youngsters and students. 
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Figure 7  –An Analogy with / without Whatsapp Icon – An  Indian Navy Twitter and Instagram showing same 

post with diparity in likes (11:4770) because of not have the whatsapp link sharing icon. 

Though, the integration of a WhatsApp sharing icon on Twitter is primarily a feature enhancement aimed at improving 

content distribution, machine learning (ML) can play a crucial role in optimising and enhancing the effectiveness of this 

feature. By leveraging ML, Twitter can ensure that the WhatsApp sharing function is used efficiently, engagingly, and 

responsibly. 

To address this, machine learning can be applied to design and optimize cross-platform engagement models. For 

example, predictive algorithms can evaluate which tweets are most likely to generate high response rates if shared on 

WhatsApp, or identify the optimal timing and target groups for cross-platform forwarding. Similarly, ML-driven A/B 

testing could assess whether embedding a WhatsApp share icon directly in tweets leads to measurable improvements in 

impressions and click-throughs. 

The outcome of such integration would be transformative. Instead of operating in isolation, Twitter could extend its 

content seamlessly into WhatsApp networks, multiplying its visibility while preserving its role as the original source. 

This would position Twitter not merely as a broadcaster’s platform but as a dynamic hub within India’s broader digital 

communication ecosystem. 

Social media platforms thrive on content creation and sharing. While Twitter is widely used for microblogging and 

real-time updates, WhatsApp dominates personal communication in India, with more than 60% of the population 

actively using it. This disparity in engagement highlights the opportunity for cross-platform integration, where 

Twitter can extend its reach by enabling seamless content sharing to WhatsApp. 

Currently, Twitter provides a basic button for link sharing, which redirects the user to select any platforms – gmail, 

chrome, quickshare, telegram, whatsapp and share the tweet link. However, this functionality is static and does not 

leverage user behavior or preferences. With the integration of Machine Learning (ML), this button can evolve into an 

intelligent sharing assistant, optimizing user experience and driving higher engagement. 
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3.2 Role of Machine Learning in Enhancing the Sharing Experience 

Machine Learning enables personalization, prediction, and automation. By analyzing user interaction patterns, 

preferences, and context, ML can transform a simple “share” into a smart, context-aware action. 

3.2.1 Intelligent Contact and Group Suggestions 

• ML algorithms can analyze past sharing history, frequency of interaction, and relevance of tweet 

content to suggest the most likely contacts or groups. 

• Example: If a user often shares sports-related tweets with a cricket group, the system can automatically 

prioritize that group in the sharing interface. 

3.2.2 Content Summarization and Personalization 

• Tweets often contain links, hashtags, or lengthy threads. ML models like Text Summarization (BERT, 

T5) can generate short, personalized summaries of tweets. 

• This makes tweets more engaging when shared, reducing the need for users to add context. 

3.2.3 Prioritising Share Options 

• ML can rank the sharing options based on user habits (e.g., WhatsApp > Email > Messenger). 

• This reduces friction, creating an efficient one-tap sharing flow. 

3.2.4 Contextual Awareness 

• ML can detect tweet context (e.g., news, humour, sports, politics). 

• It can then suggest relevant groups or contacts more likely to engage with the tweet. 

• Example: Political news tweets are suggested for sharing with civic discussion groups. 

3.2.5 Spam and Abuse Detection 

• ML models can monitor abnormal sharing patterns, like bulk forwarding of tweets. 

• By flagging such behaviour, the system protects users from spam or malicious content. 

3.2.6 Automated Message Generation 

• ML models such as GPT-based systems can draft personalized messages to accompany shared 

tweets, as part of link. 

• Example: If sharing a tech update, it may generate: “Hey, thought you’d find this AI breakthrough 

interesting!” 

3.2.7 Cross-Platform Integration 

• ML ensures smooth integration with Meta platforms (WhatsApp, Instagram, Facebook). 

• For example, ML could learn that certain tweets are best received on WhatsApp while others get better 

traction on Instagram stories. 
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3.3 How the “Share to WhatsApp” Button Evolves with ML 

Currently: 

• The button → Opens share option →Select WhatsApp → User selects contact/group → Pastes tweet 

link. 

With ML-powered enhancement: 

1. Pre-Analysis of Content: Tweet analyzed for topic, sentiment, and relevance. 

2. Personalized Suggestions: Suggested contacts, groups, and AI-generated summaries. 

3. Contextual Assistance: If sharing an article, ML suggests adding a key takeaway. 

4. Proactive Recommendations: If a trending cricket update is posted, the model suggests sharing with 

cricket enthusiast groups before the user even decides. 

 

3.4 Machine Learning Models and Techniques 

Feature ML Technique Used Example Models 

Contact Suggestions 
Collaborative Filtering / Recommendation 

Systems 
Matrix Factorization, Neural CF 

   

Content Summarization Natural Language Processing (NLP) BERT, T5, Pegasus 

Contextual Awareness Text Classification 
Logistic Regression, SVM, Transformer 

Models 

Spam Detection Anomaly Detection Isolation Forest, Random Forest 

   

Automated Message Generative NLP GPT Models, LLMs 

 Drafting   

Prioritizing Share 

Options 
User Behavior Prediction Gradient Boosted Trees, Deep Learning 

Table 1 – ML Models used for Twitter Link sharing via Whatsapp 

3.5 Benefits of ML-Aided Sharing 

• User-Centric Experience: Tailors the sharing process to individual habits. 

• Faster Engagement: Reduces number of taps/clicks. 

• Smarter Communication: Adds AI-generated summaries and messages. 

• Spam-Free Sharing: Detects and filters abuse. 

• Cross-Platform Reach: Ensures maximum visibility for tweets across platforms. 

3.6 Implementation Feasibility 

This feature is technically implementable within the Twitter ecosystem. 

• Data Source: User sharing history, tweet content, engagement logs. 

• Backend ML Models: Hosted on cloud infrastructure (AWS/GCP/Azure). 
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• Frontend Integration: Modify Twitter’s mobile app and web client to incorporate ML-enhanced share 

button. 

• Privacy & Security: Ensure compliance with GDPR and user consent for data-driven personalization. 

 

3.7 Conclusion 

By leveraging Machine Learning, Twitter can upgrade the “Share to WhatsApp” button from a static function to an 

intelligent sharing assistant. This integration not only improves user satisfaction but also expands Twitter’s content 

reach into India’s most active communication platform—WhatsApp. The approach highlights the future of cross-

platform social media integration, where AI optimizes every step of content distribution. 

How to implement using Python and ML Models 

A python file WhatsappSharing.py was created and the below code was run. Screen shot of the code running and code 

used (Copied from PyCharm) is appended below. 

Screen Shot from PyCharm 

 

Figure 8 – Screen Shot showing a Demo on Intelligent Whatsapp Sharing 

Demo: Intelligent "Share to WhatsApp" assistant for Twitter (X). 

Includes: 

 - Contact & Group suggestion (RandomForest trained on mock data) 

 - Prioritization of share options (LogisticRegression) 

 - Content summarization (transformers summarization or gensim fallback) 
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 - Spam/toxicity detection (transformers toxic model or heuristics fallback) 

 - Automated message generation (templated + personalized) 

 - wa.me link generation 

Loading Essential Python + ML libraries. 

import random 

import urllib.parse 

import webbrowser 

import csv 

from typing import List, Dict, Tuple 

import numpy as np 

import pandas as pd 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.model_selection import train_test_split 

 

# Try to import transformers for summarization/toxicity; otherwise will use fallbacks 

USE_TRANSFORMERS = False 

USE_GENSIM = False 

try: 

    from transformers import pipeline 

    USE_TRANSFORMERS = True 

except Exception: 

    USE_TRANSFORMERS = False 

 

# gensim summarizer fallback 

try: 
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    from gensim.summarization import summarize as gensim_summarize 

    USE_GENSIM = True 

except Exception: 

    USE_GENSIM = False 

Creating a Sample dataset of users and contacts/groups. In that dataset, each row will be as follows and mimicking a 

twitter whatsapp sharing history: 

  Each row = (user_id, contact_id, contact_name, share_count, recent_interaction, is_group, group_size, 

interest_overlap). 

  Mimics real Twitter → WhatsApp sharing history. 

  Example: A group named College Friends or contact Amit may have high past share_count. 

# ---------------------------- 

# Mock data generation 

# ---------------------------- 

def create_mock_user_contacts(num_users=5, contacts_per_user=8): 

    """ 

    Create a mock DataFrame of user-contact interactions. 

    Fields: user_id, contact_id, contact_name, share_count, recent_interaction (0-10), is_group (0/1), group_size, 

interest_overlap (0/1) 

    """ 

    rows = [] 

    contact_names = [ 

        "Amit", "Priya", "Rahul", "Deepa", "Vijay", "Anita", "Sandeep", "Kavya", "Ramesh", "Meera", "Naveen", "Isha" 

    ] 

    groups = ["College Friends", "Navy Aspirants", "Family", "Tech Enthusiasts", "Local Community", "Sports Fans"] 

    for user in range(1, num_users + 1): 

        for i in range(contacts_per_user): 

            contact_id = f"{user}_{i}" 

            # random choice between individual contact and group 
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            is_group = 1 if random.random() < 0.25 else 0 

            name = random.choice(groups) if is_group else random.choice(contact_names) 

            share_count = np.random.poisson(3)  # historical share counts 

            recent_interaction = np.random.randint(0, 11) 

            group_size = random.choice([0, 10, 25, 50, 200, 500]) if is_group else 1 

            # interest overlap: whether contact has interest in topic (mock) 

            interest_overlap = np.random.choice([0, 1], p=[0.5, 0.5]) 

            rows.append({ 

                "user_id": user, 

                "contact_id": contact_id, 

                "contact_name": name, 

                "is_group": is_group, 

                "group_size": group_size, 

                "share_count": share_count, 

                "recent_interaction": recent_interaction, 

                "interest_overlap": interest_overlap 

            }) 

    return pd.DataFrame(rows) 

 

 

# Example mock dataset 

contacts_df = create_mock_user_contacts(num_users=10, contacts_per_user=12) 

 

 

# ---------------------------- 

# MODEL: Contact suggestion (RandomForest) 
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# ---------------------------- 

def train_contact_suggester(df: pd.DataFrame) -> RandomForestClassifier: 

    """ 

    Train a RandomForest model that predicts whether a user will choose a contact/group when sharing. 

    For demo we synthesize labels (higher share_count + recent_interaction + interest_overlap -> label 1) 

    """ 

    # Feature engineering 

    X = df[["is_group", "group_size", "share_count", "recent_interaction", "interest_overlap"]].copy() 

    # scale group_size a bit 

    X["group_size_bin"] = pd.cut(X["group_size"], bins=[-1,1,10,50,200,10000], labels=[0,1,2,3,4]).astype(int) 

    X = X.drop(columns=["group_size"]) 

    # Synthesize label: likely chosen if share_count high or recent interaction high and interest overlap 

    y = ((df["share_count"] >= 3) & (df["interest_overlap"] == 1)) | (df["recent_interaction"] >= 7) 

    y = y.astype(int) 

 

    # Train-test split (we train on the whole mock set for demo) 

    model = RandomForestClassifier(n_estimators=200, random_state=42) 

    model.fit(X, y) 

    return model 

contact_model = train_contact_suggester(contacts_df) 

# ---------------------------- 

# MODEL: Prioritize share options (Logistic Regression) 

# ---------------------------- 

def train_share_priority_model(df: pd.DataFrame) -> LogisticRegression: 

    """ 

    Train a light LogisticRegression model to output a probability score of a contact being selected. 
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    We'll use similar features and labels as above. 

    """ 

    X = df[["is_group", "share_count", "recent_interaction", "interest_overlap"]].copy() 

    # Normalize share_count 

    X["share_count_norm"] = X["share_count"] / (X["share_count"].max() + 1e-6) 

    X = X.drop(columns=["share_count"]) 

    y = ((df["share_count"] >= 3) & (df["interest_overlap"] == 1)) | (df["recent_interaction"] >= 7) 

    y = y.astype(int) 

 

    model = LogisticRegression(max_iter=200) 

    model.fit(X, y) 

    return model 

priority_model = train_share_priority_model(contacts_df) 

# ---------------------------- 

# Summarization utility 

# ---------------------------- 

def summarize_text(text: str, max_length: int = 60) -> str: 

    """ 

    Try transformers summarizer if available, else gensim summarize (if text long), else fallback to a short heuristic. 

    """ 

    text = text.strip() 

    if len(text.split()) < 6: 

        # too short to summarize meaningfully 

        return text 

 

    # transformers summarizer (preferred) 
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    if USE_TRANSFORMERS: 

        try: 

            # small summarization model 

            pipe = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") 

            summ = pipe(text, max_length=max_length, min_length=20, do_sample=False) 

            return summ[0]["summary_text"] 

        except Exception: 

            pass 

 

    # gensim fallback 

    if USE_GENSIM: 

        try: 

            # gensim.summarize requires longer text; guard with word count 

            if len(text.split()) > 30: 

                return gensim_summarize(text, word_count=30) 

        except Exception: 

            pass 

 

    # simple heuristic fallback: take first sentence or first 20-30 words 

    sentences = text.split(".") 

    if len(sentences) > 1: 

        return sentences[0].strip() + "." 

    else: 

        words = text.split() 

        return " ".join(words[:30]) + ("..." if len(words) > 30 else "") 

 



                           International Scientific Journal of Engineering and Management (ISJEM)                                 ISSN: 2583-6129 
                                  Volume: 04 Issue: 09 | Sept – 2025                                                                               DOI: 10.55041/ISJEM05050                                                                                                                                         

                                  An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        

 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                                                            |        Page 23 
 

 

# ---------------------------- 

# Spam / toxicity check utility 

# ---------------------------- 

def check_content_safety(text: str) -> Tuple[bool, Dict]: 

    """ 

    Return (is_safe, meta). Use transformer toxic model if available; otherwise simple heuristics: 

    Heuristics: too many urls, repeated spammy tokens, suspicious words. 

    """ 

    meta = {} 

    # transformers toxic model (preferred) 

    if USE_TRANSFORMERS: 

        try: 

            toxic_pipe = pipeline("text-classification", model="unitary/toxic-bert") 

            res = toxic_pipe(text)[0] 

            # label may be 'toxic' or 'non-toxic' etc — interpret conservatively 

            label = res.get("label", "").lower() 

            score = res.get("score", 0.0) 

            is_safe = (label in ("non-toxic", "neutral", "clean") or score < 0.7) 

            meta.update({"model_label": label, "model_score": score}) 

            return bool(is_safe), meta 

        except Exception: 

            pass 

 

    # heuristic fallback 

    url_count = text.count("http://") + text.count("https://") + text.count("www.") 
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    repeated_tokens = any(text.lower().count(w) > 5 for w in ["buy", "subscribe", "click", "free", "win"]) 

    suspicious_words = any(w in text.lower() for w in ["scam", "fake", "urgent transfer", "pay now"]) 

    is_safe = (url_count <= 1) and (not repeated_tokens) and (not suspicious_words) 

    meta.update({"url_count": url_count, "repeated_tokens": repeated_tokens, "suspicious_words": suspicious_words}) 

    return bool(is_safe), meta 

# ---------------------------- 

# Automated message generation 

# ---------------------------- 

def generate_message(tweet_text: str, summary: str, recipient_name: str = None) -> str: 

    """ 

    Create a short personalized message to accompany the shared tweet. 

    Uses the summary, and inserts a small CTA / comment. 

    """ 

    # simple sentiment-ish phrasing based on keywords (quick heuristic) 

    lower = tweet_text.lower() 

    if any(w in lower for w in ["congrat", "win", "success", "celebrat", "honour"]): 

        tone = "Great news!" 

    elif any(w in lower for w in ["urgent", "alert", "breaking", "warning", "scam"]): 

        tone = "Important — please check." 

    else: 

        tone = "Thought you might find this interesting:" 

 

    name_prefix = f"{recipient_name}, " if recipient_name else "" 

    # keep message short 

    msg = f"{name_prefix}{tone} {summary}" 

    # ensure length < ~250 chars for wa.me preview 
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    return msg[:250] 

 

 

# ---------------------------- 

# Compose wa.me url for sharing (text prefilled) 

# ---------------------------- 

def make_whatsapp_url(text: str) -> str: 

    encoded = urllib.parse.quote(text) 

    return f"https://wa.me/?text={encoded}" 

# ---------------------------- 

# Top-level assistant function 

# ---------------------------- 

def suggest_share_options(user_id: int, tweet_text: str, top_k: int = 5) -> Dict: 

    """ 

    Given a user_id and tweet_text, return: 

     - safety check 

     - suggested summary 

     - list of suggested contacts/groups with priority scores and wa.me links and auto messages 

    """ 

    # 1) safety 

    is_safe, safety_meta = check_content_safety(tweet_text) 

    if not is_safe: 

        return { 

            "safe": False, 

            "reason": "Content flagged as unsafe", 

            "safety_meta": safety_meta 
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        } 

 

    # 2) summary 

    summary = summarize_text(tweet_text) 

 

    # 3) pick user's contact rows 

    user_contacts = contacts_df[contacts_df["user_id"] == user_id].copy() 

    if user_contacts.empty: 

        # fallback: return no suggestions 

        return { 

            "safe": True, 

            "summary": summary, 

            "suggestions": [] 

        } 

 

    # 4) contact suggestion model scoring 

    Xc = user_contacts[["is_group", "group_size", "share_count", "recent_interaction", "interest_overlap"]].copy() 

    Xc["group_size_bin"] = pd.cut(Xc["group_size"], bins=[-1,1,10,50,200,10000], labels=[0,1,2,3,4]).astype(int) 

    Xc = Xc.drop(columns=["group_size"]) 

    sug_probs = contact_model.predict_proba(Xc)[:, 1] if hasattr(contact_model, "predict_proba") else 

contact_model.predict(Xc) 

    # if predict_proba not available, predict returns 0/1 — convert to float 

    if not hasattr(contact_model, "predict_proba"): 

        sug_probs = np.array(sug_probs, dtype=float) 

 

    user_contacts = user_contacts.reset_index(drop=True) 

    user_contacts["contact_score"] = sug_probs 
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    # 5) priority model probability 

    Xp = user_contacts[["is_group", "share_count", "recent_interaction", "interest_overlap"]].copy() 

    Xp["share_count_norm"] = Xp["share_count"] / (Xp["share_count"].max() + 1e-6) 

    Xp = Xp.drop(columns=["share_count"]) 

    try: 

        priority_probs = priority_model.predict_proba(Xp)[:, 1] 

    except Exception: 

        # fallback to using contact_score 

        priority_probs = user_contacts["contact_score"].values 

 

    user_contacts["priority_prob"] = priority_probs 

 

    # Combine into final score (weighted) 

    user_contacts["final_score"] = 0.6 * user_contacts["priority_prob"] + 0.4 * user_contacts["contact_score"] 

 

    # Select top_k 

    top = user_contacts.sort_values("final_score", ascending=False).head(top_k) 

 

    # Build suggestion objects 

    suggestions = [] 

    for _, row in top.iterrows(): 

        name = row["contact_name"] 

        is_group = bool(row["is_group"]) 

        group_info = f" (Group, size {row['group_size']})" if is_group else "" 

        display = f"{name}{group_info}" 
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        # generate auto message 

        auto_msg = generate_message(tweet_text, summary, recipient_name=name if not is_group else None) 

        # create wa.me url 

        wa_text = f"{auto_msg}\n\n{tweet_text}" 

        wa_url = make_whatsapp_url(wa_text) 

        suggestions.append({ 

            "contact_id": row["contact_id"], 

            "display": display, 

            "contact_score": float(row["contact_score"]), 

            "priority_prob": float(row["priority_prob"]), 

            "final_score": float(row["final_score"]), 

            "auto_message": auto_msg, 

            "whatsapp_url": wa_url 

        }) 

 

    return { 

        "safe": True, 

        "summary": summary, 

        "safety_meta": safety_meta, 

        "suggestions": suggestions 

    } 

 

 

# ---------------------------- 

# Small demo runner and CSV export 

# ---------------------------- 



                           International Scientific Journal of Engineering and Management (ISJEM)                                 ISSN: 2583-6129 
                                  Volume: 04 Issue: 09 | Sept – 2025                                                                               DOI: 10.55041/ISJEM05050                                                                                                                                         

                                  An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        

 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                                                            |        Page 29 
 

def demo_run(user_id: int, tweet_text: str): 

    print("Running intelligent share assistant...\n") 

    result = suggest_share_options(user_id, tweet_text, top_k=5) 

    if not result.get("safe", True): 

        print("Content not safe to share. Details:", result.get("safety_meta")) 

        return 

 

    print("Summary:\n", result["summary"], "\n") 

    print("Top suggestions:") 

    for i, s in enumerate(result["suggestions"], 1): 

        print(f"{i}. {s['display']}") 

        print(f"   final_score: {s['final_score']:.3f} | priority_prob: {s['priority_prob']:.3f}") 

        print(f"   Auto message: {s['auto_message']}") 

        print(f"   wa.me link (preview): {s['whatsapp_url'][:120]}...\n") 

 

    # Save suggestions to CSV for reporting 

    out_rows = [] 

    for s in result["suggestions"]: 

        out_rows.append({ 

            "user_id": user_id, 

            "tweet_text": tweet_text, 

            "contact_id": s["contact_id"], 

            "contact_display": s["display"], 

            "final_score": s["final_score"], 

            "priority_prob": s["priority_prob"], 

            "auto_message": s["auto_message"], 
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            "whatsapp_url": s["whatsapp_url"] 

        }) 

    csv_file = f"share_suggestions_user_{user_id}.csv" 

    keys = out_rows[0].keys() if out_rows else [] 

    if out_rows: 

        with open(csv_file, "w", newline='', encoding="utf-8") as f: 

            writer = csv.DictWriter(f, fieldnames=list(keys)) 

            writer.writeheader() 

            writer.writerows(out_rows) 

        print(f"Suggestions saved to {csv_file}") 

 

 

# ---------------------------- 

# If you'd like to open wa.me link in browser automatically (commented for safety) 

# ---------------------------- 

def open_first_suggestion_in_browser(user_id: int, tweet_text: str): 

    res = suggest_share_options(user_id, tweet_text, top_k=1) 

    if res.get("safe", False) and res.get("suggestions"): 

        url = res["suggestions"][0]["whatsapp_url"] 

        print("Opening browser to wa.me for first suggestion...") 

        webbrowser.open(url) 

    else: 

        print("No safe suggestion to open.") 

# ---------------------------- 

# Example main 

# ---------------------------- 
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if __name__ == "__main__": 

    # Example tweet text (replace with any tweet) 

    tweet_example = ( 

        "Join the Indian Navy! Excellent career opportunities in technical and non-technical roles. " 

        "Apply now at navy.gov.in. Great benefits, training and proud service." 

    ) 

 

    # Pick a demo user 1..10 

    demo_user = 3 

    demo_run(demo_user, tweet_example) 

    # To auto-open first suggestion in browser (uncomment if you want) 

    # open_first_suggestion_in_browser(demo_user, tweet_example) 

Output in PyCharm Console 

Screen shot 1 

Figure 9 – 

Screen Shot showing Results of Demo on ML Aided (Intelligent) Whatsapp Sharing (Part I) 
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Screen shot 2 

 

Figure 10 – Screen Shot showing Results of Demo on ML Aided (Intelligent) Whatsapp Sharing (Part II) 

 

 

 

Chapter 4 –Is Text Length Restriction in Tweets Good or Bad? – Way Ahead with Machine Learning  

 

One of Twitter’s most distinctive features is its strict text length restriction. Originally capped at 140 characters and later 

expanded to 280, this design choice distinguishes Twitter from other platforms by encouraging brevity and real-time 

conversation. However, the brevity that defines Twitter also poses important questions: Does the character limit enhance 

communication by forcing conciseness, or does it constrain meaningful expression and engagement? 

From a user perspective, the benefits of brevity are evident. Short tweets are easier to read, encourage rapid scrolling 

and align with the platform’s fast-paced nature. Policymakers, government agencies, and media outlets often value this 

clarity, as it allows key messages—such as emergency updates or official announcements—to be communicated without 

distraction. 

Yet the restriction also introduces drawbacks. Complex topics, nuanced arguments, or detailed updates often require 

users to create “tweet threads” or redirect readers to external links. This not only fragments discussions but also limits 

organic engagement, as many users prefer self-contained posts. For institutions seeking to build trust or explain policies, 

the brevity can reduce the depth of communication. 

Machine learning offers a pathway to balance these competing demands. Models such as text summarization 

algorithms (e.g., BART, T5) could be integrated to automatically condense long-form user drafts into concise tweets 

without losing context. Similarly, recommendation systems could suggest whether a post is better suited as a single 

tweet, a thread, or an external link. These ML-driven tools would allow users to overcome the artificial barrier of length, 

while preserving the platform’s unique identity as a concise medium. 
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Ultimately, rethinking the character limit is less about removing restrictions and more about intelligently supporting 

expression. By using ML to adapt the length rule to user needs, Twitter could evolve from a rigid structure into a 

flexible, user-centric ecosystem that values both clarity and depth. 

One potential improvement is Smart Tweet Compression, where AI-powered natural language processing (NLP) 

models like BERT and T5 automatically shorten tweets while preserving their core meaning. This feature would enable 

users to communicate effectively without being constrained by the character limit. By using advanced NLP, Twitter can 

offer automatic summarisation, helping users express themselves more concisely while retaining the essence of their 

message. 

Another innovation is AI-Generated Context for Longer Tweets, which utilizes contextual embedding models like 

GPT and Transformers to auto-generate summaries for multi-part tweets (threads). This would improve readability, 

making it easier for users to follow long discussions without losing context. By summarizing lengthy threads, this 

feature could enhance engagement and ensure important information is not overlooked in a sea of fragmented tweets. 

A more dynamic approach is Adaptive Character Limits Based on Engagement, where reinforcement learning 

algorithms determine character restrictions based on metrics such as likes, shares, and comments. Instead of enforcing a 

fixed limit, Twitter could extend the character allowance for tweets that generate high engagement. This would 

encourage meaningful discussions while preserving the platform’s core identity of concise communication. 

However, Twitter currently lifts text and video duration restrictions for paid users (Rs. 6,500 per year). This policy 

suggests that the platform acknowledges the value of longer tweets and extended videos, but it restricts these features to 

only those who can afford them. A more inclusive approach could involve tiered access, where longer tweets and videos 

become available based on engagement, credibility, or verified content rather than just a paywall. 

 

Flow Chart 1 – A few ML Models to resolve text length restriction issues  
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Implementation  

 

Twitter (X) continues to grapple with the implications of its 280-character limit, a defining feature since 2017 that 

promotes brevity and concise communication. This restriction fosters quick, impactful posts but often hinders in-depth 

discussions, leading to fragmented threads and lost context—challenges evident in India’s vibrant X community (2–3% 

penetration, ~16–24 million users).  

 

Objective: Evaluate the 280-character limit’s impact, propose ML-driven solutions (Smart Tweet Compression, AI-

Generated Context, Adaptive Character Limits), and address Twitter’s paid-tier restrictions to foster equitable 

communication.2. The Challenge 

• Good Aspects: The 280-character limit encourages concise, focused messaging, ideal for real-time 

updates (e.g., Modi’s condolence tweet reached 8.7M views). It aligns with human attention spans (47 seconds, 

per GTRSocials, 2025) and suits India’s fast-paced social media culture. 

• Bad Aspects: It restricts detailed discourse, forcing users into fragmented threads that dilute context. 

For example, a thread on the Iran-Israel war (e.g., IDF tweet, https://x.com/IDF/status/1943675282457555199) 

might lose coherence across parts, reducing engagement (e.g., 50k likes, 8k retweets). 

• Paid Restriction Issue: Twitter’s Rs. 6,500/year premium tier lifts text and video limits, favoring 

affluent users and excluding India’s diverse user base, where affordability is a concern. 

3. Proposed ML-Based Solutions ML can mitigate these challenges with innovative text management: 

• Smart Tweet Compression 

• ML Techniques: Natural Language Processing (NLP) with BERT, T5 

• Implementation: AI shortens tweets while preserving meaning. For Modi’s tweet, BERT could 

compress it to: “Devastated by Ahmedabad air tragedy. Condolences to families. Om Shanti” (95 

characters), retaining essence. 

• Benefit: Enables concise yet expressive posts, enhancing readability. 

• AI-Generated Context for Longer Tweets 

• ML Techniques: Contextual Embedding (GPT, Transformers) 

• Implementation: Auto-generates summaries for threads. For an IDF thread on the Iran-Israel 

war, GPT could summarize: “IDF intercepted 100+ missiles in Operation Defiant Shield, ongoing 

conflict with Iran” (80 characters), improving followability. 

• Benefit: Enhances engagement by clarifying multi-part discussions. 

• Adaptive Character Limits Based on Engagement 

• ML Techniques: Reinforcement Learning (RL) 

• Implementation: RL adjusts limits (e.g., 500 characters) for high-engagement tweets (e.g., >10k 

likes, 5k retweets). Modi’s tweet, with 90k likes, could unlock 400 characters for detailed updates. 

• Benefit: Encourages meaningful dialogue while preserving brevity’s core. 

Step by Step Implementation 

A tiny web app where you type a long tweet in your browser → click Compress → the app uses an ML model (T5) to 

return a shorter summary. 

 

Languages Used : HTML + JavaScript (front end) and Python (backend + ML). 

Step 1 — Install PyCharm 

Install Pycharm  

Open PowerShell and run: 

/IDF/status/1943675282457555199
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mkdir smart_tweet 

cd smart_tweet 

python -m venv venv 

.\venv\Scripts\Activate 

 

 

Figure 11 – Creating Folders on Windows Powershell  

Step 2 — Upgrade pip and install packages 

Upgrade pip: 

python -m pip install --upgrade pip setuptools wheel 
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Figure 12  – Screen Shot showing Upgradation of Pip Tools in Terminal  

Step 3 —  Install Flask + transformers   

Install main Python packages. Install Flask + transformers first: 

pip install flask transformers 

 
Figure 13 – Screen Shot showing Installation of Transmormers 
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Step 4 — Create the app files 

In the smart_tweet folder create two files and one folder: 

smart_tweet/ 

  ├─ app.py 

  └─ templates/ 

      └─ index.html 

app.py — copy and paste exactly: 

from flask import Flask, render_template, request, jsonify 

from transformers import pipeline 

 

app = Flask(__name__) 

 

# Load summarization pipeline (t5-small is relatively small & fast) 

# The first run will download model files to your machine. 

summarizer = pipeline("summarization", model="t5-small") 

 

@app.route("/") 

def index(): 

    return render_template("index.html") 

 

@app.route("/summarize", methods=["POST"]) 

def summarize(): 

    data = request.get_json() 

    tweet = data.get("tweet", "") 

 

    if not tweet.strip(): 

        return jsonify({"summary": "    Please enter a tweet."}) 

 

    try: 

        # Summarize / compress the tweet. Adjust max_length/min_length if you want longer/shorter results 

        result = summarizer(tweet, max_length=60, min_length=10, do_sample=False) 

        summary = result[0]['summary_text'] 

        return jsonify({"summary": summary}) 

    except Exception as e: 

        return jsonify({"summary": f"Error: {str(e)}"}), 500 

 

if __name__ == "__main__": 

    # Use host='127.0.0.1' (default), debug=True for development 

    app.run(debug=True) 

templates/index.html — create templates folder and inside it create index.html: 

<!DOCTYPE html> 

<html lang="en"> 

<head> 
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  <meta charset="UTF-8"> 

  <title>Smart Tweet Compressor</title> 

  <style> 

    body { font-family: Arial, sans-serif; margin: 40px; } 

    textarea { width: 100%; height: 140px; margin-bottom: 10px; } 

    button { padding: 10px 20px; background: #1DA1F2; color: white; border: none; cursor: pointer; } 

    #result { margin-top: 20px; font-weight: bold; } 

  </style> 

</head> 

<body> 

  <h2>Smart Tweet Compressor (Demo)</h2> 

  <textarea id="tweet" placeholder="Type your tweet or a paragraph here..."></textarea><br> 

  <button onclick="summarizeTweet()">Compress Tweet</button> 

  <div id="result"></div> 

 

  <script> 

    async function summarizeTweet() { 

      const tweet = document.getElementById("tweet").value; 

      document.getElementById("result").innerText = "       compressing..."; 

      try { 

        const response = await fetch("/summarize", { 

          method: "POST", 

          headers: { "Content-Type": "application/json" }, 

          body: JSON.stringify({ tweet }) 

        }); 

        const data = await response.json(); 

        document.getElementById("result").innerText = "     " + data.summary; 

      } catch (err) { 

        document.getElementById("result").innerText = "Error: " + err.message; 

      } 

    } 

  </script> 

</body> 

</html> 

 

Step 5 — Run the app 

With the virtual environment activated and inside smart_tweet directory: 

python app.py 

You should see something like: 

 * Serving Flask app "app" 

 * Environment: development 

 * Debug mode: on 

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit) 
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Open your browser and go to: http://127.0.0.1:5000/ 

Type/paste a long tweet and click Compress Tweet — wait a few seconds while the server returns the summary. 

 

 

Chapter 5 – Miscellaneous Challenges in Twitter (X) and 

Protype ML Solutions 

Currently, Twitter (X) allows users to react to tweets only through a "Like" button (❤️), which limits the way people 

express emotions towards a post. Unlike platforms like Facebook and WhatsApp, which offer multiple reaction emojis 

such as "Haha😂," "Sad 😢," or "Angry 😡," etc.,Twitter does not provide a diverse range of emotional responses. 

This restriction makes it difficult for users to engage meaningfully with tweets and thereby engages users poorly. 

Although introducing multiple emoji reactions in twitter pertains to an additional feature creating UI task, deployment 

of ML models could improve user interaction, sentiment analysis, and content personalisation. Further, managing these 

reactions efficiently also requires machine learning (ML) to optimise their use, prevent misuse, and enhance user 

experience. 

ML Algorithms That Could Be Used 

1. Sentiment Analysis for Reaction Prediction 

ML models like BERT, LSTM, and RoBERTa can analyzeemojis for effective Sentiment Analysis than only 

the text of a tweet using NLP. These ML models also suggest the most relevant emoji reactions. For example, a 

tweet about a scientific breakthrough might get more "Wow (      )" reactions, while a tweet about a social issue 

could receive more "Angry (        )" or "Sad (        )" responses. 

2. Personalised Reaction Recommendations 

Using collaborative filtering and deep learning, the system can learn a user’s past reaction patterns and 

suggest emojis that align with their engagement history. If a user often reacts with "Haha (       )" to memes, the 

system will highlight that emoji when similar tweets appear. 

3. Detecting Spam and Misuse of Reactions 

Some users might misuse negative reactions (such as "Dislike (  )" or "Angry (        )") to harass others. 

Anomaly detection and NLP-based toxicity models can identify unusual reaction patterns and prevent misuse. 

If a coordinated group of users starts mass-reacting negatively to a post unfairly, the system can flag it for 

review. 

4. User Experience Optimization Through A/B Testing 

Using reinforcement learning and multi-armed bandit algorithms, Twitter can test different placements of 

emoji reactions (e.g., near the retweet button or under the tweet) and determine which design maximizes 

engagement while keeping the user interface simple. ML Models for all the above are given below. 

 

 

 

 

 

Flow Chart 2 - ML Models 1- 4 for varieties 
of Reactions 

http://127.0.0.1:5000/
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Way Ahead 

The introduction of multiple emoji reactions on Twitter will require a hybrid approach of AI-driven automation and 

human oversight. Sentiment analysis can ensure that reactions are contextually appropriate, while machine learning 

algorithms can optimize how reactions are suggested and displayed. Additionally, AI will play a key role in filtering 

spam reactions and improving content discovery based on collective user emotions. 

By implementing ML-driven reactions, Twitter can create a more interactive, personalized, and expressive user 

experience that allows people to engage with tweets in a way that truly reflects their emotions. However, continuous 

monitoring and improvements will be necessary to ensure fair and meaningful engagement without abuse. 

Why Twitter Should Show Who Liked a Post—A Case for Transparency and Engagement 

Twitter’s recent decision (in End 2024) to make likes private has been framed as a privacy measure, but in reality, it 

reduces user engagement, weakens content discovery, and limits the organic growth of discussions. Social media 

platforms thrive on visibility and interaction, and removing the ability to see who liked a post—especially one that is not 

from a user’s own handle—takes away a fundamental engagement factor that has proven successful across platforms 

like Instagram, Facebook, and LinkedIn. 

A Machine Learning Solution Instead of Blanket Removal.  If Twitter is concerned about privacy, it could use 

machine learning to refine how likes are displayed instead of eliminating visibility altogether. For instance: 

• Personalized Engagement Display: ML algorithms can highlight tweets liked by mutual followers or 

people the user frequently interacts with. 

• Trending Based on Network Likes: Instead of making likes fully visible or hidden, Twitter could 

create a “Trending in Your Network” section based on aggregate engagement from a user’s circle. 

• Custom Privacy Settings: Users should have the option to hide or display their likes as they prefer, 

rather than Twitter enforcing a universal rule. 

The Way Forward—Bringing Back Like Visibility for a Better Twitter 

Twitter should restore like visibility while allowing users the option to control their privacy settings. The engagement 

model of social media is built on interaction, and reducing transparency only makes Twitter less interactive. Instead of 

suppressing user activity, Twitter should focus on intelligent visibility controls powered by ML to strike a balance 

between privacy and engagement. 

Implementation 

 

Twitter (X) faces scrutiny following its late 2024 decision to make likes private, presented as a privacy measure. This 

change hides who liked a post (except from the user’s own handle), reducing engagement, content discovery, and 

organic discussion—key drivers of social media success seen on platforms like Instagram, Facebook, and LinkedIn. In 

India, with X’s estimated 2–3% user penetration (~16–24 million users based on 800 million internet users), this policy 

risks isolating users from critical global events, particularly in the volatile, uncertain, complex, and ambiguous (VUCA) 

geopolitical landscape. A striking example is a recent tweet by the Israel Defense Force (IDF) on July 15, 2025, at 03:00 

PM IST. 
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Figure 14 – Screen Shot showing Reduction of Engagement when Transparency over who liked the post 

 

The lack of visible likes on the above tweet (as well as PM Modi tweet on Ahmedaba Air Crash) limits social validation, 

a critical factor in VUCA situations where transparency can shape public perception and response. 

 

Objective: An ML-based solution can be proposed to restore like visibility selectively for tweets like the IDF and Modi 

posts, balancing privacy and engagement, and implement customizable privacy settings to enhance X’s role in global 

and national discourse. 

 

2. The Challenge 

• Reduced Engagement: Hiding likes diminishes social proof. For the IDF tweet, obscured likes from 

credible sources (e.g., @BBCBreaking or @UN ) could reduce retweets from a potential 8k to 7k, limiting war-

related engagement. 

• Weakened Content Discovery: Without visible likes, users miss cues to explore VUCA topics, 

hindering the spread of critical updates like the Iran-Israel conflict. 

• Organic Growth Stifled: Social validation drives discussion, and its absence restricts the organic 

amplification of urgent posts, such as the IDF’s Operation Defiant Shield or Modi’s condolences. 

• Restriction, Not Option: The mandatory hiding of likes is a one-size-fits-all approach, ignoring user 

needs in dynamic geopolitical contexts where transparency is vital. 
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3. Proposed ML-Based Solution Rather than a blanket removal of like visibility, Twitter can use ML to refine how likes 

are displayed, offering a hybrid approach that respects privacy while enhancing engagement. The proposed solutions 

include: 

• Personalized Engagement Display: ML algorithms can highlight likes from mutual followers or 

frequent interactors, ensuring relevance and privacy. 

• Trending Based on Network Likes: A “Trending in Your Network” section can aggregate likes from a 

user’s circle, promoting content discovery for war-related or national posts without exposing individual 

preferences. 

• Custom Privacy Settings: Users can opt to hide or display their likes, providing control rather than 

enforcing a universal rule. 

       Chapter 6 – Undertaking Sentiment Analysis with Implementation using Pycharm 

Twitter Sentiment Analysis is the process of using Python to understand the emotions or opinions expressed in tweets 

automatically. By analyzing the text we can classify tweets as positive, negative or neutral. This helps businesses and 

researchers track public mood, brand reputation or reactions to events in real time. Python libraries like TextBlob, 

Tweepy and NLTK make it easy to collect tweets, process the text and perform sentiment analysis efficiently. 

 

 

How is Twitter Sentiment Analysis Useful? 

• Twitter Sentiment Analysis is important because it helps people and businesses understand what the 

public thinks in real time. 

• Millions of tweets are posted every day, sharing opinions about brands, products, events or social 

issues. By analyzing this huge stream of data, companies can measure customer satisfaction, spot trends early, 

handle negative feedback quickly and make better decisions based on how people actually feel. 

• It’s also useful for researchers and governments to monitor public mood during elections, crises or big 

events as it turns raw tweets into valuable insights. 
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Step by Step Implementation 

Step 1: Install Necessary Libraries 

This block installs and imports the required libraries. It uses pandas to load and handle data, TfidfVectorizer to turn text 

into numbers and scikit learn to train model. 

pip install pandas scikit-learn 

 

Figure 15(A) – Screen Shot showing Installation of Pandas 

import pandas as pd 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.model_selection import train_test_split 

from sklearn.naive_bayes import BernoulliNB 

from sklearn.linear_model import LogisticRegression 

from sklearn.svm import LinearSVC 

from sklearn.metrics import accuracy_score, classification_report 

https://www.geeksforgeeks.org/pandas/pandas-tutorial/
https://www.geeksforgeeks.org/nlp/how-to-store-a-tfidfvectorizer-for-future-use-in-scikit-learn/
https://www.geeksforgeeks.org/machine-learning/learning-model-building-scikit-learn-python-machine-learning-library/
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Figure 15(B) – Screen Shot showing Successful installation of All Libraries 

Step 2: Load Dataset 

• Here we loads the Sentiment140 dataset from a zipped CSV file, you can download it from Kaggle. 

• We keep only the polarity and tweet text columns, renames them for clarity and prints the first few rows 

to check the data. 

df = pd.read_csv('training.1600000.processed.noemoticon.csv.zip', encoding='latin-1', header=None) 

df = df[[0, 5]] 

df.columns = ['polarity', 'text'] 

print(df.head()) 

Output:  
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Figure 16 – Screen Shot showing CSV file of a sample post from Kaggle 

Step 3: Keep Only Positive and Negative Sentiments 

• Here we removes neutral tweets where polarity is 2, maps the labels so 0 stays negative and 4 becomes 

1 for positive. 

• Then we print how many positive and negative tweets are left in the data. 

• print("🚀 Project: Twitter Sentiment Analysis 2025 - AU MTech CST") 

print("👨‍💻 Author: Sridharan GK\n") 

 

# Load dataset 

df = pd.read_csv('training.1600000.processed.noemoticon.csv.zip', 

                 encoding='latin-1', 

                 header=None, 

                 nrows=100000)   # Try 100k rows for better balance 

 

# Keep only polarity & text columns 

df = df[[0, 5]] 

df.columns = ['polarity', 'text'] 

 

print("Dataset shape:", df.shape) 

 

# Remove neutral and remap 

df = df[df.polarity != 2] 

df['polarity'] = df['polarity'].map({0: 0, 4: 1}) 

 

# Print counts 

print(df['polarity'].value_counts()) 

• Figure 17 – Keeping Positive and Negative Sentiments 
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Output: 

  

Figure 18 – Screen Shot Output showing Polarity of Tweets 

Step 4: Clean the Tweets 

• Here we define a simple function to convert all text to lowercase for consistency, applies it to every 

tweet in the dataset. 

• Then shows the original and cleaned versions of the first few tweets. 

• def clean_text(text): 

    return text.lower() 

 

df['clean_text'] = df['text'].apply(clean_text) 

 

print(df[['text', 'clean_text']].head()) 

 

import re 

# M Tech Project - sentiment analysis on twitter - AU CSSE 

def clean_text(text): 

    # Lowercase 

    text = text.lower() 

    # Remove URLs 

    text = re.sub(r'http\S+|www\S+|https\S+', '', text) 

    # Remove mentions and hashtags 

    text = re.sub(r'@\w+|#\w+', '', text) 

    # Remove numbers 

    text = re.sub(r'\d+', '', text) 

    # Remove special characters (keep only letters and spaces) 

    text = re.sub(r'[^a-z\s]', '', text) 

    # Remove extra spaces 

    text = re.sub(r'\s+', ' ', text).strip() 

    return text 
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df['clean_text'] = df['text'].apply(clean_text) 

 

# Show original vs cleaned tweets 

print(df[['text', 'clean_text']].head(10)) 

print ("Data is cleaned") 

• Figure 19 – Screen Shot showing – Cleaning of tweets 

Output 

 

Figure 20 – Screen Shot showing a Cleaned Tweet 

Step 5: Train Test Split 

• This code splits the clean_text and polarity columns into training and testing sets using an 80/20 split. 

• random_state=42 ensures reproducibility. 
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Code and Output: 

 

Figure 21 – Screen Shot showing Training and Testing sets 

 

Figure 22 – Screen Shot showing Console Output on Trained Set 

The first ten tweets are shown above. 

Step 6: Perform Vectorization 

• This code creates a TF IDF vectorizer that converts text into numerical features using unigrams and 

bigrams limited to 5000 features. 
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• It fits and transforms the training data and transforms the test data and then prints the shapes of the 

resulting TF IDF matrices. 

 

Figure 23 –TF IDF - Vectorisation 

Step 7: Train Bernoulli Naive Bayes model 

• Here we train a Bernoulli Naive Bayes classifier on the TF IDF features from the training data. 

• It predicts sentiments for the test data and then prints the accuracy and a detailed classification report. 

 

Figure 24 – Training Bernouli Naïve Bayes Model 

 

https://www.geeksforgeeks.org/machine-learning/bernoulli-naive-bayes/


                           International Scientific Journal of Engineering and Management (ISJEM)                                 ISSN: 2583-6129 
                                  Volume: 04 Issue: 09 | Sept – 2025                                                                               DOI: 10.55041/ISJEM05050                                                                                                                                         

                                  An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        

 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                                                            |        Page 50 
 

Chapter 7 - Conclusion 

This project demonstrates the transformative role of Machine Learning (ML) in enhancing user experience, 

engagement, and sentiment analysis on the social media platform X (formerly Twitter). Through systematic 

exploration of platform challenges—such as limited adoption among the general public, constrained tweet length, and 

suboptimal content recommendations—this study highlights how ML-driven solutions can address key gaps in user 

interaction and satisfaction. 

 

By implementing sentiment analysis using Python, Pandas, Scikit-learn, and TF–IDF vectorization on the 

Sentiment140 dataset, the project effectively classified tweets into positive, negative, or neutral sentiments. This process 

illustrates the capability of ML to transform massive, unstructured tweet streams into actionable insights for researchers, 

businesses, and policymakers, thereby bridging the communication gap between high-profile users and the broader 

public. 

 

The research also explored enhancements in content personalization, emoji reactions, adaptive text-length 

restrictions, and like visibility, demonstrating how ML algorithms such as BERT, RoBERTa, T5, GPT, and 

reinforcement learning can improve engagement and create a more interactive, inclusive platform. Proposed 

solutions—including Smart Tweet Compression, AI-generated context for threads, and personalized reaction 

recommendations—provide a roadmap for addressing Twitter’s current limitations while aligning platform features with 

user needs and expectations. 

 

Overall, the findings highlight that a hybrid ML-driven approach, combining automation with responsible user 

oversight, can significantly improve X’s usability, engagement, and relevance. By leveraging these strategies, Twitter 

can become a more dynamic, accessible, and user-centric social media platform, capable of supporting meaningful 

discourse, timely dissemination of information, and inclusive participation across diverse user communities. 

 

This project lays a foundation for future research on real-time trend prediction, multilingual sentiment analysis, 

advanced bot detection, and explainable AI, positioning X to remain competitive and socially impactful in an 

increasingly digital and interconnected world. 
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