
 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Enhancing User Experience and Undertaking Sentiment Analysis with

Machine Learning in Social Media Twitter (X)

Submitted by

GK Sridharan

(Regd. No. 423206415017)

Under the guidance of

Prof. K. Venkata Rao

Head of the Department, CSSE

Department of Computer Science and Systems Engineering

Abstract

This project investigates the enhancement of user experience and engagement on the social media platform X (formerly

Twitter) and Sentiment Analysis through the strategic application of advanced Machine Learning (ML) techniques.

Despite its prominence as a communication tool for government agencies, policymakers, and influential figures—such

as Heads of State—for disseminating critical announcements and shaping public perception during emergencies,

Twitter (X) struggles with limited user engagement and lower adoption rates among the general public in many

countries, including India, compared to platforms like Facebook and Instagram. This gap is primarily attributed to

deficiencies in user experience, which this study seeks to address.

This study also undertakes Twitter Sentiment Analysis to demonstrate the application of machine learning in real-

world social media data. Sentiment analysis helps classify tweets as positive, negative, or neutral, offering valuable

insights into public mood, brand perception, and reactions to events. Using Python libraries such as Pandas, Scikit-learn,

and TF–IDF vectorization, a supervised ML model was implemented and tested on the Sentiment140 dataset. The

process involved data cleaning, feature extraction, and training classification models, which achieved reliable accuracy

in distinguishing user opinions. This implementation showcases how machine learning can convert massive,

unstructured tweet streams into actionable knowledge for businesses, researchers, and policymakers.

The research examines the current application of ML algorithms on X, focusing on features such as personalised content

recommendations for a twitter user and undertaking sentiment analysis of a post with ML Model. Also, It identifies key

challenges contributing to X’s suboptimal engagement and analyse the following challenges - Limited cross-platform

integration (e.g., with WhatsApp) and possible solution and Text Length Restriction in a Tweet. Pros & Cons.

While policy-related concerns (e.g., phone-number-based authentication for new accounts) fall outside the study’s

scope, the work emphasizes feasible, ML-driven solutions.

The findings and proposed models aim to bridge the gap between high-profile users (leaders, researchers, military

organizations) and the general public, fostering a more interactive, inclusive, and user-centric ecosystem. By aligning

Twitter’s design with evolving user expectations, this research positions X as a more dynamic and accessible social

media platform.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

Literature Review

Machine learning (ML) plays a crucial role in analysing various sentiments of twitter reactions and also improving

various features of Twitter, such as content recommendation, sentiment analysis, and trending topic identification.

Research shows that Twitter uses advanced ML models to enhance user experience by making content more relevant

and engaging. However, several challenges impact its effectiveness, including limited engagement features and evolving

user behaviour.One of the key applications of ML in Twitter is personalized content recommendation. The platform uses

deep learning models, such as Neural Networks and MaskNet, to predict which tweet would be interesting to a particular

user. Additionally, graph-based models like TwHIN (Twitter’s Heterogeneous Information Network) help identify

relevant posts by analysing user interactions. While these techniques improve content discovery, some users feel that

Twitter’s algorithm-driven feed lacks personalization compared to other social media platforms.(1. Cornell University

research paper - https://arxiv.org/abs/2202.05387?utm_source=chatgpt.com)

Another significant area of ML usage is sentiment analysis, which helps to classify tweets as positive, negative, or

neutral. Traditional models like Naïve Bayes and Support Vector Machines (SVM) are commonly used for basic

classification, while more advanced models like LSTM (Long Short-Term Memory) and BERT(Bidirectional Encoder

Representations from Transformers) provide deeper contextual understanding. These ML techniques allow businesses,

researchers, and policymakers to analyse public opinion in real time. However, sentiment analysis still faces challenges

in accurately detecting sarcasm, slang, and mixed sentiments, reducing its reliability. (Jounal of Big Data – Springer

Open- https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00781-w

Despite these advancements, Twitter faces several engagement challenges that limit its popularity among the general

public. To provide a more accurate representation of social media usage in India and globally, here is a table based on

data from reputable sources: Sources: India-specific data: Statcounter Global Stats / Global data: Statcounter Global

Stats)

Figure 1- Population in Social Media (India : 2025)

https://arxiv.org/abs/2202.05387?utm_source=chatgpt.com
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00781-w
https://gs.statcounter.com/social-media-stats/all/india

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

Unlike platforms like Instagram and WhatsApp, Twitter offers limited reaction options, allowing only "likes" without

additional responses like emojis or reactions. Users also cannot see who liked a post, reducing transparency and social

interaction. Another issue is the lack of a temporary post feature, such as WhatsApp Status or the discontinued Twitter

Fleets, which many users prefer for sharing short-lived updates. (Blogs – Good Bye – Twitter Fleets -

https://blog.x.com/en_us/topics/product/2021/goodbye- fleets?utm_source= chatgpt.com)

Moreover, privacy and real-time data processing remain major challenges. While Twitter has started integrating phone

number verification for security, it does not link accounts to phone numbers the way WhatsApp does, which could

impact user acquisition and engagement. Additionally, processing vast amounts of data in real-time requires constant

model updates, which can be computationally expensive and prone to errors. (Electronics Frontier Foundation -

https://www.eff.org/deeplinks/2020/02/how-twitters-default-settings-can-leak-your-phone-

number?utm_source=chatgpt.com)

 GeeksforGeeks: Sentiment Analysis – Step by Step Implementation

The article “Sentiment Analysis – Step by Step Implementation” by GeeksforGeeks provides a practical, hands-on

approach to conducting sentiment analysis on Twitter data using Python. It systematically explains preprocessing steps

such as tokenization, stop-word removal, and text vectorization techniques (Bag of Words, TF–IDF), followed by

supervised machine learning model training using libraries like Scikit-learn. The implementation emphasizes clarity in

handling real-world social media datasets, making it particularly useful for beginners and practitioners aiming to

replicate sentiment analysis pipelines. This work is relevant to the project as it offers both the technical methodology

and coding framework required to implement end-to-end sentiment classification, ensuring reproducibility and practical

application on Twitter datasets. Twitter Sentiment Analysis using Python - GeeksforGeeks

Sentiment140 Dataset (1.6 Million Tweets)

The Sentiment140 dataset is a widely used benchmark corpus created by extracting 1.6 million tweets via the Twitter

API and annotating them with sentiment labels, where 0 represents negative and 4 represents positive. Designed for

large-scale sentiment analysis research, it provides a balanced and diverse set of user-generated content, making it

suitable for training and evaluating machine learning models. Its large volume of annotated data enables robust model

performance and helps in addressing challenges such as sarcasm, informal language, and noisy text common in Twitter

posts. For this project, Sentiment140 serves as the foundational dataset for building and testing supervised ML models,

ensuring that the sentiment analysis implementation is based on a standardized and validated resource widely

recognized in the academic and research community. - Sentiment140 dataset with 1.6 million tweets

In summary, Twitter effectively uses ML to enhance user experience through personalized recommendations, sentiment

analysis, and trend predictions. However, challenges like limited user engagement features, privacy concerns, and real-

time data processing difficulties hinder its widespread adoption. Future research should focus on improving engagement

strategies, refining content recommendations, and balancing privacy with personalization to make the platform more

user-friendly.

Chapter 1 – Content Recommendation For a Twitter User

Twitter employs a complex algorithm for ranking content on the "For You" timeline, using machine learning techniques

to predict content relevance. The algorithm selects content from both followed and non-followed accounts, ranking them

based on predicted engagement.

https://blog.x.com/en_us/topics/product/2021/goodbye-%20fleets?utm_source=%20chatgpt.com
https://www.eff.org/deeplinks/2020/02/how-twitters-default-settings-can-leak-your-phone-number?utm_source=chatgpt.com
https://www.eff.org/deeplinks/2020/02/how-twitters-default-settings-can-leak-your-phone-number?utm_source=chatgpt.com
https://www.geeksforgeeks.org/python/twitter-sentiment-analysis-using-python/
https://www.kaggle.com/datasets/kazanova/sentiment140

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

Figure 2- Left - Usage of ML in Feed Ranking R - Screen Shot of For You

Key machine learning techniques used in feed ranking include neural networks and graph-based models. Twitter utilizes

a deep neural network with approximately 48 million parameters to score tweets. This model considers factors such as

user history, tweet content, and the social graph to predict engagement levels. A specific variant known as MaskNet

plays a crucial role in optimizing feed ranking.

Twitter uses different machine learning algorithms to manage and organize content, including tweets in notifications.

These algorithms help decide which tweets appear in a user's feed or notifications based on engagement and relevance.

Machine Learning Algorithms Used

Logistic regression helps rank tweets by predicting user engagement. Neural networks, with around 40 million

parameters, analyze tweet relevance and engagement. Embedding spaces create numerical representations of users'

interests and tweet content for better content matching. RealGraph, a graph-based model, maps relationships between

users, tweets, and hashtags to improve recommendations.

Implementation – Content Recommendation

To explain how Twitter (X) might implement a Content Recommendation (Feed Ranking) algorithm in Python, let’s

simplify the concept. The "For You" timeline uses machine learning to show posts that are likely to interest a user,

whether from accounts they follow or others. The algorithm predicts how engaging a post will be based on factors like

user interactions (likes, retweets, replies), post content, and user preferences. Below is a simplified explanation and a

basic Python example of how such an algorithm could work.

• Data Collection: The algorithm gathers data about posts (e.g., text, likes, retweets) and user behavior

(e.g., what they liked or retweeted).

• Feature Extraction: It identifies key features, like:

• Post Features: Number of likes, retweets, or if it contains trending hashtags.

• User Features: What topics or accounts the user interacts with.

• Context Features: Time of day, user’s location, or recent trends.

• Scoring Posts: A machine learning model (e.g., a neural network or decision tree) assigns a "relevance

score" to each post based on these features.

• Ranking: Posts are sorted by their relevance scores, and the top ones appear on the "For You" timeline.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

• Personalization: The model learns from user feedback (e.g., likes or skips) to improve future

recommendations.

Simplified Python Example given below is a basic Python code snippet that demonstrates how a content

recommendation system might work using a simple machine learning approach. This example uses a logistic regression

model to predict whether a post is relevant to a user, but in reality, X uses more complex models like neural networks.

python

import pandas as pd

from sklearn.linear_model import LogisticRegression

from sklearn.preprocessing import StandardScaler

Sample data: Features of posts and whether the user engaged with them

data = { 'post_likes': [100, 50, 200, 10, 300], # Number of likes on the post

 'post_retweets': [20, 10, 50, 5, 100], # Number of retweets

 'has_trending_hashtag': [1, 0, 1, 0, 1], # 1 if post has trending hashtag, 0 if not

 'user_follows_author': [1, 0, 1, 0, 0], # 1 if user follows the post's author, 0 if not

 'engaged': [1, 0, 1, 0, 1] # 1 if user engaged (liked/retweeted), 0 if not

}

Create a DataFrame

df = pd.DataFrame(data)

Features (inputs) and target (output)

X = df[['post_likes', 'post_retweets', 'has_trending_hashtag', 'user_follows_author']]

y = df['engaged']

Scale the features (important for ML models)

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

Train a simple logistic regression model

model = LogisticRegression()

model.fit(X_scaled, y)

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

Sample new posts to rank

new_posts = pd.DataFrame({

 'post_likes': [150, 30, 500],

 'post_retweets': [25, 5, 200],

 'has_trending_hashtag': [1, 0, 1],

 'user_follows_author': [0, 1, 1]

})

Scale the new posts

new_posts_scaled = scaler.transform(new_posts)

Predict relevance scores (probability of engagement)

relevance_scores = model.predict_proba(new_posts_scaled)[:, 1] # Get probability of 'engaged' = 1

Rank posts by relevance score

new_posts['relevance_score'] = relevance_scores

ranked_posts = new_posts.sort_values(by='relevance_score', ascending=False)

Display ranked posts

print("Ranked Posts for 'For You' Timeline:")

print(ranked_posts[['post_likes', 'post_retweets', 'has_trending_hashtag', 'user_follows_author', 'relevance_score']])

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 7

Simple Content recommendation Example in Python

Simple Content Recommendation Example in Python

Copy-paste this into PyCharm and run it

Import libraries we need

import pandas as pd # for working with tables (DataFrame)

from sklearn.linear_model import LogisticRegression # our ML model

from sklearn.preprocessing import StandardScaler # for scaling numbers

Step 1: Create sample data (like past posts and user engagement history)

data = {

 'post_likes': [100, 50, 200, 10, 300], # number of likes each post got

 'post_retweets': [20, 10, 50, 5, 100], # number of retweets

 'has_trending_hashtag': [1, 0, 1, 0, 1], # 1 = post has trending hashtag, 0 = no

 'user_follows_author': [1, 0, 1, 0, 0], # 1 = user follows the author, 0 = no

 'engaged': [1, 0, 1, 0, 1] # 1 = user engaged (liked/retweeted), 0 = did not

}

Step 2: Convert dictionary into a DataFrame (table format)

df = pd.DataFrame(data)

print("Training Data:")

print(df, "\n")

Step 3: Split into inputs (X) and output (y)

X = df[['post_likes', 'post_retweets', 'has_trending_hashtag', 'user_follows_author']] # inputs

y = df['engaged'] # output (target we want to predict)

Step 4: Scale the features (important so that likes/retweets don’t dominate over yes/no values)

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X) # fit (learn scaling) and transform (apply scaling)

Step 5: Train a simple logistic regression model

model = LogisticRegression()

model.fit(X_scaled, y) # train the model on old data

Step 6: Make a new post to test the model

new_posts = pd.DataFrame({

 'post_likes': [150], # new post has 150 likes

 'post_retweets': [25], # new post has 25 retweets

 'has_trending_hashtag': [1], # yes, it has a trending hashtag

 'user_follows_author': [0] # no, user doesn’t follow the author

})

print("New Post Details:")

print(new_posts, "\n")

Step 7: Scale the new post (so it matches the training data scale)

new_posts_scaled = scaler.transform(new_posts)

Step 8: Predict probability of engagement

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 8

relevance_score = model.predict_proba(new_posts_scaled)[:, 1][0] # probability of engagement (1)

Step 9: Print result

print(f"Predicted relevance score (chance user will engage): {relevance_score:.2f}")

print("GK Sridharan's project completed and results are as shown")

Figure 3 –Screen Shot From Python – Content Recommendation for an user

Output as shown on Python Console

Figure 4 – Screen Shot showing Output obtained in Console of Python

"C:\Users\acer\PycharmProjects\M Tech CST Twitter 1\.venv\Scripts\python.exe"

"C:\Users\acer\PycharmProjects\M Tech CST Twitter 1\APP.py"

Training Data:

 post_likes post_retweets ... user_follows_author engaged

0 100 20 ... 1 1

1 50 10 ... 0 0

2 200 50 ... 1 1

3 10 5 ... 0 0

4 300 100 ... 0 1

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 9

[5 rows x 5 columns]

New Post Details:

 post_likes post_retweets has_trending_hashtag user_follows_author

0 150 25 1 0

Predicted relevance score (chance user will engage): 0.67

GK Sridharan's project completed and results are as shown

Process finished with exit code 0

How This Code Works

• Data: The sample dataset includes features like post_likes, post_retweets, whether the post has a

trending hashtag, and whether the user follows the post’s author. The engaged column indicates if the user liked

or retweeted the post.

• Model: A logistic regression model is trained to predict the likelihood of user engagement based on

these features.

• Scaling: Features are scaled (normalized) to ensure fair comparison, as ML models perform better with

standardized data.

• Prediction: For new posts, the model calculates a "relevance score" (probability of engagement).

• Ranking: Posts are sorted by their relevance scores, with the highest-scoring posts appearing at the top

of the "For You" timeline.

Real-World Notes

• Complexity: Twitter’s actual algorithm is far more complex, using deep learning models (e.g., neural

networks) and handling millions of posts and users in real-time.

• Additional Features: It considers more features, like post text analysis (using natural language

processing), user’s past interactions, and even the time since the post was created.

• Feedback Loop: The algorithm continuously updates based on user actions (e.g., liking a post improves

its ranking for similar users).

• Scale: Twitter processes vast amounts of data, so the system uses distributed computing frameworks

(e.g., Apache Spark) and real-time processing.

This simplified example gives a glimpse into how ML can rank posts, but Twitter’s real system involves advanced

techniques and infrastructure to handle its massive scale and personalization needs.

How to make it effective for an Indian User

Let us see, how to enhance the user experience in Feed Recommendation / ‘For You’ recommendations

Let’s make our project advanced by adding extra features that could matter more for Indian users. For example:

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 10

Engagement Features for Indian Users

1. Post language – Hindi/Tamil/Telugu posts often get more engagement in regional clusters.

2. Time of posting – Engagement is higher during morning/evening in India.

3. Festival/occasion – Tweets on Diwali, Independence Day, Cricket matches get more reach.

4. Cricket hashtags – Always a booster

We can simulate this in Python by adding new columns to your dataset and then training a model.

import pandas as pd

from sklearn.linear_model import LogisticRegression

from sklearn.preprocessing import StandardScaler

Sample dataset (with India-specific features)

data = {

 'post_likes': [100, 50, 200, 10, 300, 400],

 'post_retweets': [20, 10, 50, 5, 100, 150],

 'has_trending_hashtag': [1, 0, 1, 0, 1, 1],

 'user_follows_author': [1, 0, 1, 0, 0, 1],

 'post_in_regional_lang': [1, 0, 1, 0, 1, 1], # Hindi/Tamil/Telugu = 1

 'posted_at_peak_time': [1, 0, 1, 0, 1, 1], # Peak = 1 (morning/evening India)

 'cricket_related': [0, 0, 1, 0, 1, 1], # Cricket tweets more engaging

 'engaged': [1, 0, 1, 0, 1, 1]

}

Create DataFrame

df = pd.DataFrame(data)

Features (X) and Target (y)

X = df[['post_likes', 'post_retweets', 'has_trending_hashtag',

 'user_follows_author', 'post_in_regional_lang',

 'posted_at_peak_time', 'cricket_related']]

y = df['engaged']

Scale the features

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

Train logistic regression model

model = LogisticRegression()

model.fit(X_scaled, y)

New sample posts (to test)

new_posts = pd.DataFrame({

 'post_likes': [150, 30, 500],

 'post_retweets': [25, 5, 200],

 'has_trending_hashtag': [1, 0, 1],

 'user_follows_author': [0, 1, 1],

 'post_in_regional_lang': [1, 0, 1],

 'posted_at_peak_time': [1, 0, 1],

 'cricket_related': [0, 0, 1]

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 11

})

Scale new posts

new_posts_scaled = scaler.transform(new_posts)

Predict relevance scores

relevance_scores = model.predict_proba(new_posts_scaled)[:, 1]

Add scores to DataFrame

new_posts['relevance_score'] = relevance_scores

Rank posts

ranked_posts = new_posts.sort_values(by='relevance_score', ascending=False)

Show result

print("Ranked Posts for Indian User Engagement:")

print(ranked_posts[['post_likes', 'post_retweets', 'has_trending_hashtag',

 'user_follows_author', 'post_in_regional_lang',

 'posted_at_peak_time', 'cricket_related', 'relevance_score']])

Figure 5 – Screen Shot showing Adding new Columns and Training models

Output as shown in Console

Figure 6 – Screen Shot from Pycharm/ Console showing Ranked posts for Indian User Engagement

Chapter 2 – An Overview of Twitter Engagement Issues

Despite being a global platform for real-time communication, Twitter (X) faces persistent engagement challenges in

India. While WhatsApp reaches over 60% of the Indian population and Facebook/Instagram command vast user bases,

Twitter accounts for only about 2–3% of users. This limited penetration weakens its ability to serve as a mass

communication medium, particularly when compared to WhatsApp’s dominance in day-to-day conversations and group

interactions.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 12

A closer look at government and institutional use further illustrates this gap. For example, condolence messages from

national leaders such as the Prime Minister, or recruitment drives by the Indian Navy, receive disproportionately low

engagement on Twitter compared to similar posts on Instagram or WhatsApp forwards. This discrepancy highlights a

structural issue: Twitter has become the platform of choice for elites, policymakers, and media professionals, but fails to

foster interaction with the wider public.

The engagement challenge is compounded by technical and design limitations, including minimal cross-platform

integration, restrictions on expressive content (e.g., short text length), and limited modes of reaction (currently confined

to a single "Like"). These shortcomings make Twitter less inclusive and less interactive, reducing its effectiveness as a

two-way communication channel.

From a machine learning perspective, these gaps represent opportunities. By applying ML models to predict user

interest, tailor recommendations, and evaluate optimal design features (e.g., tweet length, reaction variety, or platform

integration), Twitter can enhance engagement beyond its traditional user base and become more relevant to the broader

population.

Chapter 3 – Machine Learning-Aided

Twitter Link Sharing in WhatsApp

Among the various social media platforms in India, WhatsApp records the highest user engagement, with approximately

60% of the population actively using it, while Twitter accounts for only 2–3% of active users. To leverage WhatsApp’s

widespread reach, Twitter should integrate a WhatsApp Share button next to the “Retweet icon”. This feature would

enable seamless sharing of tweets directly via WhatsApp, allowing users to distribute Twitter content efficiently within

their personal and professional networks. By facilitating cross-platform content distribution, this enhancement could

significantly expand Twitter’s reach and engagement.

A relevant analogy can be observed in the Indian Navy’s recruitment campaigns, where identical posts on Twitter and

Instagram show a stark disparity in engagement. While Instagram posts receive significantly higher interactions,

Twitter’s lower engagement is partly due to the absence of a convenient WhatsApp-sharing option, which could help

amplify its reach among the target audience, particularly youngsters and students.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 13

Figure 7 –An Analogy with / without Whatsapp Icon – An Indian Navy Twitter and Instagram showing same

post with diparity in likes (11:4770) because of not have the whatsapp link sharing icon.

Though, the integration of a WhatsApp sharing icon on Twitter is primarily a feature enhancement aimed at improving

content distribution, machine learning (ML) can play a crucial role in optimising and enhancing the effectiveness of this

feature. By leveraging ML, Twitter can ensure that the WhatsApp sharing function is used efficiently, engagingly, and

responsibly.

To address this, machine learning can be applied to design and optimize cross-platform engagement models. For

example, predictive algorithms can evaluate which tweets are most likely to generate high response rates if shared on

WhatsApp, or identify the optimal timing and target groups for cross-platform forwarding. Similarly, ML-driven A/B

testing could assess whether embedding a WhatsApp share icon directly in tweets leads to measurable improvements in

impressions and click-throughs.

The outcome of such integration would be transformative. Instead of operating in isolation, Twitter could extend its

content seamlessly into WhatsApp networks, multiplying its visibility while preserving its role as the original source.

This would position Twitter not merely as a broadcaster’s platform but as a dynamic hub within India’s broader digital

communication ecosystem.

Social media platforms thrive on content creation and sharing. While Twitter is widely used for microblogging and

real-time updates, WhatsApp dominates personal communication in India, with more than 60% of the population

actively using it. This disparity in engagement highlights the opportunity for cross-platform integration, where

Twitter can extend its reach by enabling seamless content sharing to WhatsApp.

Currently, Twitter provides a basic button for link sharing, which redirects the user to select any platforms – gmail,

chrome, quickshare, telegram, whatsapp and share the tweet link. However, this functionality is static and does not

leverage user behavior or preferences. With the integration of Machine Learning (ML), this button can evolve into an

intelligent sharing assistant, optimizing user experience and driving higher engagement.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 14

3.2 Role of Machine Learning in Enhancing the Sharing Experience

Machine Learning enables personalization, prediction, and automation. By analyzing user interaction patterns,

preferences, and context, ML can transform a simple “share” into a smart, context-aware action.

3.2.1 Intelligent Contact and Group Suggestions

• ML algorithms can analyze past sharing history, frequency of interaction, and relevance of tweet

content to suggest the most likely contacts or groups.

• Example: If a user often shares sports-related tweets with a cricket group, the system can automatically

prioritize that group in the sharing interface.

3.2.2 Content Summarization and Personalization

• Tweets often contain links, hashtags, or lengthy threads. ML models like Text Summarization (BERT,

T5) can generate short, personalized summaries of tweets.

• This makes tweets more engaging when shared, reducing the need for users to add context.

3.2.3 Prioritising Share Options

• ML can rank the sharing options based on user habits (e.g., WhatsApp > Email > Messenger).

• This reduces friction, creating an efficient one-tap sharing flow.

3.2.4 Contextual Awareness

• ML can detect tweet context (e.g., news, humour, sports, politics).

• It can then suggest relevant groups or contacts more likely to engage with the tweet.

• Example: Political news tweets are suggested for sharing with civic discussion groups.

3.2.5 Spam and Abuse Detection

• ML models can monitor abnormal sharing patterns, like bulk forwarding of tweets.

• By flagging such behaviour, the system protects users from spam or malicious content.

3.2.6 Automated Message Generation

• ML models such as GPT-based systems can draft personalized messages to accompany shared

tweets, as part of link.

• Example: If sharing a tech update, it may generate: “Hey, thought you’d find this AI breakthrough

interesting!”

3.2.7 Cross-Platform Integration

• ML ensures smooth integration with Meta platforms (WhatsApp, Instagram, Facebook).

• For example, ML could learn that certain tweets are best received on WhatsApp while others get better

traction on Instagram stories.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 15

3.3 How the “Share to WhatsApp” Button Evolves with ML

Currently:

• The button → Opens share option →Select WhatsApp → User selects contact/group → Pastes tweet

link.

With ML-powered enhancement:

1. Pre-Analysis of Content: Tweet analyzed for topic, sentiment, and relevance.

2. Personalized Suggestions: Suggested contacts, groups, and AI-generated summaries.

3. Contextual Assistance: If sharing an article, ML suggests adding a key takeaway.

4. Proactive Recommendations: If a trending cricket update is posted, the model suggests sharing with

cricket enthusiast groups before the user even decides.

3.4 Machine Learning Models and Techniques

Feature ML Technique Used Example Models

Contact Suggestions
Collaborative Filtering / Recommendation

Systems
Matrix Factorization, Neural CF

Content Summarization Natural Language Processing (NLP) BERT, T5, Pegasus

Contextual Awareness Text Classification
Logistic Regression, SVM, Transformer

Models

Spam Detection Anomaly Detection Isolation Forest, Random Forest

Automated Message Generative NLP GPT Models, LLMs

 Drafting

Prioritizing Share

Options
User Behavior Prediction Gradient Boosted Trees, Deep Learning

Table 1 – ML Models used for Twitter Link sharing via Whatsapp

3.5 Benefits of ML-Aided Sharing

• User-Centric Experience: Tailors the sharing process to individual habits.

• Faster Engagement: Reduces number of taps/clicks.

• Smarter Communication: Adds AI-generated summaries and messages.

• Spam-Free Sharing: Detects and filters abuse.

• Cross-Platform Reach: Ensures maximum visibility for tweets across platforms.

3.6 Implementation Feasibility

This feature is technically implementable within the Twitter ecosystem.

• Data Source: User sharing history, tweet content, engagement logs.

• Backend ML Models: Hosted on cloud infrastructure (AWS/GCP/Azure).

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 16

• Frontend Integration: Modify Twitter’s mobile app and web client to incorporate ML-enhanced share

button.

• Privacy & Security: Ensure compliance with GDPR and user consent for data-driven personalization.

3.7 Conclusion

By leveraging Machine Learning, Twitter can upgrade the “Share to WhatsApp” button from a static function to an

intelligent sharing assistant. This integration not only improves user satisfaction but also expands Twitter’s content

reach into India’s most active communication platform—WhatsApp. The approach highlights the future of cross-

platform social media integration, where AI optimizes every step of content distribution.

How to implement using Python and ML Models

A python file WhatsappSharing.py was created and the below code was run. Screen shot of the code running and code

used (Copied from PyCharm) is appended below.

Screen Shot from PyCharm

Figure 8 – Screen Shot showing a Demo on Intelligent Whatsapp Sharing

Demo: Intelligent "Share to WhatsApp" assistant for Twitter (X).

Includes:

 - Contact & Group suggestion (RandomForest trained on mock data)

 - Prioritization of share options (LogisticRegression)

 - Content summarization (transformers summarization or gensim fallback)

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 17

 - Spam/toxicity detection (transformers toxic model or heuristics fallback)

 - Automated message generation (templated + personalized)

 - wa.me link generation

Loading Essential Python + ML libraries.

import random

import urllib.parse

import webbrowser

import csv

from typing import List, Dict, Tuple

import numpy as np

import pandas as pd

from sklearn.ensemble import RandomForestClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

Try to import transformers for summarization/toxicity; otherwise will use fallbacks

USE_TRANSFORMERS = False

USE_GENSIM = False

try:

 from transformers import pipeline

 USE_TRANSFORMERS = True

except Exception:

 USE_TRANSFORMERS = False

gensim summarizer fallback

try:

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 18

 from gensim.summarization import summarize as gensim_summarize

 USE_GENSIM = True

except Exception:

 USE_GENSIM = False

Creating a Sample dataset of users and contacts/groups. In that dataset, each row will be as follows and mimicking a

twitter whatsapp sharing history:

 Each row = (user_id, contact_id, contact_name, share_count, recent_interaction, is_group, group_size,

interest_overlap).

 Mimics real Twitter → WhatsApp sharing history.

 Example: A group named College Friends or contact Amit may have high past share_count.

Mock data generation

def create_mock_user_contacts(num_users=5, contacts_per_user=8):

 """

 Create a mock DataFrame of user-contact interactions.

 Fields: user_id, contact_id, contact_name, share_count, recent_interaction (0-10), is_group (0/1), group_size,

interest_overlap (0/1)

 """

 rows = []

 contact_names = [

 "Amit", "Priya", "Rahul", "Deepa", "Vijay", "Anita", "Sandeep", "Kavya", "Ramesh", "Meera", "Naveen", "Isha"

]

 groups = ["College Friends", "Navy Aspirants", "Family", "Tech Enthusiasts", "Local Community", "Sports Fans"]

 for user in range(1, num_users + 1):

 for i in range(contacts_per_user):

 contact_id = f"{user}_{i}"

 # random choice between individual contact and group

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 19

 is_group = 1 if random.random() < 0.25 else 0

 name = random.choice(groups) if is_group else random.choice(contact_names)

 share_count = np.random.poisson(3) # historical share counts

 recent_interaction = np.random.randint(0, 11)

 group_size = random.choice([0, 10, 25, 50, 200, 500]) if is_group else 1

 # interest overlap: whether contact has interest in topic (mock)

 interest_overlap = np.random.choice([0, 1], p=[0.5, 0.5])

 rows.append({

 "user_id": user,

 "contact_id": contact_id,

 "contact_name": name,

 "is_group": is_group,

 "group_size": group_size,

 "share_count": share_count,

 "recent_interaction": recent_interaction,

 "interest_overlap": interest_overlap

 })

 return pd.DataFrame(rows)

Example mock dataset

contacts_df = create_mock_user_contacts(num_users=10, contacts_per_user=12)

MODEL: Contact suggestion (RandomForest)

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 20

def train_contact_suggester(df: pd.DataFrame) -> RandomForestClassifier:

 """

 Train a RandomForest model that predicts whether a user will choose a contact/group when sharing.

 For demo we synthesize labels (higher share_count + recent_interaction + interest_overlap -> label 1)

 """

 # Feature engineering

 X = df[["is_group", "group_size", "share_count", "recent_interaction", "interest_overlap"]].copy()

 # scale group_size a bit

 X["group_size_bin"] = pd.cut(X["group_size"], bins=[-1,1,10,50,200,10000], labels=[0,1,2,3,4]).astype(int)

 X = X.drop(columns=["group_size"])

 # Synthesize label: likely chosen if share_count high or recent interaction high and interest overlap

 y = ((df["share_count"] >= 3) & (df["interest_overlap"] == 1)) | (df["recent_interaction"] >= 7)

 y = y.astype(int)

 # Train-test split (we train on the whole mock set for demo)

 model = RandomForestClassifier(n_estimators=200, random_state=42)

 model.fit(X, y)

 return model

contact_model = train_contact_suggester(contacts_df)

MODEL: Prioritize share options (Logistic Regression)

def train_share_priority_model(df: pd.DataFrame) -> LogisticRegression:

 """

 Train a light LogisticRegression model to output a probability score of a contact being selected.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 21

 We'll use similar features and labels as above.

 """

 X = df[["is_group", "share_count", "recent_interaction", "interest_overlap"]].copy()

 # Normalize share_count

 X["share_count_norm"] = X["share_count"] / (X["share_count"].max() + 1e-6)

 X = X.drop(columns=["share_count"])

 y = ((df["share_count"] >= 3) & (df["interest_overlap"] == 1)) | (df["recent_interaction"] >= 7)

 y = y.astype(int)

 model = LogisticRegression(max_iter=200)

 model.fit(X, y)

 return model

priority_model = train_share_priority_model(contacts_df)

Summarization utility

def summarize_text(text: str, max_length: int = 60) -> str:

 """

 Try transformers summarizer if available, else gensim summarize (if text long), else fallback to a short heuristic.

 """

 text = text.strip()

 if len(text.split()) < 6:

 # too short to summarize meaningfully

 return text

 # transformers summarizer (preferred)

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 22

 if USE_TRANSFORMERS:

 try:

 # small summarization model

 pipe = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")

 summ = pipe(text, max_length=max_length, min_length=20, do_sample=False)

 return summ[0]["summary_text"]

 except Exception:

 pass

 # gensim fallback

 if USE_GENSIM:

 try:

 # gensim.summarize requires longer text; guard with word count

 if len(text.split()) > 30:

 return gensim_summarize(text, word_count=30)

 except Exception:

 pass

 # simple heuristic fallback: take first sentence or first 20-30 words

 sentences = text.split(".")

 if len(sentences) > 1:

 return sentences[0].strip() + "."

 else:

 words = text.split()

 return " ".join(words[:30]) + ("..." if len(words) > 30 else "")

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 23

Spam / toxicity check utility

def check_content_safety(text: str) -> Tuple[bool, Dict]:

 """

 Return (is_safe, meta). Use transformer toxic model if available; otherwise simple heuristics:

 Heuristics: too many urls, repeated spammy tokens, suspicious words.

 """

 meta = {}

 # transformers toxic model (preferred)

 if USE_TRANSFORMERS:

 try:

 toxic_pipe = pipeline("text-classification", model="unitary/toxic-bert")

 res = toxic_pipe(text)[0]

 # label may be 'toxic' or 'non-toxic' etc — interpret conservatively

 label = res.get("label", "").lower()

 score = res.get("score", 0.0)

 is_safe = (label in ("non-toxic", "neutral", "clean") or score < 0.7)

 meta.update({"model_label": label, "model_score": score})

 return bool(is_safe), meta

 except Exception:

 pass

 # heuristic fallback

 url_count = text.count("http://") + text.count("https://") + text.count("www.")

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 24

 repeated_tokens = any(text.lower().count(w) > 5 for w in ["buy", "subscribe", "click", "free", "win"])

 suspicious_words = any(w in text.lower() for w in ["scam", "fake", "urgent transfer", "pay now"])

 is_safe = (url_count <= 1) and (not repeated_tokens) and (not suspicious_words)

 meta.update({"url_count": url_count, "repeated_tokens": repeated_tokens, "suspicious_words": suspicious_words})

 return bool(is_safe), meta

Automated message generation

def generate_message(tweet_text: str, summary: str, recipient_name: str = None) -> str:

 """

 Create a short personalized message to accompany the shared tweet.

 Uses the summary, and inserts a small CTA / comment.

 """

 # simple sentiment-ish phrasing based on keywords (quick heuristic)

 lower = tweet_text.lower()

 if any(w in lower for w in ["congrat", "win", "success", "celebrat", "honour"]):

 tone = "Great news!"

 elif any(w in lower for w in ["urgent", "alert", "breaking", "warning", "scam"]):

 tone = "Important — please check."

 else:

 tone = "Thought you might find this interesting:"

 name_prefix = f"{recipient_name}, " if recipient_name else ""

 # keep message short

 msg = f"{name_prefix}{tone} {summary}"

 # ensure length < ~250 chars for wa.me preview

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 25

 return msg[:250]

Compose wa.me url for sharing (text prefilled)

def make_whatsapp_url(text: str) -> str:

 encoded = urllib.parse.quote(text)

 return f"https://wa.me/?text={encoded}"

Top-level assistant function

def suggest_share_options(user_id: int, tweet_text: str, top_k: int = 5) -> Dict:

 """

 Given a user_id and tweet_text, return:

 - safety check

 - suggested summary

 - list of suggested contacts/groups with priority scores and wa.me links and auto messages

 """

 # 1) safety

 is_safe, safety_meta = check_content_safety(tweet_text)

 if not is_safe:

 return {

 "safe": False,

 "reason": "Content flagged as unsafe",

 "safety_meta": safety_meta

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 26

 }

 # 2) summary

 summary = summarize_text(tweet_text)

 # 3) pick user's contact rows

 user_contacts = contacts_df[contacts_df["user_id"] == user_id].copy()

 if user_contacts.empty:

 # fallback: return no suggestions

 return {

 "safe": True,

 "summary": summary,

 "suggestions": []

 }

 # 4) contact suggestion model scoring

 Xc = user_contacts[["is_group", "group_size", "share_count", "recent_interaction", "interest_overlap"]].copy()

 Xc["group_size_bin"] = pd.cut(Xc["group_size"], bins=[-1,1,10,50,200,10000], labels=[0,1,2,3,4]).astype(int)

 Xc = Xc.drop(columns=["group_size"])

 sug_probs = contact_model.predict_proba(Xc)[:, 1] if hasattr(contact_model, "predict_proba") else

contact_model.predict(Xc)

 # if predict_proba not available, predict returns 0/1 — convert to float

 if not hasattr(contact_model, "predict_proba"):

 sug_probs = np.array(sug_probs, dtype=float)

 user_contacts = user_contacts.reset_index(drop=True)

 user_contacts["contact_score"] = sug_probs

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 27

 # 5) priority model probability

 Xp = user_contacts[["is_group", "share_count", "recent_interaction", "interest_overlap"]].copy()

 Xp["share_count_norm"] = Xp["share_count"] / (Xp["share_count"].max() + 1e-6)

 Xp = Xp.drop(columns=["share_count"])

 try:

 priority_probs = priority_model.predict_proba(Xp)[:, 1]

 except Exception:

 # fallback to using contact_score

 priority_probs = user_contacts["contact_score"].values

 user_contacts["priority_prob"] = priority_probs

 # Combine into final score (weighted)

 user_contacts["final_score"] = 0.6 * user_contacts["priority_prob"] + 0.4 * user_contacts["contact_score"]

 # Select top_k

 top = user_contacts.sort_values("final_score", ascending=False).head(top_k)

 # Build suggestion objects

 suggestions = []

 for _, row in top.iterrows():

 name = row["contact_name"]

 is_group = bool(row["is_group"])

 group_info = f" (Group, size {row['group_size']})" if is_group else ""

 display = f"{name}{group_info}"

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 28

 # generate auto message

 auto_msg = generate_message(tweet_text, summary, recipient_name=name if not is_group else None)

 # create wa.me url

 wa_text = f"{auto_msg}\n\n{tweet_text}"

 wa_url = make_whatsapp_url(wa_text)

 suggestions.append({

 "contact_id": row["contact_id"],

 "display": display,

 "contact_score": float(row["contact_score"]),

 "priority_prob": float(row["priority_prob"]),

 "final_score": float(row["final_score"]),

 "auto_message": auto_msg,

 "whatsapp_url": wa_url

 })

 return {

 "safe": True,

 "summary": summary,

 "safety_meta": safety_meta,

 "suggestions": suggestions

 }

Small demo runner and CSV export

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 29

def demo_run(user_id: int, tweet_text: str):

 print("Running intelligent share assistant...\n")

 result = suggest_share_options(user_id, tweet_text, top_k=5)

 if not result.get("safe", True):

 print("Content not safe to share. Details:", result.get("safety_meta"))

 return

 print("Summary:\n", result["summary"], "\n")

 print("Top suggestions:")

 for i, s in enumerate(result["suggestions"], 1):

 print(f"{i}. {s['display']}")

 print(f" final_score: {s['final_score']:.3f} | priority_prob: {s['priority_prob']:.3f}")

 print(f" Auto message: {s['auto_message']}")

 print(f" wa.me link (preview): {s['whatsapp_url'][:120]}...\n")

 # Save suggestions to CSV for reporting

 out_rows = []

 for s in result["suggestions"]:

 out_rows.append({

 "user_id": user_id,

 "tweet_text": tweet_text,

 "contact_id": s["contact_id"],

 "contact_display": s["display"],

 "final_score": s["final_score"],

 "priority_prob": s["priority_prob"],

 "auto_message": s["auto_message"],

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 30

 "whatsapp_url": s["whatsapp_url"]

 })

 csv_file = f"share_suggestions_user_{user_id}.csv"

 keys = out_rows[0].keys() if out_rows else []

 if out_rows:

 with open(csv_file, "w", newline='', encoding="utf-8") as f:

 writer = csv.DictWriter(f, fieldnames=list(keys))

 writer.writeheader()

 writer.writerows(out_rows)

 print(f"Suggestions saved to {csv_file}")

If you'd like to open wa.me link in browser automatically (commented for safety)

def open_first_suggestion_in_browser(user_id: int, tweet_text: str):

 res = suggest_share_options(user_id, tweet_text, top_k=1)

 if res.get("safe", False) and res.get("suggestions"):

 url = res["suggestions"][0]["whatsapp_url"]

 print("Opening browser to wa.me for first suggestion...")

 webbrowser.open(url)

 else:

 print("No safe suggestion to open.")

Example main

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 31

if __name__ == "__main__":

 # Example tweet text (replace with any tweet)

 tweet_example = (

 "Join the Indian Navy! Excellent career opportunities in technical and non-technical roles. "

 "Apply now at navy.gov.in. Great benefits, training and proud service."

)

 # Pick a demo user 1..10

 demo_user = 3

 demo_run(demo_user, tweet_example)

 # To auto-open first suggestion in browser (uncomment if you want)

 # open_first_suggestion_in_browser(demo_user, tweet_example)

Output in PyCharm Console

Screen shot 1

Figure 9 –

Screen Shot showing Results of Demo on ML Aided (Intelligent) Whatsapp Sharing (Part I)

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 32

Screen shot 2

Figure 10 – Screen Shot showing Results of Demo on ML Aided (Intelligent) Whatsapp Sharing (Part II)

Chapter 4 –Is Text Length Restriction in Tweets Good or Bad? – Way Ahead with Machine Learning

One of Twitter’s most distinctive features is its strict text length restriction. Originally capped at 140 characters and later

expanded to 280, this design choice distinguishes Twitter from other platforms by encouraging brevity and real-time

conversation. However, the brevity that defines Twitter also poses important questions: Does the character limit enhance

communication by forcing conciseness, or does it constrain meaningful expression and engagement?

From a user perspective, the benefits of brevity are evident. Short tweets are easier to read, encourage rapid scrolling

and align with the platform’s fast-paced nature. Policymakers, government agencies, and media outlets often value this

clarity, as it allows key messages—such as emergency updates or official announcements—to be communicated without

distraction.

Yet the restriction also introduces drawbacks. Complex topics, nuanced arguments, or detailed updates often require

users to create “tweet threads” or redirect readers to external links. This not only fragments discussions but also limits

organic engagement, as many users prefer self-contained posts. For institutions seeking to build trust or explain policies,

the brevity can reduce the depth of communication.

Machine learning offers a pathway to balance these competing demands. Models such as text summarization

algorithms (e.g., BART, T5) could be integrated to automatically condense long-form user drafts into concise tweets

without losing context. Similarly, recommendation systems could suggest whether a post is better suited as a single

tweet, a thread, or an external link. These ML-driven tools would allow users to overcome the artificial barrier of length,

while preserving the platform’s unique identity as a concise medium.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 33

Ultimately, rethinking the character limit is less about removing restrictions and more about intelligently supporting

expression. By using ML to adapt the length rule to user needs, Twitter could evolve from a rigid structure into a

flexible, user-centric ecosystem that values both clarity and depth.

One potential improvement is Smart Tweet Compression, where AI-powered natural language processing (NLP)

models like BERT and T5 automatically shorten tweets while preserving their core meaning. This feature would enable

users to communicate effectively without being constrained by the character limit. By using advanced NLP, Twitter can

offer automatic summarisation, helping users express themselves more concisely while retaining the essence of their

message.

Another innovation is AI-Generated Context for Longer Tweets, which utilizes contextual embedding models like

GPT and Transformers to auto-generate summaries for multi-part tweets (threads). This would improve readability,

making it easier for users to follow long discussions without losing context. By summarizing lengthy threads, this

feature could enhance engagement and ensure important information is not overlooked in a sea of fragmented tweets.

A more dynamic approach is Adaptive Character Limits Based on Engagement, where reinforcement learning

algorithms determine character restrictions based on metrics such as likes, shares, and comments. Instead of enforcing a

fixed limit, Twitter could extend the character allowance for tweets that generate high engagement. This would

encourage meaningful discussions while preserving the platform’s core identity of concise communication.

However, Twitter currently lifts text and video duration restrictions for paid users (Rs. 6,500 per year). This policy

suggests that the platform acknowledges the value of longer tweets and extended videos, but it restricts these features to

only those who can afford them. A more inclusive approach could involve tiered access, where longer tweets and videos

become available based on engagement, credibility, or verified content rather than just a paywall.

Flow Chart 1 – A few ML Models to resolve text length restriction issues

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 34

Implementation

Twitter (X) continues to grapple with the implications of its 280-character limit, a defining feature since 2017 that

promotes brevity and concise communication. This restriction fosters quick, impactful posts but often hinders in-depth

discussions, leading to fragmented threads and lost context—challenges evident in India’s vibrant X community (2–3%

penetration, ~16–24 million users).

Objective: Evaluate the 280-character limit’s impact, propose ML-driven solutions (Smart Tweet Compression, AI-

Generated Context, Adaptive Character Limits), and address Twitter’s paid-tier restrictions to foster equitable

communication.2. The Challenge

• Good Aspects: The 280-character limit encourages concise, focused messaging, ideal for real-time

updates (e.g., Modi’s condolence tweet reached 8.7M views). It aligns with human attention spans (47 seconds,

per GTRSocials, 2025) and suits India’s fast-paced social media culture.

• Bad Aspects: It restricts detailed discourse, forcing users into fragmented threads that dilute context.

For example, a thread on the Iran-Israel war (e.g., IDF tweet, https://x.com/IDF/status/1943675282457555199)

might lose coherence across parts, reducing engagement (e.g., 50k likes, 8k retweets).

• Paid Restriction Issue: Twitter’s Rs. 6,500/year premium tier lifts text and video limits, favoring

affluent users and excluding India’s diverse user base, where affordability is a concern.

3. Proposed ML-Based Solutions ML can mitigate these challenges with innovative text management:

• Smart Tweet Compression

• ML Techniques: Natural Language Processing (NLP) with BERT, T5

• Implementation: AI shortens tweets while preserving meaning. For Modi’s tweet, BERT could

compress it to: “Devastated by Ahmedabad air tragedy. Condolences to families. Om Shanti” (95

characters), retaining essence.

• Benefit: Enables concise yet expressive posts, enhancing readability.

• AI-Generated Context for Longer Tweets

• ML Techniques: Contextual Embedding (GPT, Transformers)

• Implementation: Auto-generates summaries for threads. For an IDF thread on the Iran-Israel

war, GPT could summarize: “IDF intercepted 100+ missiles in Operation Defiant Shield, ongoing

conflict with Iran” (80 characters), improving followability.

• Benefit: Enhances engagement by clarifying multi-part discussions.

• Adaptive Character Limits Based on Engagement

• ML Techniques: Reinforcement Learning (RL)

• Implementation: RL adjusts limits (e.g., 500 characters) for high-engagement tweets (e.g., >10k

likes, 5k retweets). Modi’s tweet, with 90k likes, could unlock 400 characters for detailed updates.

• Benefit: Encourages meaningful dialogue while preserving brevity’s core.

Step by Step Implementation

A tiny web app where you type a long tweet in your browser → click Compress → the app uses an ML model (T5) to

return a shorter summary.

Languages Used : HTML + JavaScript (front end) and Python (backend + ML).

Step 1 — Install PyCharm

Install Pycharm

Open PowerShell and run:

/IDF/status/1943675282457555199

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 35

mkdir smart_tweet

cd smart_tweet

python -m venv venv

.\venv\Scripts\Activate

Figure 11 – Creating Folders on Windows Powershell

Step 2 — Upgrade pip and install packages

Upgrade pip:

python -m pip install --upgrade pip setuptools wheel

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 36

Figure 12 – Screen Shot showing Upgradation of Pip Tools in Terminal

Step 3 — Install Flask + transformers

Install main Python packages. Install Flask + transformers first:

pip install flask transformers

Figure 13 – Screen Shot showing Installation of Transmormers

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 37

Step 4 — Create the app files

In the smart_tweet folder create two files and one folder:

smart_tweet/

 ├─ app.py

 └─ templates/

 └─ index.html

app.py — copy and paste exactly:

from flask import Flask, render_template, request, jsonify

from transformers import pipeline

app = Flask(__name__)

Load summarization pipeline (t5-small is relatively small & fast)

The first run will download model files to your machine.

summarizer = pipeline("summarization", model="t5-small")

@app.route("/")

def index():

 return render_template("index.html")

@app.route("/summarize", methods=["POST"])

def summarize():

 data = request.get_json()

 tweet = data.get("tweet", "")

 if not tweet.strip():

 return jsonify({"summary": " Please enter a tweet."})

 try:

 # Summarize / compress the tweet. Adjust max_length/min_length if you want longer/shorter results

 result = summarizer(tweet, max_length=60, min_length=10, do_sample=False)

 summary = result[0]['summary_text']

 return jsonify({"summary": summary})

 except Exception as e:

 return jsonify({"summary": f"Error: {str(e)}"}), 500

if __name__ == "__main__":

 # Use host='127.0.0.1' (default), debug=True for development

 app.run(debug=True)

templates/index.html — create templates folder and inside it create index.html:

<!DOCTYPE html>

<html lang="en">

<head>

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 38

 <meta charset="UTF-8">

 <title>Smart Tweet Compressor</title>

 <style>

 body { font-family: Arial, sans-serif; margin: 40px; }

 textarea { width: 100%; height: 140px; margin-bottom: 10px; }

 button { padding: 10px 20px; background: #1DA1F2; color: white; border: none; cursor: pointer; }

 #result { margin-top: 20px; font-weight: bold; }

 </style>

</head>

<body>

 <h2>Smart Tweet Compressor (Demo)</h2>

 <textarea id="tweet" placeholder="Type your tweet or a paragraph here..."></textarea>

 <button onclick="summarizeTweet()">Compress Tweet</button>

 <div id="result"></div>

 <script>

 async function summarizeTweet() {

 const tweet = document.getElementById("tweet").value;

 document.getElementById("result").innerText = " compressing...";

 try {

 const response = await fetch("/summarize", {

 method: "POST",

 headers: { "Content-Type": "application/json" },

 body: JSON.stringify({ tweet })

 });

 const data = await response.json();

 document.getElementById("result").innerText = " " + data.summary;

 } catch (err) {

 document.getElementById("result").innerText = "Error: " + err.message;

 }

 }

 </script>

</body>

</html>

Step 5 — Run the app

With the virtual environment activated and inside smart_tweet directory:

python app.py

You should see something like:

 * Serving Flask app "app"

 * Environment: development

 * Debug mode: on

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 39

Open your browser and go to: http://127.0.0.1:5000/

Type/paste a long tweet and click Compress Tweet — wait a few seconds while the server returns the summary.

Chapter 5 – Miscellaneous Challenges in Twitter (X) and

Protype ML Solutions

Currently, Twitter (X) allows users to react to tweets only through a "Like" button (❤️), which limits the way people

express emotions towards a post. Unlike platforms like Facebook and WhatsApp, which offer multiple reaction emojis

such as "Haha😂," "Sad 😢," or "Angry 😡," etc.,Twitter does not provide a diverse range of emotional responses.

This restriction makes it difficult for users to engage meaningfully with tweets and thereby engages users poorly.

Although introducing multiple emoji reactions in twitter pertains to an additional feature creating UI task, deployment

of ML models could improve user interaction, sentiment analysis, and content personalisation. Further, managing these

reactions efficiently also requires machine learning (ML) to optimise their use, prevent misuse, and enhance user

experience.

ML Algorithms That Could Be Used

1. Sentiment Analysis for Reaction Prediction

ML models like BERT, LSTM, and RoBERTa can analyzeemojis for effective Sentiment Analysis than only

the text of a tweet using NLP. These ML models also suggest the most relevant emoji reactions. For example, a

tweet about a scientific breakthrough might get more "Wow ()" reactions, while a tweet about a social issue

could receive more "Angry ()" or "Sad ()" responses.

2. Personalised Reaction Recommendations

Using collaborative filtering and deep learning, the system can learn a user’s past reaction patterns and

suggest emojis that align with their engagement history. If a user often reacts with "Haha ()" to memes, the

system will highlight that emoji when similar tweets appear.

3. Detecting Spam and Misuse of Reactions

Some users might misuse negative reactions (such as "Dislike ()" or "Angry ()") to harass others.

Anomaly detection and NLP-based toxicity models can identify unusual reaction patterns and prevent misuse.

If a coordinated group of users starts mass-reacting negatively to a post unfairly, the system can flag it for

review.

4. User Experience Optimization Through A/B Testing

Using reinforcement learning and multi-armed bandit algorithms, Twitter can test different placements of

emoji reactions (e.g., near the retweet button or under the tweet) and determine which design maximizes

engagement while keeping the user interface simple. ML Models for all the above are given below.

Flow Chart 2 - ML Models 1- 4 for varieties
of Reactions

http://127.0.0.1:5000/

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 40

Way Ahead

The introduction of multiple emoji reactions on Twitter will require a hybrid approach of AI-driven automation and

human oversight. Sentiment analysis can ensure that reactions are contextually appropriate, while machine learning

algorithms can optimize how reactions are suggested and displayed. Additionally, AI will play a key role in filtering

spam reactions and improving content discovery based on collective user emotions.

By implementing ML-driven reactions, Twitter can create a more interactive, personalized, and expressive user

experience that allows people to engage with tweets in a way that truly reflects their emotions. However, continuous

monitoring and improvements will be necessary to ensure fair and meaningful engagement without abuse.

Why Twitter Should Show Who Liked a Post—A Case for Transparency and Engagement

Twitter’s recent decision (in End 2024) to make likes private has been framed as a privacy measure, but in reality, it

reduces user engagement, weakens content discovery, and limits the organic growth of discussions. Social media

platforms thrive on visibility and interaction, and removing the ability to see who liked a post—especially one that is not

from a user’s own handle—takes away a fundamental engagement factor that has proven successful across platforms

like Instagram, Facebook, and LinkedIn.

A Machine Learning Solution Instead of Blanket Removal. If Twitter is concerned about privacy, it could use

machine learning to refine how likes are displayed instead of eliminating visibility altogether. For instance:

• Personalized Engagement Display: ML algorithms can highlight tweets liked by mutual followers or

people the user frequently interacts with.

• Trending Based on Network Likes: Instead of making likes fully visible or hidden, Twitter could

create a “Trending in Your Network” section based on aggregate engagement from a user’s circle.

• Custom Privacy Settings: Users should have the option to hide or display their likes as they prefer,

rather than Twitter enforcing a universal rule.

The Way Forward—Bringing Back Like Visibility for a Better Twitter

Twitter should restore like visibility while allowing users the option to control their privacy settings. The engagement

model of social media is built on interaction, and reducing transparency only makes Twitter less interactive. Instead of

suppressing user activity, Twitter should focus on intelligent visibility controls powered by ML to strike a balance

between privacy and engagement.

Implementation

Twitter (X) faces scrutiny following its late 2024 decision to make likes private, presented as a privacy measure. This

change hides who liked a post (except from the user’s own handle), reducing engagement, content discovery, and

organic discussion—key drivers of social media success seen on platforms like Instagram, Facebook, and LinkedIn. In

India, with X’s estimated 2–3% user penetration (~16–24 million users based on 800 million internet users), this policy

risks isolating users from critical global events, particularly in the volatile, uncertain, complex, and ambiguous (VUCA)

geopolitical landscape. A striking example is a recent tweet by the Israel Defense Force (IDF) on July 15, 2025, at 03:00

PM IST.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 41

Figure 14 – Screen Shot showing Reduction of Engagement when Transparency over who liked the post

The lack of visible likes on the above tweet (as well as PM Modi tweet on Ahmedaba Air Crash) limits social validation,

a critical factor in VUCA situations where transparency can shape public perception and response.

Objective: An ML-based solution can be proposed to restore like visibility selectively for tweets like the IDF and Modi

posts, balancing privacy and engagement, and implement customizable privacy settings to enhance X’s role in global

and national discourse.

2. The Challenge

• Reduced Engagement: Hiding likes diminishes social proof. For the IDF tweet, obscured likes from

credible sources (e.g., @BBCBreaking or @UN) could reduce retweets from a potential 8k to 7k, limiting war-

related engagement.

• Weakened Content Discovery: Without visible likes, users miss cues to explore VUCA topics,

hindering the spread of critical updates like the Iran-Israel conflict.

• Organic Growth Stifled: Social validation drives discussion, and its absence restricts the organic

amplification of urgent posts, such as the IDF’s Operation Defiant Shield or Modi’s condolences.

• Restriction, Not Option: The mandatory hiding of likes is a one-size-fits-all approach, ignoring user

needs in dynamic geopolitical contexts where transparency is vital.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 42

3. Proposed ML-Based Solution Rather than a blanket removal of like visibility, Twitter can use ML to refine how likes

are displayed, offering a hybrid approach that respects privacy while enhancing engagement. The proposed solutions

include:

• Personalized Engagement Display: ML algorithms can highlight likes from mutual followers or

frequent interactors, ensuring relevance and privacy.

• Trending Based on Network Likes: A “Trending in Your Network” section can aggregate likes from a

user’s circle, promoting content discovery for war-related or national posts without exposing individual

preferences.

• Custom Privacy Settings: Users can opt to hide or display their likes, providing control rather than

enforcing a universal rule.

 Chapter 6 – Undertaking Sentiment Analysis with Implementation using Pycharm

Twitter Sentiment Analysis is the process of using Python to understand the emotions or opinions expressed in tweets

automatically. By analyzing the text we can classify tweets as positive, negative or neutral. This helps businesses and

researchers track public mood, brand reputation or reactions to events in real time. Python libraries like TextBlob,

Tweepy and NLTK make it easy to collect tweets, process the text and perform sentiment analysis efficiently.

How is Twitter Sentiment Analysis Useful?

• Twitter Sentiment Analysis is important because it helps people and businesses understand what the

public thinks in real time.

• Millions of tweets are posted every day, sharing opinions about brands, products, events or social

issues. By analyzing this huge stream of data, companies can measure customer satisfaction, spot trends early,

handle negative feedback quickly and make better decisions based on how people actually feel.

• It’s also useful for researchers and governments to monitor public mood during elections, crises or big

events as it turns raw tweets into valuable insights.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 43

Step by Step Implementation

Step 1: Install Necessary Libraries

This block installs and imports the required libraries. It uses pandas to load and handle data, TfidfVectorizer to turn text

into numbers and scikit learn to train model.

pip install pandas scikit-learn

Figure 15(A) – Screen Shot showing Installation of Pandas

import pandas as pd

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import BernoulliNB

from sklearn.linear_model import LogisticRegression

from sklearn.svm import LinearSVC

from sklearn.metrics import accuracy_score, classification_report

https://www.geeksforgeeks.org/pandas/pandas-tutorial/
https://www.geeksforgeeks.org/nlp/how-to-store-a-tfidfvectorizer-for-future-use-in-scikit-learn/
https://www.geeksforgeeks.org/machine-learning/learning-model-building-scikit-learn-python-machine-learning-library/

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 44

Figure 15(B) – Screen Shot showing Successful installation of All Libraries

Step 2: Load Dataset

• Here we loads the Sentiment140 dataset from a zipped CSV file, you can download it from Kaggle.

• We keep only the polarity and tweet text columns, renames them for clarity and prints the first few rows

to check the data.

df = pd.read_csv('training.1600000.processed.noemoticon.csv.zip', encoding='latin-1', header=None)

df = df[[0, 5]]

df.columns = ['polarity', 'text']

print(df.head())

Output:

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 45

Figure 16 – Screen Shot showing CSV file of a sample post from Kaggle

Step 3: Keep Only Positive and Negative Sentiments

• Here we removes neutral tweets where polarity is 2, maps the labels so 0 stays negative and 4 becomes

1 for positive.

• Then we print how many positive and negative tweets are left in the data.

• print("🚀 Project: Twitter Sentiment Analysis 2025 - AU MTech CST")

print("👨‍💻 Author: Sridharan GK\n")

Load dataset

df = pd.read_csv('training.1600000.processed.noemoticon.csv.zip',

 encoding='latin-1',

 header=None,

 nrows=100000) # Try 100k rows for better balance

Keep only polarity & text columns

df = df[[0, 5]]

df.columns = ['polarity', 'text']

print("Dataset shape:", df.shape)

Remove neutral and remap

df = df[df.polarity != 2]

df['polarity'] = df['polarity'].map({0: 0, 4: 1})

Print counts

print(df['polarity'].value_counts())

• Figure 17 – Keeping Positive and Negative Sentiments

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 46

Output:

Figure 18 – Screen Shot Output showing Polarity of Tweets

Step 4: Clean the Tweets

• Here we define a simple function to convert all text to lowercase for consistency, applies it to every

tweet in the dataset.

• Then shows the original and cleaned versions of the first few tweets.

• def clean_text(text):

 return text.lower()

df['clean_text'] = df['text'].apply(clean_text)

print(df[['text', 'clean_text']].head())

import re

M Tech Project - sentiment analysis on twitter - AU CSSE

def clean_text(text):

 # Lowercase

 text = text.lower()

 # Remove URLs

 text = re.sub(r'http\S+|www\S+|https\S+', '', text)

 # Remove mentions and hashtags

 text = re.sub(r'@\w+|#\w+', '', text)

 # Remove numbers

 text = re.sub(r'\d+', '', text)

 # Remove special characters (keep only letters and spaces)

 text = re.sub(r'[^a-z\s]', '', text)

 # Remove extra spaces

 text = re.sub(r'\s+', ' ', text).strip()

 return text

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 47

df['clean_text'] = df['text'].apply(clean_text)

Show original vs cleaned tweets

print(df[['text', 'clean_text']].head(10))

print ("Data is cleaned")

• Figure 19 – Screen Shot showing – Cleaning of tweets

Output

Figure 20 – Screen Shot showing a Cleaned Tweet

Step 5: Train Test Split

• This code splits the clean_text and polarity columns into training and testing sets using an 80/20 split.

• random_state=42 ensures reproducibility.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 48

Code and Output:

Figure 21 – Screen Shot showing Training and Testing sets

Figure 22 – Screen Shot showing Console Output on Trained Set

The first ten tweets are shown above.

Step 6: Perform Vectorization

• This code creates a TF IDF vectorizer that converts text into numerical features using unigrams and

bigrams limited to 5000 features.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 49

• It fits and transforms the training data and transforms the test data and then prints the shapes of the

resulting TF IDF matrices.

Figure 23 –TF IDF - Vectorisation

Step 7: Train Bernoulli Naive Bayes model

• Here we train a Bernoulli Naive Bayes classifier on the TF IDF features from the training data.

• It predicts sentiments for the test data and then prints the accuracy and a detailed classification report.

Figure 24 – Training Bernouli Naïve Bayes Model

https://www.geeksforgeeks.org/machine-learning/bernoulli-naive-bayes/

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05050

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 50

Chapter 7 - Conclusion

This project demonstrates the transformative role of Machine Learning (ML) in enhancing user experience,

engagement, and sentiment analysis on the social media platform X (formerly Twitter). Through systematic

exploration of platform challenges—such as limited adoption among the general public, constrained tweet length, and

suboptimal content recommendations—this study highlights how ML-driven solutions can address key gaps in user

interaction and satisfaction.

By implementing sentiment analysis using Python, Pandas, Scikit-learn, and TF–IDF vectorization on the

Sentiment140 dataset, the project effectively classified tweets into positive, negative, or neutral sentiments. This process

illustrates the capability of ML to transform massive, unstructured tweet streams into actionable insights for researchers,

businesses, and policymakers, thereby bridging the communication gap between high-profile users and the broader

public.

The research also explored enhancements in content personalization, emoji reactions, adaptive text-length

restrictions, and like visibility, demonstrating how ML algorithms such as BERT, RoBERTa, T5, GPT, and

reinforcement learning can improve engagement and create a more interactive, inclusive platform. Proposed

solutions—including Smart Tweet Compression, AI-generated context for threads, and personalized reaction

recommendations—provide a roadmap for addressing Twitter’s current limitations while aligning platform features with

user needs and expectations.

Overall, the findings highlight that a hybrid ML-driven approach, combining automation with responsible user

oversight, can significantly improve X’s usability, engagement, and relevance. By leveraging these strategies, Twitter

can become a more dynamic, accessible, and user-centric social media platform, capable of supporting meaningful

discourse, timely dissemination of information, and inclusive participation across diverse user communities.

This project lays a foundation for future research on real-time trend prediction, multilingual sentiment analysis,

advanced bot detection, and explainable AI, positioning X to remain competitive and socially impactful in an

increasingly digital and interconnected world.

 References

1. "Machine Learning: A Probabilistic Perspective" – Kevin P. Murphy (Foreword by Tom Dietterich)

2. "Pattern Recognition and Machine Learning" – Christopher M. Bishop (Foreword by Tom Mitchell)

3. "Machine Learning" by Tom Mitchell, then his book "Machine Learning"

4. Cornell University research paper - https://arxiv.org/abs/2202.05387?utm_source=chatgpt.com

5. Jounal of Big Data – Springer Open- https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00781-

w

6. Machine Learning for Time-Series with Python" by Ben Auffarth + Article from Research Gate -

https://www.researchgate.net/publication/335230416_Trendingtags-

Classification_Prediction_of_Hashtag_Popularity_Using_Twitter_Features_in_Machine_Learning_Approach_Proceed

ings

7. Blogs – Good Bye – Twitter Fleets -https://blog.x.com/en_us/topics/product/2021/goodbye- fleets?utm_source=

chatgpt.com

8. Electronics Frontier Foundation - https://www.eff.org/deeplinks/2020/02/how-twitters-default-settings-can-leak-

your-phone-number?utm_source=chatgpt.com

9. Sentiment Analysis – Step by Step Implementation - Twitter Sentiment Analysis using Python - GeeksforGeeks

10 Sentiment140 dataset. It contains 1,600,000 tweets extracted using the twitter api . The tweets have been

annotated (0 = negative, 4 = positive) and they can be used to detect sentiment. - Sentiment140 dataset with 1.6 million

tweets

--

https://arxiv.org/abs/2202.05387?utm_source=chatgpt.com
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00781-w
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00781-w
https://www.researchgate.net/publication/335230416_Trendingtags-Classification_Prediction_of_Hashtag_Popularity_Using_Twitter_Features_in_Machine_Learning_Approach_Proceedings
https://www.researchgate.net/publication/335230416_Trendingtags-Classification_Prediction_of_Hashtag_Popularity_Using_Twitter_Features_in_Machine_Learning_Approach_Proceedings
https://www.researchgate.net/publication/335230416_Trendingtags-Classification_Prediction_of_Hashtag_Popularity_Using_Twitter_Features_in_Machine_Learning_Approach_Proceedings
https://blog.x.com/en_us/topics/product/2021/goodbye-%20fleets?utm_source=%20chatgpt.com
https://blog.x.com/en_us/topics/product/2021/goodbye-%20fleets?utm_source=%20chatgpt.com
https://www.eff.org/deeplinks/2020/02/how-twitters-default-settings-can-leak-your-phone-number?utm_source=chatgpt.com
https://www.eff.org/deeplinks/2020/02/how-twitters-default-settings-can-leak-your-phone-number?utm_source=chatgpt.com
https://www.geeksforgeeks.org/python/twitter-sentiment-analysis-using-python/
https://www.kaggle.com/datasets/kazanova/sentiment140
https://www.kaggle.com/datasets/kazanova/sentiment140

