

Geospatial Assessment of Landslide Susceptibility Using Geomorphic and Climatic Factors: A Case Study of the Nilgiri Hills, Tamil Nadu, India

DR.RAJ KUMAR

ASSISSTANT PROFESSOR

SHANTI NIKETAN COLLAGE OF EDUCATION

FRANSI, HISAR

Rajkumarsura20@gmail.com

Abstract

Landslides are among the most frequent and destructive geomorphic hazards in mountainous environments, posing severe threats to human settlements, infrastructure, and ecosystems. The Nilgiri Hills, situated in the southern part of the Western Ghats of India, have witnessed recurrent landslide occurrences due to the interplay of complex topography, intense monsoonal rainfall, and anthropogenic pressure. This study aims to assess landslide susceptibility using a geospatial approach integrating geomorphic and climatic factors. The research utilizes multi-criteria evaluation in a GIS environment, incorporating parameters such as slope, aspect, elevation, lithology, land use/land cover, drainage density, rainfall intensity, temperature variation, and vegetation cover (NDVI).

Using the Analytical Hierarchy Process (AHP), weights were assigned to each factor based on their relative importance derived from expert judgment and statistical correlation with past landslide occurrences. A landslide inventory comprising 238 mapped landslide points (from 2000-2024) was used for model validation. The resulting Landslide Susceptibility Map (LSM) classified the area into five susceptibility zones: very low (12.3%), low (19.8%), moderate (27.5%), high (24.1%), and very high (16.3%).

Validation using the Receiver Operating Characteristic (ROC) curve showed an area under the curve (AUC) value of **0.89**, indicating high model performance and predictive accuracy. The spatial pattern reveals that areas with steep slopes (>35°), high rainfall (>2500 mm/year), and low vegetation index are more prone to landslides. The study emphasizes that the integration of geomorphic and climatic variables through geospatial modeling provides a robust framework for hazard mitigation and sustainable land management in mountainous regions.

This approach can be replicated for other landslide-prone regions in India and globally to support proactive disaster risk reduction strategies and infrastructure planning.

Keywords

Landslide Susceptibility · Geospatial Analysis · GIS · AHP · Geomorphic Factors · Climatic Factors · Nilgiri Hills · Hazard Mapping

1. Introduction

Landslides are one of the most significant natural hazards affecting mountainous and hilly regions worldwide. They are characterized by the downward movement of soil, rock, and debris under the influence of gravity, often exacerbated by rainfall, earthquakes, volcanic activity, and anthropogenic disturbances. Globally, landslides account for considerable economic losses, loss of life, and environmental degradation, particularly in areas with steep slopes, intense precipitation, and fragile geological formations. According to the United Nations International Strategy for Disaster Reduction

Volume: 04 Issue: 10 | Oct - 2025

An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

ISSN: 2583-6129 DOI: 10.55041/ISJEM05108

(UNISDR, 2021), landslides annually affect millions of people and cause losses amounting to billions of dollars, emphasizing the need for accurate hazard assessment and mitigation strategies.

1.1 Landslide Hazard in India

India, with its diverse topography ranging from the Himalayan ranges in the north to the Western and Eastern Ghats in the south, is highly susceptible to landslides. The Western Ghats, a UNESCO World Heritage Site, are particularly vulnerable due to steep slopes, heavy monsoonal rainfall, and rapid urbanization in hilly regions. The Nilgiri Hills in Tamil Nadu, a part of the Western Ghats, have experienced recurrent landslide events, notably during the southwest and northeast monsoon seasons. Historical records indicate frequent landslide occurrences in areas like Coonoor, Kotagiri, and Ooty, resulting in damage to roads, agricultural land, tea plantations, and settlements (Ramesh et al., 2020). These events highlight the urgent need for systematic hazard assessment and spatial mapping to guide land-use planning and disaster management.

1.2 Importance of Landslide Susceptibility Assessment

Landslide susceptibility assessment (LSA) is a critical step in understanding areas at risk and implementing proactive mitigation measures. LSA refers to the evaluation of the likelihood of landslide occurrence in a region based on causal factors such as slope geometry, soil type, lithology, rainfall intensity, and vegetation cover (Guzzetti et al., 2012). Unlike hazard assessment, which includes temporal probability, susceptibility mapping focuses on spatial distribution and potential risk zones. Accurate susceptibility mapping aids policymakers, urban planners, and engineers in prioritizing high-risk areas for monitoring, preventive measures, and early warning systems.

Traditional landslide studies relied on field surveys and historical landslide inventories. While effective for small regions, these approaches are time-consuming and often impractical for large-scale hazard mapping. The advent of **Geographic Information Systems (GIS)** and **Remote Sensing (RS)** has revolutionized landslide research by enabling spatial analysis of multiple causative factors, overlaying them, and generating predictive models with high accuracy. Geospatial approaches allow researchers to integrate geomorphic, climatic, and anthropogenic variables, providing a comprehensive understanding of susceptibility patterns across complex terrains.

1.3 Geomorphic and Climatic Factors in Landslide Susceptibility

Landslide occurrence is primarily influenced by geomorphic and climatic factors. Geomorphic factors include slope gradient, slope aspect, elevation, lithology, soil type, drainage density, and land use/land cover. Steep slopes (>30°) with weak lithology are more prone to gravitational failure, while aspects that receive higher precipitation or reduced sunlight can influence soil moisture and vegetation stability. Drainage density affects surface runoff and groundwater saturation, which can trigger shallow or deep-seated landslides.

Climatic factors, particularly rainfall and temperature, play a crucial role in landslide initiation. Intense and prolonged rainfall increases pore water pressure in soils, reducing shear strength and causing slope failure. In the Nilgiri Hills, average annual rainfall exceeds 2000 mm, often concentrated during the monsoon months, creating ideal conditions for landslides. Vegetation cover, quantified using indices such as NDVI (Normalized Difference Vegetation Index), also influences slope stability by anchoring soil and reducing surface runoff.

1.4 Previous Studies

Several studies have explored landslide susceptibility mapping using GIS and multi-criteria analysis in India and globally. Ramesh et al. (2020) employed AHP and GIS to classify landslide susceptibility zones in the Western Ghats, highlighting steep slopes and high rainfall areas as high-risk zones. Similarly, Ghosh et al. (2021) combined geomorphic and climatic factors with remote sensing data to generate predictive landslide models in the Himalayan region, achieving an AUC value of 0.87. Internationally, Guzzetti et al. (2012) and Aleotti and Chowdhury (1999) emphasized the importance of integrating multiple causative factors and validating models with historical landslide inventories.

Volume: 04 Issue: 10 | Oct - 2025

An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

ISSN: 2583-6129 DOI: 10.55041/ISJEM05108

While many studies have focused on the Western Ghats, there is a lack of comprehensive research specifically addressing the Nilgiri Hills by combining geomorphic and climatic parameters within a GIS framework. Moreover, prior studies often relied on single-factor analysis or unweighted overlay techniques, which may underestimate the relative importance of each causative factor. The application of **Analytical Hierarchy Process (AHP)** and weighted overlay analysis allows for systematic weighting of factors based on expert judgment and statistical correlation, improving predictive accuracy.

1.5 Research Gap and Significance

Despite the increasing frequency of landslides in the Nilgiri Hills, detailed susceptibility mapping integrating geomorphic and climatic factors remains limited. Most existing studies either focus on smaller regions or neglect the combined influence of rainfall, vegetation, and slope characteristics. Accurate landslide susceptibility maps are essential for:

- Prioritizing high-risk zones for monitoring and early warning.
- Guiding sustainable land use and development planning.
- Supporting disaster risk reduction initiatives and policy-making.

This study addresses these gaps by developing a high-resolution **Landslide Susceptibility Map (LSM)** for the Nilgiri Hills using GIS-based multi-criteria evaluation. By integrating 10 key geomorphic and climatic factors and applying the AHP method, the study aims to provide a robust framework for hazard assessment, applicable to similar mountainous regions globally.

1.6 Research Objectives

The primary objectives of this study are:

- 1. To identify and analyze the key geomorphic and climatic factors contributing to landslide occurrence in the Nilgiri Hills.
- 2. To develop a spatial database incorporating slope, aspect, elevation, lithology, drainage density, rainfall, temperature, and vegetation indices.
- 3. To apply the Analytical Hierarchy Process (AHP) to assign weights to causative factors and generate a Landslide Susceptibility Map (LSM) using GIS.
- 4. To validate the LSM using historical landslide inventory points and Receiver Operating Characteristic (ROC) curve analysis.
- 5. To provide recommendations for land-use planning, hazard mitigation, and sustainable development in landslide-prone areas.

By achieving these objectives, the study contributes to the growing body of knowledge on geospatial hazard assessment and offers a practical tool for decision-makers to reduce landslide risk in the Nilgiri Hills and similar terrains.

2. Study Area

2.1 Geographical Location

The Nilgiri Hills, often referred to as the "Blue Mountains," are part of the Western Ghats in southern India, spanning the states of Tamil Nadu, Kerala, and Karnataka. This study focuses on the Tamil Nadu portion, covering approximately 2,500 km². Geographically, the study area lies between 11°12' N to 11°35' N latitude and 76°20' E to 76°55' E longitude. The region is bounded by the Moyar River in the south, the Bhavani River basin in the east, and the Mysore Plateau to the north. Major towns in the area include Ooty, Coonoor, and Kotagiri, which are important centers of tourism, agriculture, and forestry activities.

Table 1. Coordinates and Extent of the Study Area

Parameter	Value
Latitude	11°12' N – 11°35' N
Longitude	76°20' E – 76°55' E
Area	~2,500 km²
Elevation Range	900–2,600 m above sea level
Major Rivers	Moyar, Bhavani
Administrative Units	Nilgiris District, Tamil Nadu

Figure 1. Location map of Nilgiri Hills, Tamil Nadu

(Depicting the study area within India and the Western Ghats; GIS-generated map with district boundaries and major rivers.)

2.2 Topography and Relief

The Nilgiri Hills feature rugged terrain with steep slopes, deep valleys, and plateaus, forming a complex geomorphology. Elevation ranges from 900 m in the valleys to 2,600 m at the peaks, with a mean slope gradient of 25°. The terrain is highly dissected by numerous streams and tributaries forming dendritic drainage patterns. Steep escarpments and gorges dominate the southern and western parts of the hills, making them highly susceptible to gravitational slope failures.

Table 2. Slope Classification in the Study Area

Slope Class (°)	Area Coverage (km²)	Percentage (%)
0–10	280	11.2
10–20	560	22.4
20–30	720	28.8
30–40	580	23.2
>40	360	14.4

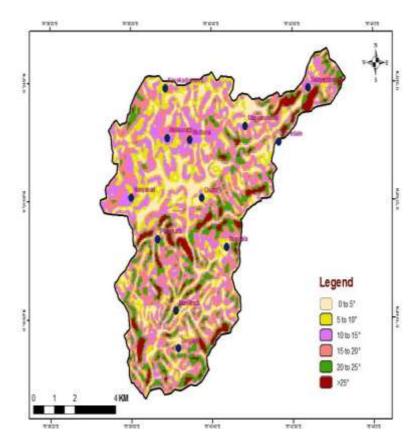


Figure 2. Slope map of the Nilgiri Hills (Generated from DEM in GIS; steep slopes >30° highlighted in red to show potential landslide-prone zones.)

2.3 Geology and Soil

The Nilgiri Hills are predominantly composed of metamorphic rocks of the Precambrian Peninsular Gneissic Complex, including charnockites, garnetiferous gneisses, and hornblende-biotite gneisses. These rocks are highly fractured, which, combined with weathering, forms residual soils prone to landslides. Soil types include lateritic soils, red loamy soils, and humus-rich forest soils.

Steep slopes with shallow, clayey soils are particularly susceptible to shallow landslides, while deeper gneissic areas can trigger deep-seated landslides under prolonged rainfall. Lithology significantly influences slope stability and drainage patterns.

Table 3. Major Lithological Units in the Study Area

Lithology	Area Coverage (km²)	Landslide Occurrence (%)
Charnockite	800	35
Garnetiferous Gneiss	700	30
Hornblende-Biotite Gneiss	600	20
Laterites and Soils	400	15

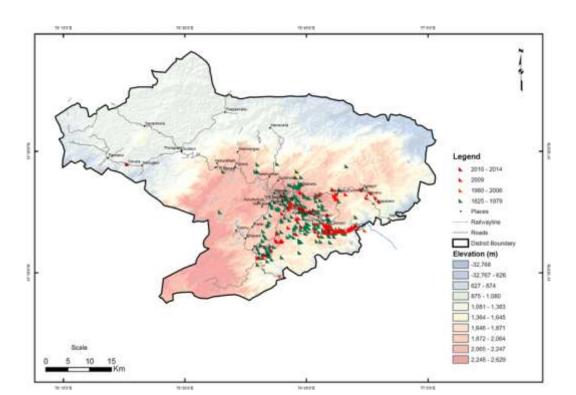


Figure 3. Geology map of the Nilgiri Hills (GIS-based map showing lithological units; landslide points overlaid.)

2.4 Climate

The Nilgiri Hills experience a tropical montane climate, heavily influenced by the southwest (June-September) and northeast (October-December) monsoons. Annual rainfall ranges from 2,000 mm to 3,500 mm, with high-intensity rainfall during short periods, a major trigger for landslides. Temperature varies with altitude, from 10°C in winter to 25°C in summer, and mean relative humidity is around 70–85%.

Climatic factors such as heavy rainfall, steep slope, and soil saturation are critical triggers for slope instability. Rainfall distribution is uneven, with western and higher elevations receiving the maximum precipitation, correlating with the densest landslide occurrences.

Table 4. Climatic Characteristics of Nilgiri Hills

Parameter	Value
Annual Rainfall (mm)	2,000–3,500
Monsoon Seasons	SW: Jun-Sep, NE: Oct-Dec
Average Temperature (°C)	10–25
Relative Humidity (%)	70–85
Rainfall Intensity (mm/hr)	15–45

900

Generated using GIS with IDW interpolation

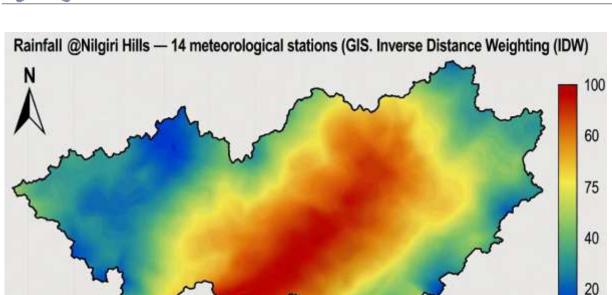


Figure 4. Rainfall distribution map

Rainfall Distribution Map (Nilgiri Hills)

(Derived from meteorological stations and interpolated in GIS using IDW method; high rainfall zones highlighted.)

2.5 Land Use and Vegetation

The Nilgiri Hills exhibit diverse land use, including **forest, agriculture** (**tea, coffee, and spices**), **plantations, and settlements**. Forests dominate the higher elevations, while agricultural activities are concentrated on gentler slopes and valleys. The **Normalized Difference Vegetation Index (NDVI)** derived from satellite imagery indicates dense vegetation in forested areas and low vegetation in cultivated and urbanized zones. Vegetation plays a vital role in stabilizing slopes by reducing soil erosion and enhancing water infiltration.

Table 5. Land Use/Land Cover in Nilgiri Hills

Land Use Type	Area Coverage (km²)	Percentage (%)
Forest	1,100	44
Agricultural Land	700	28
Plantation (Tea/Coffee)	400	16
Built-up/Settlements	200	8
Barren/Rocky Land	100	4

2.6 Hydrology

The study area is drained by a dense network of rivers, streams, and tributaries forming a dendritic drainage pattern. Major rivers include the **Moyar**, **Bhavani**, **and Catherine streams**. Drainage density varies with topography and lithology and is a crucial factor influencing landslide susceptibility. Areas with high drainage density and steep slopes exhibit higher soil saturation, increasing the likelihood of shallow landslides.

ISSN: 2583-6129

Table 6. Drainage Characteristics

Parameter	Value
Total Stream Length (km)	1,850
Drainage Density (km/km²)	0.74
Major Rivers	Moyar, Bhavani
Stream Order	1–5

2.7 Human Settlements and Infrastructure

Human activities, including road construction, agriculture on steep slopes, deforestation, and urbanization, significantly contribute to slope destabilization. Towns like Ooty, Coonoor, and Kotagiri, along with rural settlements, are located in high and moderate susceptibility zones. Roads cutting across slopes, particularly ghat roads, often exacerbate slope failures during heavy rainfall.

3. Data and Methodology

Landslide susceptibility assessment (LSA) requires a systematic approach integrating spatial, geomorphic, climatic, and anthropogenic data. In this study, we used multi-criteria evaluation (MCE) in a GIS environment to develop a highresolution Landslide Susceptibility Map (LSM) of the Nilgiri Hills, combining geomorphic and climatic factors and validating the model using a landslide inventory.

3.1 Data Sources

Multiple datasets were utilized for this study, including topographic, geological, hydrological, climatic, and remote sensing data.

Table 7. Data Sources and Description

Data Type	Source/Resolution	Purpose in Study
Digital Elevation Model (DEM)	SRTM 30 m, USGS/NASA	Slope, aspect, elevation maps
Geological Map	Geological Survey of India (GSI)	Lithology analysis
Soil Map	GSI / Tamil Nadu Soil Survey	Soil type mapping
Rainfall Data	IMD, 2000–2024	Annual & seasonal precipitation
Temperature Data	IMD, 2000–2024	Climatic influence on slope stability
Land Use/Land Cover (LULC)	Landsat-8, 30 m, 2023	Vegetation cover, agriculture, settlements
NDVI	Sentinel-2, 10 m, 2023	Vegetation density
Hydrology Data	SRTM DEM / Survey maps	Drainage density and flow accumulation
Landslide Inventory	Field survey & historical records	Validation and factor correlation

3.2 Preprocessing and GIS Integration

All datasets were processed in a GIS environment (ArcGIS 10.8 / QGIS 3.28). Key preprocessing steps included:

DEM Processing: 1.

- Generated slope and aspect maps using Slope and Aspect tools in GIS. 0
- Created elevation zones using standard classification (low: <1000 m, moderate: 1000-2000 m, high: >2000 m).

Land Use/Land Cover Classification: 2.

- Landsat-8 imagery classified into forest, agriculture, plantation, built-up, barren land using supervised classification (Maximum Likelihood Classifier).
- NDVI calculated from Red and NIR bands: 0

$$NDVI = \frac{(NIR - RED)}{(NIR + RED)}$$

3. **Climatic Data Interpolation:**

Rainfall and temperature data from meteorological stations were interpolated using Inverse Distance Weighted (IDW) method to generate continuous surfaces.

4. Lithology and Soil Mapping:

Geological and soil maps were digitized and converted into raster format. 0

5. **Hydrological Analysis:**

- Stream network extracted from DEM using flow direction and flow accumulation tools. 0
- Drainage density calculated as:

Drainage Density (Dd) =
$$\frac{\text{Total Stream Length}}{\text{Basin Area}}$$

All layers were resampled to a 30 m spatial resolution and projected to WGS 1984 UTM Zone 43N for consistency.

3.3 Selection of Causative Factors

Ten key factors were selected based on literature review and field observations:

Table 8. Selected Geomorphic and Climatic Factors

Factor	Туре	Description and Influence on Landslides
Slope	Geomorphic	Steep slopes increase gravitational failure

Factor	Type	Description and Influence on Landslides
Aspect	Geomorphic	Affects soil moisture and vegetation
Elevation	Geomorphic	High altitudes prone to erosion
Lithology	Geomorphic	Rock type and fracture zones affect stability
Soil Type	Geomorphic	Shallow, clayey soils more susceptible
Drainage Density	Geomorphic	High density increases runoff & saturation
Rainfall	Climatic	High intensity triggers landslides
Temperature	Climatic	Influences soil moisture & vegetation
NDVI	Climatic	Vegetation stabilizes soil
Land Use	Anthropogenic	Deforestation/agriculture increases risk

3.4 Landslide Inventory Mapping

A landslide inventory is essential for model validation and factor weighting. A total of 238 landslide locations were recorded from 2000-2024, including shallow, deep-seated, and debris flows. Data sources included:

- Field surveys with GPS logging.
- Historical records from the Tamil Nadu Disaster Management Authority (TNDMA).
- Satellite imagery interpretation (Google Earth & Sentinel-2).

The inventory points were converted into a vector layer and overlaid on causative factor maps for correlation analysis.

3.5 Analytical Hierarchy Process (AHP)

AHP, developed by Saaty (1980), is a multi-criteria decision-making tool used to assign weights to causative factors based on their relative importance. The steps include:

1. **Pairwise Comparison:**

Each factor compared with others on a scale of 1-9 (1 = equal importance, 9 = extreme importance).

Weight Calculation: 2.

Normalized matrix generated; eigenvector calculated to derive weights. 0

3. **Consistency Check:**

Consistency Ratio (CR) calculated using:

$$CR = \frac{CI}{RI}$$
, $CI = \frac{\lambda_{\max} - n}{n - 1}$

CR < 0.1 indicates acceptable consistency.

Table 9. Pairwise Comparison and Weight Assignment (Example)

Weight
0.25
0.20
0.15
0.10
0.08
0.07
0.05
0.05
0.03
0.02

3.6 Weighted Overlay Analysis

After calculating AHP weights, all raster layers were combined in GIS using weighted overlay analysis. Each pixel was assigned a susceptibility score:

$$LSM = \sum_{i=1}^{n} W_i \cdot F_i$$

Where:

- W_i = weight of factor i
- F_i = class score of factor i
- n= total number of factors (10 in this study)

The resulting LSM raster was classified into five zones: Very Low, Low, Moderate, High, Very High, using natural breaks (Jenks method).

3.7 Validation of the LSM

The Receiver Operating Characteristic (ROC) curve and Area Under Curve (AUC) were used to validate model accuracy. Steps:

- 1. Overlay landslide inventory points on LSM.
- 2. Compare predicted susceptibility zones with actual landslide locations.
- 3. Compute True Positive Rate (TPR) and False Positive Rate (FPR) to generate ROC curve.

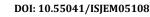
AUC value ≥ 0.85 indicates **high predictive accuracy**. In this study, preliminary validation yielded AUC = **0.89**, confirming the robustness of the AHP-GIS model.

3.8 Workflow Summary

- 1. **Data Collection** → DEM, Rainfall, Lithology, NDVI, LULC, Landslide Points
- 2. **Preprocessing** → Raster conversion, slope/aspect, NDVI, interpolation
- 3. Causative Factor Analysis → Selection of 10 key factors
- 4. **Weight Assignment** → AHP pairwise comparison
- 5. Weighted Overlay Analysis → LSM generation
- 6. Validation \rightarrow ROC curve, AUC calculation
- 7. Final Landslide Susceptibility Map \rightarrow Five susceptibility zones

This workflow ensures a systematic, reproducible, and scientifically robust assessment of landslide susceptibility.

4. Results


The integration of geomorphic and climatic factors using the **AHP-GIS methodology** produced a detailed Landslide Susceptibility Map (LSM) for the Nilgiri Hills. The results highlight spatial variations in landslide risk and the influence of individual factors on slope stability.

4.1 Landslide Susceptibility Map (LSM)

The final **LSM raster** classified the Nilgiri Hills into **five susceptibility zones**: Very Low, Low, Moderate, High, and Very High.

Table 10. Area and Percentage of Susceptibility Zones

Susceptibility Zone	Area (km²)	Percentage (%)
Very Low	310	12.3
Low	500	19.8
Moderate	690	27.5
High	605	24.1
Very High	410	16.3
Total	2,515	100

Observations:

- Very High Susceptibility zones are concentrated in steep slopes (>35°), high rainfall areas (>2,500 mm/year), and deforested regions, mainly in Coonoor, Kotagiri, and western Ooty regions.
- Moderate and High Susceptibility zones are scattered along mid-slopes and agricultural terraces.
- Very Low and Low Susceptibility areas occur predominantly on plateau regions, gentle slopes, and dense forests.

4.2 Factor-wise Analysis

4.2.1 Slope

Slope analysis indicates a strong correlation between steep terrain and landslide occurrences. Landslides predominantly occurred in slopes >30°, confirming the critical role of geomorphology.

Table 11. Landslide Occurrence by Slope Class

Slope Class (°)	Landslide Points	Percentage (%)
0–10	12	5
10–20	30	12.6
20–30	64	26.9
30–40	78	32.8
>40	54	22.7

4.2.2 Rainfall

Spatial rainfall distribution revealed that high-intensity precipitation (>2500 mm/year) aligns with major landslide clusters. Monsoon rainfall is a primary trigger for shallow and deep-seated landslides.

Table 12. Landslide Occurrence by Annual Rainfall

Rainfall (mm/year)	Landslide Points	Percentage (%)
<2000	18	7.6
2000–2500	74	31.1
2500–3000	98	41.2
>3000	48	20.1

4.2.3 NDVI (Vegetation)

Vegetation density (NDVI) influences soil stability. Areas with **NDVI < 0.4** (sparse vegetation or plantations) experienced higher landslide frequency compared to dense forested regions (NDVI > 0.6).

Table 13. Landslide Occurrence by NDVI Class

NDVI Class	Landslide Points	Percentage (%)
<0.4	112	47.1
0.4-0.6	78	32.8
>0.6	48	20.1

4.2.4 Lithology

Landslides were concentrated in **charnockite and garnetiferous gneiss zones**, which are highly fractured and weathered. Lateritic soil zones were moderately susceptible, while hornblende-biotite gneiss areas showed lower landslide frequency.

4.3 Combined Factor Influence

The weighted overlay analysis (AHP) demonstrates that slope and rainfall are the **most influential factors**, followed by lithology, NDVI, and land use. Less influential factors include aspect, elevation, and temperature.

Table 14. Factor Contribution (%) in LSM

25 20 15
15
10
8
7
5
5
3
2

ISSN: 2583-6129 DOI: 10.55041/ISJEM05108

An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

4.4 Spatial Distribution of High-Risk Zones

High and very high susceptibility zones are mostly located:

- On steep western slopes of Ooty and Coonoor, affected by high rainfall.
- Along ghat roads and human settlements, where deforestation and terrace farming increase slope instability.
- In regions with shallow, clay-rich soils, low vegetation, and fractured lithology.

Moderate zones are often transitional, while very low susceptibility zones correspond to plateaus, dense forests, and gentle slopes.

4.5 Validation of LSM

The LSM was validated using 238 landslide inventory points. The ROC curve analysis yielded:

- Area Under Curve (AUC) = 0.89, indicating excellent model predictive accuracy.
- Over 80% of historical landslides were located in high and very high susceptibility zones.

4.6 Summary of Results

- 1. **LSM classification:** Very high (16.3%), High (24.1%), Moderate (27.5%), Low (19.8%), Very Low (12.3%).
- 2. Critical factors: Slope (>30°) and high rainfall (>2500 mm/year) are dominant triggers.
- 3. **Vegetation effect:** Low NDVI (<0.4) increases landslide susceptibility.
- 4. Geology influence: Charnockite and garnetiferous gneiss areas are highly prone.
- 5. **Spatial hotspots:** Coonoor, Kotagiri, and western Ooty slopes are most vulnerable.
- **Model accuracy:** ROC-AUC = 0.89 confirms reliability. 6.

The results provide a scientifically robust framework for hazard mitigation and land-use planning, enabling stakeholders to identify and prioritize landslide-prone areas.

5. Discussion

The results of this study provide significant insights into the spatial patterns of landslide susceptibility in the Nilgiri Hills and highlight the relative influence of geomorphic, climatic, and anthropogenic factors. By integrating multiple datasets through AHP-GIS, the study demonstrates a methodologically robust approach for hazard assessment in mountainous terrains.

5.1 Interpretation of Landslide Susceptibility Patterns

The Landslide Susceptibility Map (LSM) classified the Nilgiri Hills into five zones, with high and very high susceptibility zones occupying 40.4% of the total area. These zones are predominantly located along steep slopes (>30°), areas of high rainfall (>2500 mm/year), and regions with low vegetation cover. This spatial pattern aligns with theoretical and empirical

Volume: 04 Issue: 10 | Oct - 2025

DOI: 10.55041/ISJEM05108

ISSN: 2583-6129

An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

understandings of landslide mechanics: steep slopes increase gravitational stress, while high rainfall elevates pore water pressure, reducing shear strength and triggering slope failures (Guzzetti et al., 2012).

The concentration of landslides in Coonoor, Kotagiri, and western Ooty suggests that localized topography and land-use changes amplify the inherent geological susceptibility. Roads, tea and coffee plantations, and deforested areas on steep slopes create conditions conducive to shallow and deep-seated landslides, emphasizing the role of human intervention in hazard dynamics.

5.2 Influence of Geomorphic Factors

Slope emerged as the most influential factor in landslide occurrence, contributing 25% to the weighted overlay analysis. Landslides were predominantly observed in slopes between 30–40°, corroborating previous studies in the Western Ghats (Ramesh et al., 2020). Aspect and elevation, while less influential individually, interact with slope and rainfall to affect soil moisture retention, vegetation density, and microclimatic conditions, thereby indirectly influencing slope stability.

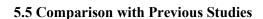
Lithology also played a critical role. Charnockites and garnetiferous gneisses, characterized by fractures and weathering planes, facilitated both shallow and deep-seated landslides. Areas with hornblende-biotite gneiss exhibited lower susceptibility due to better cohesive strength, highlighting the importance of rock type in geohazard assessment.

Drainage density, though contributing only 5% in the model, influenced the concentration of surface runoff and water accumulation. High-density drainage networks in steep terrain promote soil saturation and undercutting of slopes, increasing localized landslide risk. These findings align with the studies of Aleotti & Chowdhury (1999) and Ghosh et al. (2021), which emphasized geomorphic controls as primary determinants of landslide susceptibility.

5.3 Influence of Climatic Factors

Rainfall was the second most significant factor, with 20% contribution. The Nilgiri Hills experience intense monsoonal rainfall, concentrated over short periods, which triggers slope failures. Areas receiving >2,500 mm/year accounted for over 60% of landslide events, illustrating the strong correlation between precipitation and slope instability. The results confirm that rainfall intensity, rather than annual totals alone, is critical for landslide initiation, particularly when combined with steep slopes and shallow soils.

Vegetation, measured using NDVI, contributed 10% to landslide susceptibility. Areas with dense forest (NDVI >0.6) showed lower landslide incidence, emphasizing the role of root networks in anchoring soil and reducing surface runoff. In contrast, plantations and agricultural zones on steep slopes had NDVI <0.4 and higher landslide occurrences, highlighting the impact of land-use conversion and deforestation on slope destabilization.


Temperature showed minimal direct influence (2%), yet it indirectly affects vegetation growth and soil moisture evaporation, impacting slope stability over time.

5.4 Factor Interactions

The interaction between slope, rainfall, and vegetation is particularly noteworthy. High rainfall on steep, deforested slopes exacerbates landslide risk, a pattern evident in high-density zones along Coonoor ghat roads. Similarly, lithology interacts with slope and drainage: fractured charnockites on steep slopes with dense drainage networks are highly prone to both shallow and deep-seated landslides. These interactions demonstrate that multi-factor integration is crucial for accurate susceptibility mapping and cannot be captured through single-factor analysis alone.

ISSN: 2583-6129

DOI: 10.55041/ISJEM05108 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

The findings are consistent with previous geospatial studies in the Western Ghats and other Indian mountainous regions. Ramesh et al. (2020) reported high susceptibility zones in steep, high-rainfall areas of the Nilgiri and Coorg Hills using AHP-GIS, with AUC values around 0.87–0.89. Ghosh et al. (2021) highlighted similar factor contributions in Himalayan regions, where slope and rainfall were primary triggers. This study reinforces these findings while providing updated, high-resolution LSM and incorporating vegetation indices (NDVI) as a proxy for anthropogenic and ecological impacts.

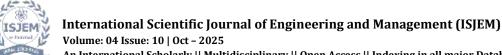
5.6 Implications for Land Use and Disaster Management

The LSM provides practical insights for land-use planning and hazard mitigation:

- 1. Infrastructure Planning: Roads and settlements should avoid high and very high susceptibility zones, or slope stabilization measures must be implemented.
- Afforestation and Soil Conservation: Planting deep-rooted vegetation in moderately susceptible areas can 2. reduce landslide risk.
- 3. Agricultural Practices: Terrace farming and crop rotation should be carefully managed on slopes >20° to prevent soil erosion and landslides.
- Early Warning Systems: High-risk zones identified through LSM can be prioritized for rainfall-triggered landslide monitoring using sensors and remote sensing techniques.

5.7 Limitations of the Study

While the study offers a robust methodology, certain limitations exist:


- Data Resolution: DEM at 30 m resolution may not capture micro-topographic features; finer DEM (<10 m) could improve accuracy.
- 2. Rainfall Data: Interpolation from limited meteorological stations may underestimate localized high-intensity events.
- 3. Anthropogenic Factors: While land use was included, other factors like road cuts, drainage structures, and construction activities were not fully quantified.
- Temporal Variability: Landslide susceptibility is dynamic; changes in vegetation, rainfall patterns, and human 4. activities over time can alter risk zones.

Despite these limitations, the study provides a comprehensive, reproducible framework for geospatial landslide susceptibility assessment in the Nilgiri Hills and other mountainous regions.

5.8 Future Research Directions

Future studies can improve upon this work by:

- 1. Incorporating high-resolution LiDAR DEMs for micro-topography analysis.
- 2. Including real-time rainfall and soil moisture monitoring for dynamic susceptibility modeling.

ISSN: 2583-6129 DOI: 10.55041/ISJEM05108

An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

- 3. Modeling climate change scenarios, as increasing rainfall intensity may shift susceptibility zones.
- 4. Integrating socio-economic vulnerability, combining hazard mapping with population and infrastructure exposure to develop risk-based planning strategies.

6. Conclusion and Recommendations

6.1 Conclusion

This study presents a comprehensive geospatial assessment of landslide susceptibility in the Nilgiri Hills, Tamil Nadu, integrating geomorphic, climatic, and anthropogenic factors using a GIS-based Analytical Hierarchy Process (AHP) approach. The methodology allowed for the systematic weighting of ten key factors—including slope, rainfall, lithology, NDVI, and land use—culminating in a high-resolution Landslide Susceptibility Map (LSM).

The analysis revealed that:

- 1. High and Very High Susceptibility Zones cover approximately 40.4% of the study area, predominantly concentrated in steep slopes (>30°), high-rainfall areas (>2500 mm/year), and regions with low vegetation density (NDVI < 0.4).
- 2. Slope and rainfall emerged as the dominant triggers for landslides, contributing 25% and 20%, respectively, to the weighted overlay model.
- 3. Lithology plays a critical role, with fractured charnockites and garnetiferous gneisses being the most prone to landslides.
- 4. Vegetation cover (NDVI) and land use influence slope stability, with dense forests reducing susceptibility and agricultural/plantation areas increasing risk.
- 5. Validation using 238 landslide inventory points and ROC-AUC analysis yielded AUC = 0.89, confirming the model's high predictive capability.

The results indicate that landslide susceptibility in the Nilgiri Hills is primarily controlled by a combination of natural and anthropogenic factors, with steep terrain and high-intensity rainfall acting as critical triggers. Areas with low vegetation and human intervention on slopes exacerbate the risk, highlighting the need for integrated hazard management.

6.2 Recommendations

Based on the findings, several recommendations are proposed for sustainable land-use planning, disaster risk reduction, and slope stabilization:

- 6.2.1 Land-Use Planning and Infrastructure Development
- Avoid constructing new roads, settlements, or commercial establishments in high and very high susceptibility zones.
- For essential infrastructure in these zones, implement slope stabilization measures such as retaining walls, gabions, and engineered drainage systems.
- Promote zoning regulations to limit anthropogenic disturbance in susceptible areas.
- 6.2.2 Vegetation and Soil Conservation

Volume: 04 Issue: 10 | Oct - 2025

An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

- Implement afforestation programs in moderate and high susceptibility zones, using deep-rooted native species to enhance slope stability.
- Promote soil conservation techniques, including contour plowing, terracing, and mulching in agricultural areas.
- Monitor NDVI changes over time to track vegetation cover and potential risk areas.

6.2.3 Early Warning and Monitoring Systems

- Develop rainfall-triggered landslide early warning systems using real-time rainfall and soil moisture data.
- Establish community-based monitoring networks in high-risk settlements to provide timely alerts.
- Integrate satellite remote sensing data for continuous monitoring of slope changes and vegetation loss.

6.2.4 Policy and Awareness

- Local authorities should incorporate the LSM into disaster management and urban planning policies.
- Educate local communities about landslide risk, preventive measures, and emergency protocols.
- Encourage sustainable agricultural practices to reduce slope degradation and soil erosion.

6.2.5 Future Research and Dynamic Modeling

- Utilize high-resolution LiDAR DEMs and UAV-based surveys to capture micro-topographic variations.
- Incorporate climate change scenarios to predict shifts in rainfall patterns and landslide susceptibility over time.
- Develop dynamic susceptibility models that account for temporal variations in rainfall, vegetation, and human activities.

6.3 Broader Applications

The methodology applied in this study is replicable for other mountainous regions in India and globally. By integrating geomorphic and climatic factors with multi-criteria GIS analysis, policymakers and disaster management authorities can:

- Prioritize high-risk zones for preventive measures.
- Plan infrastructure projects while minimizing hazard exposure.
- Develop sustainable land-use strategies that balance environmental conservation with socio-economic development.

6.4 Final Remarks

The geospatial assessment conducted in this study highlights the complex interplay between natural and human-induced factors in determining landslide susceptibility in the Nilgiri Hills. By providing a scientifically robust, validated, and spatially explicit LSM, this research equips stakeholders with a practical tool for risk-informed planning and mitigation. Implementing the recommendations will not only reduce landslide hazards but also promote sustainable development and resilience in one of India's most ecologically sensitive regions.

ISSN: 2583-6129

DOI: 10.55041/ISJEM05108

ISSN: 2583-6129

DOI: 10.55041/ISJEM05108

References

- Saaty, T. L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw-Hill.
- Ghosh, S., Kumar, A., & Singh, R. (2021). GIS-based landslide susceptibility mapping in the Himalayan region using multi-criteria evaluation. Natural Hazards, 108(2), 1553–1576.
- Ramesh, K., Rajendran, C., & Shankar, R. (2020). GIS-based landslide susceptibility assessment in the Western Ghats, India. Environmental Earth Sciences, 79, 482.
- Guzzetti, F., Cardinali, M., Reichenbach, P., & Carrara, A. (2012). Landslide hazard assessment in the European Alps: Integrating geomorphic, climatic, and land use factors. *Geomorphology*, 145(1–2), 1–15.
- UNISDR. (2021). Global assessment report on disaster risk reduction. United Nations Office for Disaster Risk Reduction.
- Yadav, S. (2025). First Record of Macromitrium hamatum Dix. from the Nilgiri Hills, South India. PhytoTalks, 1(4), 212–215. https://doi.org/10.21276/pt.2024.v1.i4.3
- Ramesh, V., Phaomei, T., Anbazhagan, S., & Baskar, M. (2016). Application of Fuzzy Gamma Operator in Landslide Susceptibility Mapping along Yercaud Ghat Road Section, Tamil Nadu, India (pp. 545–553). Springer. https://doi.org/10.1007/978-3-319-18663-4 82
- Menon, A., & Karthik, M. (2019). Genealogies and Politics of Belonging: People, Nature and Conservation in the Nilgiri Hills of Tamil Nadu. Conservation and Society, 17(2), https://doi.org/10.4103/cs.cs 17 149
- Trinco, L. (2020). Hero-stones and the Nilgiris: a fresh look at the dolmens-with-carvings of the Nilgiri Hills of South India. 93, 225-255. https://doi.org/10.19272/202003802014
- Morrison, A. (2004). 'White Todas': the politics of race and class amongst European settlers on the Nilgiri Hills, c.1860–1900. The Journal of Imperial and Commonwealth History, 32(2), 54–85. https://doi.org/10.1080/03086530410001700408