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Abstract—Diseases of plants are a major risk factor for world 

agriculture, causing severe crop loss and decreased food yields. 

This paper discusses the usage of deep learning models, that is 

InceptionV3 and InceptionResNetV2, in plant disease 

classification using the PlantVillage dataset. Preprocessing 

methods like the removal of duplicates and blur from images 

are performed to improve the performance of the model, and 

then data augmentation is used for enhanced learning. The 

data is systematically split into training, validation, and test 

sets to facilitate proper evaluation. Performance of the model 

is evaluated based on accuracy, precision, recall, and F1-

score. The outcomes reveal that data augmentation 

significantly improves classification performance, with 

InceptionResNetV2 performing better than InceptionV3 in 

accuracy. Additionally, visual inspection of training patterns 

and mistakes gives insight into the strengths and weaknesses of 

the model. This study showcases the capability of deep 

learning in early detection of plant diseases and can lead to less 

crop loss and increased agricultural productivity. 
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I. INTRODUCTION 

Agriculture is one of the most dominant industries in 

international food production with crops such as tomatoes, 

potatoes, and bell-pepper being farmed extensively because of 

their nutritious and economic properties. These vegetables play 

a pivotal role in some diets and industry and are valuable 

contributors to food security and the economy. One of the 

principal challenges, nonetheless, is that plant diseases is 

necessary to prevent extensive loss and ensure sustainable 

agriculture. Treatment differs for each of these types of 

diseases, and if it is delayed or fails, more loss can be 

incurred.[1] Conventional methods of disease detection use 

manual inspection, which may be time-intensive, laborious, and 

less accurate. To overcome these challenges, scientists are 

investigating deep learning-based methods for plant disease 

detection automation with enhanced accuracy and effectively. One 

of the most communal algorithms in deep learning is the 

convolutional neural network (CNN)[1] Deep learning models 

have set outstanding performance in image classification, and 

therefore they are highly suitable for detecting plant disease. 

Of these, InceptionV3 and InceptionResNetV2 are commonly 

employed to extract intricate features of images so that 

healthy and diseased leaves can be better classified. However, 

several challenges, such as limited and imbalanced datasets, 

low- quality images, and model overfitting, can affect the 

accuracy and reliability of these models. To address these 

issues, this study applies image preprocessing techniques like 

duplicate exclusion and blur detection, along with data 

augmentation methods, to enhance model generalization and 

performance. 

 

 

1.1 Research Problem and Significance 

This study aims to answer the following research question: 

 

“How effectively can InceptionV3 and InceptionResnetV2 

classify plant disease in tomatoes, potatoes, and bell 

peppers, and how does data augmentation impact their 

performance?” 

 

The significance of this research lies in its potential to 

improve early disease detection, helping farmers take 

timely actions to reduce crop losses and enhance 

productivity. By leveraging deep learning, this study 

contributes to the development of automated disease 

detection systems that can support precision farming, 

reduce dependency on chemical pesticides, and promote 

sustainable agricultural practices. This paper is organized 

into four sections. Section 1 gives related works; section 2 

awards the suggested method and outlines the architecture 

and data augmentation methods employed in aspect. 

Section 3 provides the results and negotiations that the 

final section, a conclusion will be presumed, which 

presents 

[1] a summary of the findings from the experiments that 

have stood carried out.[1] 

 

Comparison: InceptionV3 vs. InceptionResnetV2 

 

Feature InceptionV3 InceptionResnetV2 

Architecture Type Inception-based Inception + Resnet 

Residual Connections No Yes 
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Depth ~48 layers ~164 layers 

Training Speed Faster Slightly slower due 

to deeper 

architecture 

Accuracy High Higher than 

InceptionV3 

Table-1: InceptionV3 vs. InceptionResnetV2 

 

Table-1: This comparison highlights the main distinctions between 

InceptionV3 and InceptionResnetV2, two advanced deep learning 

architectures widely utilized for image classification tasks, 

including the detection of plant disease. 

 

II. LITERATURE SURVEY 

 

Several studies have explored the use of deep learning techniques 

for plant disease classification, focusing on various crops and 

architectures. Firnando et al. (2024) analyzed InceptionV3 and 

InceptionResnetV2 for rice leaf disease classification, achieving 

an impressive 99.53% accuracy on one dataset but significantly 

lower performance on others, highlighting the challenge of model 

generalization across datasets. [1] Similarly, Steininger et al. 

(2023) introduced the CropAndWeed dataset, conducting 

benchmark experiments using multiple deep learning models. 

However, the study did not provide detailed accuracy metrics for 

specific models and tasks, indicating a gap in understanding their 

effectiveness in different real-world scenarios.[2] 

Lambat et al. (2022) focused on plant disease detection using 

InceptionV3 and achieved a test precision rate of 93%, 

demonstrating the potential of this architecture for classification 

tasks. However, the research lacked an analysis of model 

performance under different augmentation techniques, which is 

crucial for robustness.[3] Saeed et al. (2023) proposed a CNN-

based transfer learning approach for tomato leaf disease detection 

but reported a comparatively lower accuracy of 50%, suggesting 

limitations in model training or dataset quality.[4] Meanwhile, 

Tamble et al. (2023) utilized CNNs for potato leaf disease 

classification, achieving 99.1% accuracy. However, their study 

did not consider the impact of data augmentation or cross-dataset 

validation, which limits its generalizability.[5] 

 

Ahmed et al. (2022) developed a lighter and faster deep neural 

architecture using MobileNetV2 for tomato leaf disease 

classification, obtaining an accuracy of 99.30%. While the study 

highlights efficiently and accuracy, it does not explore model 

performance in resource-constrained environments or its 

scalability to other crops. 

Despite significant progress in plant disease classification, 

research gaps remain. Most studies focus on a single crop and do 

not analyze generalization across multiple datasets or the effect 

of data augmentation techniques. Furthermore, while some 

models achieve high accuracy, their performance under real-

world conditions, including variations in lighting, 

background noise, and unseen disease classes, is not 

extensively studied. [6] Addressing these gaps by 

incorporating comprehensive data augmentation strategies 

and multi-crop evaluation can enhance the robustness and 

the use of deep learning models for classifying plant 

diseases. 

 

III. METHODOLOGY 

 

Fig.1: Plant Disease Classification Workflow 

 

Data collections, pre-processing of the data, data 

augmentation, and disease classification structure the main 

four stages of the methodology defined in this paper.[5] 

Fig.1 indications the workflow consists of the following 

key stages 

1. Data Acquisition 

The dataset used in this study is collected from 

the plantVillage repository, which consists of 

images of tomato, potato, and bell pepper leaves 

affected by various diseases. The dataset 

includes healthy and diseased leaf samples. 
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Table.2: Distribution of samples in the dataset 

Class Label Sample Count 

Bacterial Spot 3,124 

Early Blight 1,000 

Late Blight 1,909 

Leaf Mold 952 

Septoria Leaf Spot 1,771 

Two-spotted Spider Mites 1,676 

Target Spot 1,404 

Yellow Leaf Curl Virus 5,357 

Tomato Mosaic Virus 373 

Healthy 3,221 

Total 20,787 

 

This Table.2 represents the distribution of different 

disease classes in my dataset. Each row indicates a 

specific plant condition (either a disease or a healthy 

state), along with the number of images available for 

that class. The Total row sums up all the sample counts 

across categories, confirming that my dataset from 

Kaggle consists of 20,787 images.[7] 

 

2. Exploratory Data Analysis (EDA) 

EDA is performed to understand the dataset’s 

characteristics, including: 

• The distribution of images across different 

classes (healthy vs. diseased) 

• Identifying class imbalances, which may 

affect model performance. 

• Detecting duplicate or blurred imaged to 

ensure data quality.[8] 

 

3. Partitioning the Dataset 

The dataset is split into training used for training the 

model, validation helps tune hyperparameters and 

prevent overfitting and test evaluates the final 

performance of the trained model on unseen data. The 

splitting of the dataset for training (78.74%), testing 

(0.97%) and validation (20.29%) is passed out.[5] 

 

4. Image Preprocessing 

This step ensures uniformity in image quality and 

resolution, which improves model performance. It 

consists of Resizing and Rescaling involves 

standardizing image dimensions and normalizing pixel 

values to ensure consistency across the dataset.[9] Data 

augmentation is applied through transformations such as 

rotation, flipping, zooming, and brightness adjustments 

to artificially expand the dataset and improve model 

generalization. 

 

5. Model Building 

This phase involves utilizing two deep learning 

architectures, InceptionV3 and InceptionResnetV2. 

InceptionV3 is a lightweight model designed for 

efficiency and optimized for faster 

computations, making it well-suited for 

scenarios where speed is a priority. In contrast, 

InceptionResnetV2 is as deeper architecture that 

integrates residual connections, allowing for 

improved accuracy by enabling better gradient 

flow and feature learning. Both models are 

trained separately on the preprocessed images to 

learn distinct disease patterns and enhance 

classification performance.[10] 

 

6. Model Validation 

The trained models are evaluated using the 

validation dataset to fine-tune hyperparameters 

and prevent overfitting. Their performance is 

assessed using metrics such as accuracy, 

precision, recall, and F1- score, ensuring reliable 

classification. Based on these evaluations, the 

best-performing model is selected for final 

testing. 

 

7. Final Model Testing and Conclusion 

After validation, the models are testing on the 

test dataset to evaluate their real-world 

performance. The study compares InceptionV3 

and InceptionResnetV2 based on accuracy, 

robustness, computational efficiency, and their 

suitability for real-time plant disease 

classification. 

 

This workflow ensures a systematic approach to 

classifying tomato, potato, and bell pepper diseases using 

deep learning. The results will help in identifying the most 

effective model for plant disease detection, aiding in early 

intervention and improved crop health management. [11] 

 

IV. RESULT 

 

1. Presentation of Findings 
 

Fig.2: Distribution of Image Widths for Each 

Class The above Fig.2 illustrates the distribution of 

image widths 
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across various classes in our dataset. Each class represents a 

different type of plant disease or healthy conditions, and the x- axis 

lists these classes. The y-axis represents the width of the images in 

pixels. The dashed line across the plot indicates that the image 

widths are consistent across all classes, with a central tendency 

around 256 pixels. Maintaining uniformity is a crucial step in the 

data preprocessing pipeline, ensuring that the images are suitable 

for training robust and accurate machine learning models. 

 

 
Fig.3: Class Distribution Pie Chart 

 

The Fig.3 displays a pie chart representing the distribution of 

different classes in a dataset correlated to plant healthy, 

specifically focusing on various diseases moving peppers, 

potatoes, and tomatoes. Each segment of the pie chart represents 

the proportion of each class inside the dataset, with all classes 

showing uniform distribution at approximately 6.7%. If all 

categories have equal percentage (6.7%), it suggests: 

• Total number of categories = N 

• Each category’s percentage = 6.7% 

• The sum of all category percentages must be 100%: 

N * 6.7 = 100 

 

 
Fig.4: Bar chart depicting the distribution of various 

labels related to plant diseases. 

 

The bars appear to have relatively uniform heights, 

suggesting that the labels are evenly distributed in the 

dataset. Each label has a similar count, indicating a 

balanced representation of healthy and diseased states for 

both peppers and potatoes. This visualization helps in 

understanding how well-represented each category is, 

which is important for tasks such as training machine 

learning models for plant disease classification. 

Uniform representation can lead to better generalization in 

predictive tasks. 

• Solving for N: 

N = 100/6.7 = 14.93 

 

Formula for Uniform Distribution 
 

If all categories have equal distribution, each category’s percentage 

is: 

Fig.5: Model accuracy during training over several epochs 

Category Percentage = 100/N Where 

N is the number of categories. 

 

Verification with 15 Categories 

100/15 = 6.67 ~ 6.7% 

 

This formula calculates the proportion of instances in a specific 

class relative to the total instances, expressed as a percentage. This 

visualization helps in considerate the balance or imbalance in the 

dataset, which is critical for training machine learning models 

effectively. A balanced dataset usually aids in better model 

performance. 

In machine learning, accuracy measures how often a model 

correctly predicts outcomes, calculated as the ratio of correct 

predictions to the total number of predictions.[12] 

 

 

Accuracy = Number of correct Predictions ––––––

–––– –––––––––––––– 

Total Number of Predictions 

 

Or, in terms of confusion matrix values: 

 

Accuracy = TP + TN 

––––––––––––––

––––– TP + TN 

+ FP + FN 
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Where: 

• TP = True Positives (correct positive predictions) 

• TN = True Negative (correct negative predictions) 

• FP = False Positive (incorrect positive predictions) 

• FN = False Negative (incorrect negative predictions) 

 

The Fig.5 shows a line graph comparing the training accuracy and 

validation accuracy of a machine learning model over 30 epochs. 

X-Axis represents the number of epochs, ranging from 0 to 30. Y-

Axis represents the accuracy of the model, ranging from 0.45 to 

0.85. Training Accuracy (Blue Line) indicates how well the model 

is learning from the data.[9] Validation Accuracy (Orange Line) 

reflects the model’s performance on unseen data, helping detect 

overfitting or underfitting. 

 

Fig.6: Classification Report 

 

A classification report is a act evaluation metric used in machine 

learning to evaluate how well a classification model predicts 

categorical labels. The Fig.6 grants a classification report for a 

multi-class classification problem. It contains precision, recall, f1-

score, and support for each class, along with overall accuracy, 

macro average, and weighted average. 

[3]This type of report is typically generated using 

sklearn.metrics.classification_report() in python Formulas of 

components of a classification report 

1. Precision = TP 

––––––––– 

TP + FP 

 

2. Recall = TP 

––––––––– 

TP + FN 

 

3. F1-Score = 2 * Precision * Recall 

–––––––––––––––––– 

Precision + Recall 

 

4. Macro Average: The arithmetic Mean of precision, 

recall, and F1-score across all classes (treats all 

classes equally) 

 

5. Weighted Average: Similar to macro average, but it 

takes into account the number of samples in each 

class, creating it more useful when classes are 

imbalanced.[7] 

 

Fig.7: Confusion Matrix 

 

The given image signifies a confusion matrix, which is a 

table used to evaluate the performance of a classification 

model.[13] It presents the true class labels alongside the 

predicted class labels, which each row corresponds to the 

actual class, and each column represents the predicted 

class. Insights derived from the confusion matrix help 

assess model performance in Fig.7 

• Diagonal elements represent correctly 

classified instances. 

• Off-diagonal elements specify misclassification 

• Certain classes (e.g., 

“Tomato_YellowLeaf_Curl_Virus”) show 

higher prediction counts, while others have 

significant misclassification. 

• Model performance is poor if 

misclassifications are high.[13] 

 

Fig.8: ROC Curve 
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Fig.8 shows a Receiver Operating Characteristics (ROC) curve, 

which is a graphical representation used to estimate the 

performance of a classification model. It describes the trade- off 

between the True Positive Rate (TRP) and the False Positive Rate 

(FPR). X-Axis (False Positive Rate) embodies the proportion of 

negative cases that are mistakenly classified as positive. Values 

range from 0 to 1.Y-Axis (True Positive Rate) signifies the 

proportion of actual positive cases that are correctly known. 

Values also range from 0 to 1.[14] 

 

Comparison of Different Classes 

The legend on the right finds different disease categories for 

various plants: 

• Peppers: Several conditions such as bacterial spots 

and healthy instances. 

• Potatoes: Various blight conditions and their 

respective healthy instances. 

• Tomatoes: Multiple disease states with corresponding 

AUC values. 

 

The ROC curve is essential for assessing and comparing the 

effectiveness of different models in plant disease classification. A 

higher AUC denotes better model robustness, making it 

instrumental in crop disease management strategies. 

[15]This analysis aids in understanding in which plant disease can 

be detected with the least false alarms, ultimately supporting 

effective agricultural practices. 
 

Fig.9: Image Analysis 

 

The model secreted the given leaf as “Pepper_bell_healthy”, 

conforming if free from disease. The model recognized a uniform 

leaf texture, consistent color, and well-defined vein structure, 

representing a healthy state. Through preprocessing and data 

augmentation, the model’s capability to differentiate between 

healthy and diseased leaves was significantly heightened, 

improving its robustness. This accurate classification highlights 

the model’s effectiveness in plant health monitoring, reinforcing 

its potential for precision agriculture and early disease detection to 

care sustainable farming practices.[16] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10: Image Analysis 

 

The model classified the leaf as 

“Tomato_Septoria_leaf_spot”, indicating the presence of 

Septoria leaf spot disease. The classification was based on 

distinctive yellow spots with dark brown centers, a key 

symptom of the disease. Deep feature extraction enabled 

accurate differentiation from other tomato diseases. This 

detection is crucial forearly intervention, helping prevent 

disease spread and ensuring better crop health 

management. 
 

Fig.11: Image Analysis 

 

The model classified the leaf as “Tomato_Late_blight”, 

indicating Late Blight disease. The prediction was based 

on irregular grayish-green lesions and possible fungal 

growth, key symptoms of Phytophthora infestans 

infection. Deep feature extraction enabled accurate 

detection, supporting early intervention to prevent severe 

crop loss. This classification reinforces the model’s role 

in precision agriculture and effective disease 

management. 
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Fig.12: Map Analysis of Crop Distribution in India 

 

The map illustrates the distribution of tomato, potato, and bell- 

pepper cultivation across various states in India. 

Color Coding: 

• Green Areas: Represents states predominantly 

cultivating tomatoes. 

• Red Areas: Indicate regions where bell peppers are 

chiefly grown. 

• Brown Areas: Highlight states known for potato 

cultivation. 

• White Areas: Refer to regions where none of the 

three crops are significantly produced. 

 

This color-coded representation provides a clear visual exposition 

of the geographical preference and suitability for cultivating these 

crops across India, aiding in understanding regional agricultural 

practices and potential for crop diversification. 

 

2. Data Analysis and Interpretation 

The model successfully classified healthy and diseased 

leaves, demonstrating high accuracy in plant disease 

detection It correctly identifies Pepper Bell Healthy, Tomato 

Septoria Leaf Spot, and Tomato Late Blight, leveraging deep 

feature extraction to analyze texture, color variations, and 

lesion patterns.[17] Data augmentation improved robustness, 

ensuring reliable classification across diverse images. The 

findings validate the efficiency of InceptionV3 and 

InceptionResnetV2 in early disease detection of deep learning 

for sustainable farming and food security.[13] 

Implications: 

• Early detection enables timely intervention, 

reducing crop losses. 

• Automated classification supports 

precision agriculture by minimizing 

manual inspection. 

• Scalability allows integration into mobile 
apps and smart farming systems. 

Limitations: 

• Dataset dependency may affect performance in 

real- world conditions. 

• Limited crop types restrict broader 
agricultural applications. 

• Environmental factors may impact accuracy. 

• Computational cost may require 

optimization for mobile deployment. 

Despite these limitations, the study demonstrates the 

potential of deep learning for automated plant disease 

detection, aiding sustainable farming and food 

security.[10] 

 

V. CONCLUSION 

This study demonstrates that InceptionV3 and 

InceptionResnetV2 effectively classify plant diseases, 

accurately distinguishing healthy and diseased leaves based 

on texture, lesion patterns, and color variations. The 

findings confirm that deep learning enhances early disease 

detection, supporting precision agriculture by reducing 

manual inspection efforts and enabling timely 

intervention. The study contributes to the field by 

showcasing the practical application of AI in plant disease 

detection, highlighting its potential for automated crop 

monitoring and improved food security. 

However, dataset limitations, environmental variations, and 

computational constraints suggest the need for further 
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optimization. Future research should focus on expanding the dataset 

with real-world images, integrating more crop types, and 

optimizing models for mobile and edge computing to enhance 

real-world applicability and scalability. 
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