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ABSTRACT 

Physics-based neural networks (pinn’s) have proven to be a promising methodology for combining domain 

knowledge and data control learning, particularly in modeling complex dynamic systems. This study presents 

a hybrid deep learning framework that integrates physics-based limitations for predicting climate variables 

and Bidirectional Long Short-Term Memory (BILSTM). The aim is to predict atmospheric conditions near the 

creation, particularly temperature and geopolitical heights, using continuous observations from the created 

data. The BILSTM model is trained to simultaneously record the underlying time patterns of data and is in 

compliance with the physics of atmospheric processes. The concept of physical loss is introduced. This is 

derived from the simplified thermal diffusion equation to punish violations of the basic energy diffusion 

properties. This loss of physics, combined with the standard loss of standard square error (MSE), ensures that 

the model’s predictions are not only accurate but physically consistent. Comparative reviews show that 

physical models improve predictionstability and achieve greater compliance with physical principles 

compared to purely data-driven baselines. Furthermore, the addition of physics-based regularization improves 

generalization through invisible samples, which helps reduce overadaptation, especially in border regions 

where traditional models often fail. By embedding physical knowledge directly into the training process, this 

model provides a way to reliable and interpretive weather and climate prediction systems that have a more 

comprehensive effect on promoting scientific machine learning in modeling the Earth system. 

 

IndexTerms: Physics-Informed Neural Networks (PINNs), Bidirectional Long Short-Term Memory 

(BiLSTM), Climate Forecasting, Geopotential Height, Temperature Prediction, Diffusion Equation, Physics-

Based Loss, Time Series Forecasting. 

 

1.INTRODUCTION 

Physics-Informed Neural Networks (PINNs) integrate physical laws into the training process of deep neural 

networks, enabling the models to make predictions that conform to known governing equations.[5] This 

makes them especially useful in scientific fields such as climate modeling, where it is crucial to maintain 

physical consistency for accurate forecasts.This project employs a hybrid model that combines Bidirectional 

Long Short-Term Memory (BiLSTM) networks with physics-informed loss functions to enhance the 

prediction of atmospheric variables like temperature and geopotential height.The climate forecasting system is 

built upon time-series data derived from reanalysis datasets, focusing ontemperature fields and geopotential 

height distributions.[9] Each location within the climate grid is analyzed individually, using historical time 

sequences as input to the deep learning model. The BiLSTM architecture is capable of capturing sequential 

dependencies in both forward and backward directions, offering a more complete view of atmospheric 

dynamics over time. To improve the realism of the simulation, a physics-based loss function, grounded in the 

heat diffusion equation, is added. This ensures that predicted temperature fields conform to basic physical 

laws. By incorporating these physical principles, the model not only increases learning efficiency and reduces 
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overfitting but also improves generalization in predicting future climate states. The resulting PINN–BiLSTM 

model provides climate scientists and meteorologists with a robust, interpretable, and physically consistent 

weather prediction tool.[13] 

 

1.1 Existing System 

The existing systems for climate forecasting primarily rely on traditional numerical weather prediction (NWP) 

models and pure data-driven deep learning models.[16] While NWP models are physically accurate, they are 

computationally expensive, require massive resources, and often struggle with high-resolution global 

simulations. On the other hand, pure deep learning models such as standard LSTM or CNNs are efficient but 

lack physical interpretability, often generating outputs that violate known scientific laws. These models treat 

data as independent sequences and ignore the underlying physics that govern atmospheric dynamics. As a 

result, they may perform poorly when generalizing to new or edge-case conditions.[20] Additionally, they 

require large labeled datasets, are prone to overfitting, and may fail to produce reliable predictions in data-

scarce environments. Most models also do not incorporate conservation laws, such as those governing heat 

diffusion, leading to inaccurate or unrealistic forecasts. Current approaches also lack robust mechanisms to 

ensure consistency across spatial and temporal dimensions. Moreover, the absence of physically-informed 

regularization reduces model stability. Consequently, they cannot fully address real-world challenges like 

long-term forecasting, uncertainty quantification, and regional variability. These limitations highlight the need 

for models that balance data-driven learning with physical constraints to enhance reliability. The existing 

system, though advanced, still struggles to deliver physically consistent, efficient, and interpretable weather 

prediction at scale.[14] 

 

1.1.1 Challenges: 

• Lack of Physical Consistency 

Purely data-driven models often ignore physical laws (like heat diffusion), leading to physically unrealistic 

predictions.[8] 

• High Computational Cost in Traditional Models 

Numerical weather prediction (NWP) models are accurate but require heavy computational resources, making 

them impractical for real-time or large-scale deployment. 

• Poor Generalization 

Standard deep learning models often overfit to training data and struggle to generalize to unseen spatial-

temporal scenarios. 

• Handling Noisy or Incomplete Data 

These models perform poorly when working with sparse, incomplete, or noisy datasets, which are common in 

real-world atmospheric data. 

• Sequential Limitations 

Unidirectional models fail to capture backward temporal dependencies, leading to incomplete understanding 

of atmospheric time-series. 

• Limited Scalability Across Regions 

Existing methods don’t generalize well across different geographic locations due to lack of integrated physical 

reasoning.[2] 

 

1.2 Proposed system: 

The proposed system introduces a hybrid deep learning model that integrates Physics-Informed Neural 

Networks (PINNs) with Bidirectional Long Short-Term Memory (BiLSTM) networks to enhance climate 

forecasting accuracy and reliability.[10] Unlike traditional models, this system embeds physical laws—

particularly the heat diffusion equation—directly into the training process through a physics-based loss 

function. It utilizes time-series data from reanalysis datasets, focusing on temperature and geopotential height 
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across a spatial climate grid.[19] The BiLSTM architecture captures both past and future dependencies in 

atmospheric patterns, ensuring a more complete temporal understanding. The PINN component enforces 

physical consistency, helping the model generate scientifically valid outputs even when data is sparse or noisy. 

The use of diffusion-based regularization improves stability and generalization, especially in edge regions 

where traditional models often fail. The model is implemented in PyTorch, and training involves minimizing a 

combined loss: mean squared error and physics-informed loss. A neighbor table is constructed to compute the 

Laplacian efficiently, ensuring the model adheres to physical diffusion behavior. The system demonstrates 

high accuracy, low error rates, and robust generalization to unseen data. Visualizations such as scatter plots 

and heatmaps confirm its predictive precision. By blending data-driven learning with physical principles, the 

proposed model outperforms purely statistical or computational models. It is scalable, interpretable, and 

suitable for real-world deployment in weather prediction tasks. Overall, the proposed system provides a 

scientifically grounded, efficient, and accurate framework for climate forecasting.[7] 

 

 
Fig: 1 Proposed Diagram 

1.2.1 Advantages: 

• Physically Consistent Predictions 

Integrating the heat diffusion equation ensures that predictions align with fundamental physical laws, 

enhancing realism.[11] 

• Improved Accuracy 

The combination of PINNs with BiLSTM improves the model’s ability to accurately forecast temperature and 

geopotential height. 

• Captures Temporal Dependencies 

BiLSTM architecture learns both past and future time dependencies, improving the understanding of 

sequential climate patterns. 

• Better Generalization 

Physics-based regularization reduces overfitting, allowing the model to perform well even on unseen or noisy 

data.[17] 

 

2.1 Architecture: 

1.Input Layer 

The input to the system comes from reanalysis climate datasets like ERA5. These datasets include important 

atmospheric variables such as temperature and geopotential height collected over time. Each data point 

represents climate information at specific grid locations across various time steps. This time-series data serves 

as the foundation for training the prediction model.[4] 

2. Data Preprocessing 

Before feeding the data into the model, it goes through a preprocessing stage. In this step, the temperature and 

geopotential height values are normalized to ensure consistency during training. The data is then converted 



                           International Scientific Journal of Engineering and Management (ISJEM)                                    ISSN: 2583-6129 
                                  Volume: 04 Issue: 07 | July – 2025                                                                                             DOI: 10.55041/ISJEM04872                                                                                                                                         

                                  An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        

 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                                                                |        Page 4 

 

into sequences, where each sequence consists of 20-time steps, and the model learns to predict the next step. 

This prepares the input in a format suitable for time-series analysis. 

3. Neighbours Table Construction 

For each grid point (location) in the dataset, the system calculates its neighboring points — left, right, top, and 

bottom. This is important for applying the Laplacian operator, which is needed to calculate the physics-based 

loss. The neighbor table helps identify how data at each point is related to its surrounding area, which supports 

physical consistency in predictions. 

4. Bidirectional LSTM (BiLSTM) 

The model uses a Bidirectional Long Short-Term Memory (BiLSTM) network to learn from the time-series 

data. This deep learning structure captures patterns in both forward and backward directions of time. That 

means the model not only considers past data but also future trends within the sequence, which improves 

prediction accuracy over time.[12] 

5. Physics-Informed Loss Function 

To make the model’s predictions scientifically accurate, a physics-based loss function is included. This loss is 

based on the heat diffusion equation, which governs how temperature spreads over time. If the model makes a 

prediction that doesn’t follow this physical law, it is penalized, which helps guide the model to learn patterns 

that obey real-world physics.[6] 

 

 

 

 

 

 

Fig:2 Architecture 
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UML DIAGRAMS 

 

 

Fig:3use case diagram 

 

Fig:4 class diagram  

 

2.2 Algorithm: 

1. Bidirectional Long Short-Term Memory (BiLSTM) 

This is a type of Recurrent Neural Network (RNN) that processes time-series data in both forward and 

backward directions. In this project, BiLSTM captures temporal dependencies in atmospheric data, such as 

temperature and geopotential height, enabling better sequence modeling for weather prediction.[18] 

2. Physics-Informed Neural Networks (PINNs) 

PINNs incorporate physical laws (like partial differential equations) into the learning process. In this project, a 

diffusion-based physical loss derived from the heat diffusion equation is introduced. It penalizes physically 

inconsistent predictions, ensuring the model remains scientifically accurate, not just statistically fit. 

3. Mean Squared Error (MSE) Loss 

A standard loss function used in regression problems. It computes the average squared difference between 

predicted and actual values. It forms one part of the total loss function used during model training [15]. 

4. Physics-Based Loss Function 

This custom loss is calculated from the discrepancy between predicted and physically expected behavior, 

based on the Laplacian (second spatial derivative) of the temperature field. It complements MSE loss to 

enforce physical consistency.[3] 
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2.3 Techniques: 

In this project, several important techniques were used to build a reliable and scientifically accurate weather 

prediction model. The Bidirectional LSTM (BiLSTM) helped the model learn from both past and future 

weather data, improving the accuracy of time-series predictions. To ensure the predictions followed real-world 

physical laws, the project used Physics-Informed Neural Networks (PINNs), which integrated knowledge 

from the heat diffusion equation into the learning process. A physics-based loss function was added alongside 

the traditional Mean Squared Error (MSE) loss to penalize physically incorrect predictions, helping the model 

stay consistent with natural behavior. The Adam optimizer was used to train the model efficiently by adjusting 

the learning rate automatically. To prepare the data, normalization was applied so all features were on a 

similar scale, and a sliding window technique was used to create smaller time-sequences (20-time steps) for 

easier model training. The project also built a neighbor table to identify surrounding grid points, which was 

important for calculating the Laplacian—a mathematical method that estimated how temperature changes 

across space. This supported the physics-based loss function. Lastly, various visualization tools like heatmaps, 

scatter plots, and loss curves were used to monitor model performance and understand prediction behavior. 

Together, these techniques allowed the model to produce accurate, stable, and physically meaningful weather 

forecasts.[1] 

 

2.4 Tools: 

• Python 3.8: 

Python was the main programming language used to write the code for the entire project. It provided 

flexibility and support for scientific computing, machine learning, and data handling. 

• PyTorch: 

PyTorch was used to build and train the BiLSTM neural network model. It allowed easy integration of custom 

loss functions, such as the physics-informed loss used in this project. 

• NumPy: 

NumPy handled numerical operations like array transformations and statistical calculations. It helped in data 

preprocessing before feeding it into the model. 

• Xarray: 

Xarray was used to read and manage the multidimensional ERA5 climate data stored in NetCDF files. It 

simplified handling data with multiple time and spatial dimensions. 

• Torch.utils.data: 

This PyTorch utility was used to create custom datasets and data loaders. It helped in efficiently managing and 

feeding data batches into the model during training. 

• Scikit-learn: 

Scikit-learn was used to split the dataset and calculate evaluation metrics like RMSE, MAE, R² score, and 

ROC-AUC. It provided tools to measure how well the model performed. 

• Matplotlib: 

Matplotlib was used to plot graphs and visualizations, such as scatter plots, loss curves, and heatmaps. These 

visual tools helped evaluate and understand the model’s behavior. 

• Jupyter Notebook / VS Code: 

Jupyter Notebook and Visual Studio Code were the coding environments used. They allowed interactive 

development, testing, and visualization of model outputs. 

 

2.5 Methods: 

1. Data Collection and Preprocessing 

The project used atmospheric data (temperature and geopotential height) from the ERA5 reanalysis dataset. 

The data was normalized (mean subtraction and standard deviation scaling) to ensure stability during training. 

2. Sliding Window Sequence Creation 

Time-series data was split into sequences of 20-time steps, with the next time step used as the target. This 

method allowed the model to learn how weather variables change over time. 
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3. Neighbor Table Construction 

For each point on the spatial grid (latitude and longitude), neighboring points (top, bottom, left, right) were 

identified. These were used to compute the Laplacian during physics loss calculation. 

4. Model Building using BiLSTM 

A Bidirectional Long Short-Term Memory (BiLSTM) model was constructed with two layers. It captured 

both forward and backward temporal patterns for better climate forecasting. 

5. Physics-Informed Loss Integration 

A custom physics-based loss was created using the heat diffusion equation. This was combined with the 

standard Mean Squared Error (MSE) loss to ensure predictions followed real-world physics. 

 

3. METHODOLOGY 

3.1 Input: 

The input for this project is climate data taken from the ERA5 reanalysis dataset, specifically focusing on two 

key atmospheric variables: temperature (T) and geopotential height (Z). This data is structured as a time-series 

over a global grid of latitude and longitude points. Each data point represents how these variables change over 

time at specific locations. Before feeding into the model, the data is normalized (by subtracting the mean and 

dividing by the standard deviation) to ensure consistency and improve training performance. The input is then 

divided into sequences of 20-time steps, where each sequence helps the model learn patterns and predict the 

next time step values. 

 
 

Fig:input values 

 

3.2 Method of Process: 

The method of process in this project follows a step-by-step approach to build a weather prediction model 

using Physics-Informed Neural Networks (PINNs) and BiLSTM. First, climate data (temperature and 

geopotential height) is collected from the ERA5 reanalysis dataset. This data is then preprocessed by 

normalizing the values and dividing it into time-series sequences using a sliding window method (20-time 

steps each). Next, a neighbor table is constructed for each spatial point to identify adjacent grid points, which 

are used later for calculating the Laplacian in the physics-based loss. The BiLSTM model is then built to learn 

both forward and backward time dependencies in the data. During training, a combined loss function is 

used—one part is Mean Squared Error (MSE) to ensure accuracy, and the other is a physics-informed loss 

based on the heat diffusion equation to ensure physical correctness. The model is trained using the Adam 

optimizer for 30 epochs. After training, the model is evaluated using performance metrics (like RMSE, MAE, 

R²) and visual tools (like scatter plots, heatmaps, and loss curves) to verify accuracy and consistency. 

 

 

 



                           International Scientific Journal of Engineering and Management (ISJEM)                                    ISSN: 2583-6129 
                                  Volume: 04 Issue: 07 | July – 2025                                                                                             DOI: 10.55041/ISJEM04872                                                                                                                                         

                                  An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        

 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                                                                |        Page 8 

 

3.3 Output: 

The output of this project is the predicted values of atmospheric variables—specifically temperature and 

geopotential height—for future time steps based on past climate data. The model produces these predictions at 

specific spatial grid points and time intervals. The output is evaluated using statistical metrics such as Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R² score, which 

indicate how closely the predictions match actual values. Additionally, visual outputs such as heatmaps, 

scatter plots, and loss curves help demonstrate how accurately the model has learned and how well it 

generalizes to unseen data. The final output confirms that the model not only predicts accurately but also 

maintains physical consistency by following the heat diffusion law.   

 
       

Fig:prediction values 

 

 
Fig: prediction graph 
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Fig: prediction 

 

4. RESULTS: 

The result of the project shows that the Physics-Informed BiLSTM model performed very well in predicting 

atmospheric variables like temperature (T) and geopotential height (Z). After 30 epochs of training, the model 

achieved high accuracy with low errors—such as a Mean Squared Error (MSE) of 0.0603 for temperature and 

0.0125 for geopotential height, along with R² scores of 0.9391 and 0.9874 respectively. These results indicate 

that the model could accurately capture the temporal patterns in the data while remaining consistent with 

physical laws. The inclusion of physics-based loss improved the model's generalization and stability, 

especially in areas where traditional models often fail. Overall, the model demonstrated strong predictive 

performance and reliability for climate forecasting tasks 

 

5.DISCUSSION: 

The project discusses how combining Physics-Informed Neural Networks (PINNs) with BiLSTM improves 

weather prediction by ensuring both accuracy and physical consistency. The use of physics-based loss 

alongside traditional loss helps reduce overfitting and improves generalization. Visual tools like heatmaps and 

scatter plots confirmed the model’s reliability. Overall, the discussion highlights that integrating domain 

knowledge with machine learning leads to more stable and interpretable climate forecasting systems. 

 

6. CONCLUSION 

This project evaluated the effectiveness of a physics-informed BiLSTM model in predicting two key climate 

variables—temperature (T) and geopotential height (Z). The dataset was properly preprocessed and 

standardized to ensure fair evaluation using metrics like MSE, MAE, RMSE, and R² score, along with visual 

comparisons. The model showed excellent predictive performance, achieving a high R² score of 0.9874 for Z 

and 0.9391 for T, indicating strong accuracy and generalization. By including physics-based loss, the model 

followed natural laws, remained stable during training, avoided overfitting, and performed well even with 

limited data. Overall, the physics-informed BiLSTM successfully learned temporal patterns and produced 

accurate, physically consistent climate predictions. 

 

7. FUTURE SCOPE: 

The future scope of this project includes several areas for improvement and expansion. The model can be 

enhanced by adding more physical constraints and domain-specific rules to improve accuracy, especially 

when data is limited. Incorporating diverse datasets—such as simulated and experimental measurements—can 

make the model more robust under different conditions. The inclusion of external factors or boundary 

conditions could further improve prediction reliability. Enhancing the scalability and computational efficiency 

of the BiLSTM, possibly through lighter model architectures, would make it suitable for real-time 

applications. Additionally, testing the model in other domains like engineering systems or bioinformatics and 

integrating techniques like reinforcement learning and hybrid modeling could enable adaptive and flexible 

forecasting in dynamic environments. These improvements would broaden the usefulness of physics-informed 

machine learning for solving complex real-world problems. 
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