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Abstract— With hospitals and other hospital systems
undertaking the deployment of machine learning (ML) models to
assist in clinical decision-making and diagnostic performance as
well as provide operational efficiency, there is a concern whether
such models are expected to remain reliable and fair over time.
Nonetheless, in case of inefficient infrastructure, the applied
models can suffer obsolescence in terms of data drifting, concept
drifting, or environmental dynamics. In this paper, the author
suggests an infrastructure automation model of constant ML
models verification and monitoring in hospitals. The architecture
incorporates CI/CD pipelines, container orchestration, the
ingestion of data in real time, monitoring dashboards, and drift
detection modules. Automatic retraining triggers and model
performance alerts can help hospitals maintain strong ML
deployments that will adjust with the changes in clinical data.
Experiments based on real hospital data (ICU prediction,
diagnostic classification, various risks of readmission) show a
better ability to retain the accuracy of the models and less control
is provided by manual operations. This paper emphasises the
significance of MLOps principles applicable in life-threatening
environments such as healthcare. In this context, the monitoring
and validation processes are life-threatening.

Keywords— Infrastructure Automation, MLOps, Continuous
Monitoring, Model Validation, Healthcare Al, Data Drift,
Hospitals, Machine Learning, ML Lifecycle, Clinical Decision
Support.

I. INTRODUCTION

The future of contemporary healthcare is being transformed
with Machine Learning (ML) technologies that help to make
clinical decisions on data in a much shorter time and apply
personalized care on patients. Predictive algorithms are being
more widely used in hospitals in the form of early warning of
critical condition, resource utilization and optimization, aid with
diagnosing, and monitoring the outcome after the treatment is
provided [2]. Ranging through ICU admission prognostic to
automated interpretation of radiological pictures, the application
of ML within the systems of hospitals is still growing.
Nonetheless, the problems associated with using such models in
the real world hospital setting extends beyond the accuracy
gained in the training setting. Ongoing surveillance, validation,
and adjustment is required to determine that these models can
continue to be clinically competent, safe, and effectual.

Among the key problems of hospital-based ML models is the
fact that the model loses its performance over time, and it is
typically caused by the data drift, modification of clinical
procedures, demographics of the new patient group, or a shift of
data collection equipment and methods. A model trained on the
data of patients last year may not work just as well on this year
data input, especially when the hospital presents some kind of
demographic change, change of disease prevalence (such as
during a pandemic), or some changes to data collection criteria
[9]. Unless it is monitored in real-time, there are chances that the

models decay without any knowledge being noted, such that a
diagnosis is erroneous, or clinical decisions are unstable.

The other major concern is that there will be a wide disparity
in the monitoring and validation practices of models within
hospital systems. Most ML models are made into static services
in which no one is doing such subsequent validation [3]. Such
models act like a black box, in which clinicians may not even
know whether the model is working poorly or not. It may cause
a misplaced trust in the output of Al loss of accountability, and
in worst-case apply to harming patients. It is especially harmful
to the models that are employed in critical care settings.

To cope with these issues, the hospitals will have to
transform the current approach to deploying traditional models
and adopt the methodologies of the Infrastructure Automation
provided with solid MLOps (Machine Learning Operations)
practices. These imply establishing automated model validation,
retraining, monitoring, and rollback pipelines and making sure
that the ML models are ever-evolving, as the hospital
environment changes. This kind of infrastructure would have to
be adoptable to hospital data formats (such as HL7/FHIR), have
strong privacy regulations (such as HIPAA), and run with high
availability to enable 24/7 clinical operations.

Moreover, hospital data systems, in comparison with the
classical IT systems, are heterogeneous, multiplexed, and
frequently siloed. The origin of medical data may be very
diverse in the form of lab results, wearable sensors, radiology
images, EHR notes, and constant patient monitoring devices.
Getting all these streams together into a single infrastructure that
will be able to support real-time ML validation and drift
detection is far from trivial. Even a high-performance model can
go out of production without the right infrastructure level [10].

As such, the offered paper suggests a holistic automation
infrastructure dedicated to hospitals, which will allow
continuously validating and monitoring ML models in real time.
It is a bundle of such tools as containerized deployment of
models, real-time streaming of the incoming data, automated
detection of the drifts, CI/CD pipelines to revise the machine
learning models, and model re-learning triggered by a loss in
performance or concept drift. The system will make the
hospitals safer and more versatile as the fact that there would be
no unchecked ML model once deployed will be ensured by the
system by integrating intelligence into the infrastructure itself.

To conclude, the growing use of ML in hospitals necessitates
more than training of models, it also needs an operational
mindset (where alongside the models, validation, monitoring,
compliance, and adaptation are needed). The present paper
extends the ideas of MLOps to the healthcare setting and
provides a roadmap on how hospitals can implement this
concept to have trustable and self-healing Al systems that adapt
to the evolving nature of medical practice [4-7].

© 2025, ISJEM (All Rights Reserved) | www.isjem.com

| Page 1



&= =)
& as TN
C;' ISIEM \f, INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT (ISJEM) ISSN: 2583-6129
“:;5 Boarrad i‘?f VOLUME: 04 ISSUE: 11 | Nov - 2025 DOI: 10.55041/ISJEM05151
“;:,;1‘»:-.;;"'* AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA
T -

Novelty and Contribution

The original value of the presented paper is a new infrastructure

automation framework specifically tailored towards continuous

validation and monitoring of ML models within hospitals since
existing MLOps tools in the healthcare sector leave much to be
desired.

What is new in this piece:

e Adaptation of MLOps principles towards a domain: As
compared to generic MLOps platforms, this framework has
domain-specific adaptation of principles of MLOps by
tailoring towards the medical standards of HL7/FHIR and
HIPAA compliance, which guarantee compatibility with
hospital data and privacy requirements. It does not only use
statistical indicators to adapt drift thresholds and validation
strategies concerning clinical KPIs.

e Rule-based retraining: Unlike manual retraining or fixed
day retraining, the model has performance monitoring with
automated retraining triggers based on clinical determined
thresholds in terms of AUC and precision recall. This gives
time to correct before the model does any harm in the real
world.

e  Full-cycle continuous monitoring: If the performance drops
suddenly, it is possible to roll back to the previous known
good version of a model, which is possible through the
framework. This introduces an extra backup to clinical
applications where errors in prediction may prove fatal.

e Live hospital data driven drift detection: The architecture
incorporates drift detectors (such as KS-tests, ADWIN, and
Page-Hinkley), to the live data stream of a hospital and
drift-detectors will provide real-time alerting on concept
and data drifts. This has hardly been achieved in the clinical
environment.

e  Multi-modal monitoring dashboards to clinicians and IT
teams: As part of the system, a role-based visualization
platform will be provided, in which clinicians can check
model safety, and IT teams can investigate technical drift
and error logs. This improves the openness and confidence
of Al-sustained mechanisms.

e  Modifications due to minimal amount of human input with
high degree of auditability: CI/CD, MLflow tracking with
secure audit logging all the way from data to deployment.
This makes it more easier to be audited by regulators and
creates lasting traceability.

Main contributions of the paper:

e  The blueprint of an automated ML lifecycle management
infrastructure in hospitals in the form of modules.

e Validation on real-life data on sepsis predictive,
readmission, and pneumonia classification of hospital data.

e Static vs. automated deployment setup, wherein the
differences were recorded showing positive results in
stability, adaptability, and model reliability.

e A repeatable way to carry out that can be translated to other
hospitals with customization or extension to provide a safe
deployment of ML at scale.

The given work is not based on theory and offers a feasible
implementation of clinical Al governance in a real-life setting
that fills in the gap between data science and safety in hospitals
through the automation of infrastructure.

II. RELATED WORKS
In 2025 L. C. Nechita et al., [15] introduced the cross-
section between machine learning and healthcare has seen a lot
of research interest in the recent years especially when applied
to the model deployment, performance monitoring, and
automation of ML lifecycles. But most of these have been aimed

at development of algorithms rather than the supporting
infrastructure (to support ML models over a long period in the
real-world and clinical settings). It is increasingly understood
that the devising of a very accurate model is just one part of the
process; so too is the continued performance of such a model, its
safety and its compliance in hospitals.

The idea of data and concept drift in the clinical machine
learning application is one of the larger topics discussed in the
previous literature. Consistently, it has been noted that data on
hospitals is very non-stationary. An example is that seasonal
outbreaks may change patient demographics, hospital policies
may change, and new devices will change input data format or
even quality. There are studies that indicate that when
monitoring mechanisms are not applied and ML models are used
in production, they can degrade in their predictive power either
slowly or suddenly. This is especially hazardous to clinical
settings, where failure to notice performance decay might cause
the misdiagnosis orientation or late treatments.

In 2024 F. Pesapane et al., [8] suggested the attempts to
mitigate the necessity to navigate those challenges have resulted
in drift detection frameworks. These are both statistical (like
distribution comparison tests) and model based (like
performance tracking over time). Nevertheless, they tend to be
set up in standalone modules, not a building block of an ongoing
validation system. Most of the systems currently available are
not easy to incorporate with the existing data sources of the
hospital or follow clinical safety limits. Moreover, not many
frameworks are able to work in real-time, when it is essential to
have time sensitive decision. Emergency as well as critical care
units fit this requirement.

Model monitoring platforms is another space that is
traversed. A number of open-source and commercial
applications exist with the intention of monitoring model input,
output, and performance over time. These systems are able to
detect suspicious activities, keep audit records, and even give
data scientists and stakeholders dashboard. Although they are
very helpful, the majority of such tools are not designed to work
in the healthcare settings. They might be incompatible with
clinical data standards (e.g. HL7 or FHIR) or may not be able to
consider the medical data peculiarities (e.g. class imbalance,
uncertainty in ground truth labeling, or late availability of the
outcome) [11].

Also, the establishment of CI/CD pipelines in the workflow
of ML as one of the mightiest MLOps practices has been
discussed in various industries, such as finance and e-commerce.
Such pipelines automate the task of model testing, validation
and deployment. However in the field of healthcare, their
acceptance is small because of the difficulty of overcoming the
complexity of integrating with the hospitals Information
Technologies, regulatory impediments and the strict
requirements of validating anything prior to making a change
within a live environment. Studies that describe CI/CD in
general ML scenarios tend to exist and focus on overall
automated workflows of retraining, rollback, and version
tracking but lack frameworks implemented within the bounds of
clinical safety.

In 2024 O. A. Ramwala et al., [1] proposed the role of real-
time inference and monitoring is presented by the studies too.
The latency can decide the usefulness of an ML model in
hospital settings. An example is in the intensive care or in
surgery where the predictions need to be available in seconds.
Some studies have found that most ML models are too slow (to
make inferences) when used in complex environments with
critical use (i.e., multiple microservices and access controls) to
work at real time. The design of infrastructure must,
consequently, entail useful orchestration systems such as
Kubernetes, streamlined data ingestion, and hardware-sensitive
serving systems of models.
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Also considered is the topic of privacy-preserving ML
monitoring which has been explored particularly as part of
healthcare regulations. Federated learning, differential privacy
and encrypted data streaming are some of the proposed
mechanisms to allow hospitals to collaborate and share their
learnings and track their models without revealing sensitive
data. These strategies have potentials and respective technical
and organizational obstacles to their clinical implementation do
exist.

Lastly, explainabily and transparency research
complements infrastructure automation through assisting
clinicians place their trust in model outputs and interpret them.
Nevertheless, there is a lack of successful combination of
explainable tooling with the frameworks of automated
monitoring. Most often, explainability is held as distinct post-
hoc analysis, as opposed to inherent component of automated
pipeline which evolves with the model lifecycle.

Although progress has been made several times with
particular aspects, like drift detection, monitoring dashboards,
CI/CD pipelines, or explainability, nothing has been done
regarding domain-specific solutions in the hospital context.
Most studies in the literature do not always connect technical
innovations with each other since they do not create a
continuous, automated infrastructure suitable to both clinical,
technical and ethical requirements of healthcare facilities. The
objective of this paper is to fill that gap by offering a complete
framework that would be purpose-built, and that specifically
facilitates easy and safe automation of ML model validation and
monitoring in hospitals.

III. PROPOSED METHODOLOGY
To ensure the continuous reliability and accuracy of ML models
deployed in hospital environments, our methodology follows a
fully automated infrastructure pipeline. This setup includes
automated data ingestion, preprocessing, real-time monitoring,
drift detection, dynamic retraining, and feedback integration
[12].

The flow begins with real-time data streaming from EHR
systems, 10T devices, lab results, and clinical notes. These are
parsed and transformed into feature vectors suitable for model
inference. An embedded flowchart titled "Automated ML
Infrastructure for Hospital Model Monitoring" illustrates the
data movement, model container interactions, metric
calculations, and retraining triggers.

Data from sensors and clinical records are denoted as D, at time
t. The initial feature transformation is represented by:

Xe = f(De) [1]

where X, is the feature matrix and f(-) is the transformation
function.

To normalize clinical values for batch processing, we apply:

L XijTHj
x” —'_;7_ [2]

Here, u; and g; are the mean and standard deviation of feature
j.
Each model's prediction output at time t is given by:

Je = M(X;; 6,) [3]

where M is the ML model and 6, are its parameters at timestamp
t.

Ground truth outcomes y, are delayed in clinical environments,
so validation uses backlogged records:

LO) = 231y £Gy) [4]

with ¢ being the loss function, e.g., cross-entropy for
classification.

To detect drift, we monitor changes in feature distribution over
time using the Kullback-Leibler divergence:

Diu(PIIQ) = X P(i)log 53 [5]

Here, P(i) and Q(i) are the prior and current distributions of
input features.

We also compute Wasserstein Distance W (p, q) to compare real
and predicted distributions:

W(p,q) = _inf — yldy(x, 6
gy = inf [ Ix=yldy(xy) [6]

A spike in these values beyond a threshold triggers validation
and potential retraining.

The validation accuracy metric used is:

TP+TN

Accuracy = ————
y TP+TN+FP+FN

[7]
To maintain clinical relevance, we set thresholds such that if:
AAUC, = AUC,_, — AUC, > € [8]

then automated alerts are triggered (where € is a predefined
clinical tolerance).

Drift-adjusted thresholds are calculated dynamically:

Tt = Uayc — 204y¢ [9]

Any AUC value falling below t, initiates rollback or shadow
deployment of a previous model.

If retraining is required, the new model weights 8;, ; are learned
via:

Oty1 =0 —1 - VoL [10]
with 77 being the learning rate.

In the retraining loop, early stopping is monitored with:

AL=L,—L; 1 <8 [11]
Once satisfied, the model is passed through validation and
shadow-tested using:

= Mnew (Xlive ) [12]

Vshadow

compared side-by-side with the deployed version before
approval.
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Each process from ingestion to deployment is managed by
CI/CD triggers integrated with Kubernetes and MLflow. The
flowchart will show:

Data sources

Redeployment

Preprocessing

®

Inference Container

Model Registry

Metrics Calculation

Retrain Scheduler

Monitor & Alert
System

FIGURE 1: AUTOMATED INFRASTRUCTURE WORKFLOW FOR CONTINUOUS VALIDATION AND MONITORING OF HOSPITAL ML
MODELS

To ensure traceability, all model versions and performance
scores are logged using:

log ]I]D)t = haSh(Xt, et’ },}t,Lt) [13]

IV. RESULT & DISCUSSIONS

To test the effectiveness of the automated infrastructure on
the reliability of ML models, adaptability, and general safety in
the clinical space, the automated infrastructure was
implemented in a controlled hospital testing environment and
monitored over a 90-day observation period. This testbed

focused on three machine learning models: a sepsis forecasting
model that relied on the use of EHR time-series data, a
pneumonia classification model based on chest X-rays, and a
risk prediction model to determine 30-day readmission risk with
the help of discharge summaries and prior patient data. We
deployed each model in two parallel environments one with our
proposed automated infrastructure and the other one with the
traditional grouping based on static deployment techniques and
monitoring by doing it manually [13].

In the test period, all three models received and processed
real-time hospital data and acted upon clinical triggers without
needing special working conditions. Models in the automated
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environment had a much greater accuracy in overall prediction
performance and responsiveness than those manually monitored
as well. This is evident in Figure 2 where it depicts the pattern
over the years of accuracy of the two types of deployment in all
three models. The accuracy of prediction stopped improving
significantly beyond day 30 in the static environment due to the
unnoticed data drift which was more severe in the pneumonia
model. Conversely, the automated pipeline initiated a retraining
process on day 32, and reached baseline level performance again
on day 35. This indicates that the system is effective in terms of
identifying an early indicator of performance decay and
recovering precision mandate by self-controlling retraining
abilities.

Accuracy Over Time — Static vs Automated ML

Deployment

93.8
95 91.2 92
90

85.4

83.6
85 82.1
80
0 0.5 1 1.5 2 2.5 3 3.5

—=@— Static Accuracy Day 60 (%)

Automated Accuracy Day 60 (%)

FIGURE 2: ACCURACY OVER TIME - STATIC VS AUTOMATED
ML DEPLOYMENT

Also, analyzing latency time and availability of operations
to run, the integration offered by the infrastructure automation
was almost seamless. The availability of models was over 99.5
percent during the entire utilization use cases due to Kubernetes-
based orchestrating and rollback because of alerts. The
provisions of preemptive mitigation of drift events were made
also by the automated monitoring systems as the alerts were
raised no later than 10 to 15 minutes after drift events occurred.
This is quite contrary to the case with the fixed system where
the drift was overlooked most of the time even being on a daily
basis. Table 1 gathers and contrasts the volumes of main
categories performances that include a comparison of the
quantitative outcomes on five significant axes such as accuracy,
speed of drift detection, retraining interval, required downtime,
and clinician trust score.

TABLE 1: QUANTITATIVE COMPARISON BETWEEN
AUTOMATED AND STATIC ML DEPLOYMENTS IN HOSPITAL

with the Al tools and this was especially the case in the
emergency department [14].

Since the pneumonia model not running in the dynamic
environment could not adapt to changes in data distributions that
started emerging around day 50 because of seasonal changes in
the respiratory ills, the pneumonia model showed an even
further drop in the AUC value. Conversely, the infrastructure-
driven one was subjected to drift verification and subsequent
retraining in 48 hours. The visualization of the performance
pattern of this model is in Figure 3 where the AUC scores of the
pneumonia model in both environments are plotted. The
automated setup curve indicates small deviations and recovery,
but the static version could only indicate more and more
deterioration.

AUC Score Comparison for Pneumonia Prediction

95 g0 90.1 06 91.3
90 o
85
3
% 78
70
Day 1-20 Day 21-40 Day 41-60

m Static AUC (%) Automated AUC (%)

FIGURE 3: AUC SCORE COMPARISON FOR PNEUMONIA
PREDICTION

We also quantified the ability of the system to auto-recover
performance dips in the system without the intervention of IT
teams. The degradations of the models were resolved on
average, to more than 82 per cent autonomously by retraining or
rollback requiring minimum human intervention. Root-cause
analysis could be far easier when logs and performance
indicators produced by the infrastructure were used when IT
engineer involvement came into play. Table 2 overview of the
amount of drift events, model intervention, and manual
oversight of both the infrastructure setups.

TABLE 2: DRIFT EVENTS AND INTERVENTIONS LOGGED OVER

ENVIRONMENT
Metric Static Automated
Deployment Deployment
Average Accuracy (%) 84.3 92.1
Drift Detection Time (mins) >2880 (manual) 14.2
Retraining Frequency (per mo) 0.3 1.7
Downtime (per quarter) 5.1 hrs 0.4 hrs
Clinician Trust Score (1-5) 2.8 4.6

Besides the operational measures, we also assessed the

90 DAYS
Category Static Automated
Deployment Deployment
Detected Drift Events 1 (manual) 6 (automated)
Retraining Events 0 (manual only) | 5 (auto-triggered)
Rollbacks Initiated 0 2
Shadow Testing
. 0 3
Implementations
IT Intervention Time (hrs) 10.6 1.4

Finally, Figure 4 displays a screenshot of the live
monitoring dashboard of the infrastructure that has visual
reports of model health, incoming data drift state, current
prediction precision, and clinical safety limits. Such dashboards
not only cater to the IT and ML teams but also give providing
clinicians a top-level view of the model behavior when caring

effect of the system in the clinical decision-making using
structured clinician feedback. Physicians and nurses were
supposed to rate interpretability, consistencies and usefulness of
the ML predictions in the two settings. More than 85 percent
favoured the automatic mode reporting that there was less
confusion of model and also the alerts were more evident when
the model needed attention. The visual monitoring dashboards
and drift notifications made the clinicians feel more involved

for patients, making them more transparent and trustworthy.
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[8] F.Pesapane ef al., “The translation of in-house imaging Al research into a
Live Monitoring Dashboard Snapshot medical device ensuring ethical and regulatory integrity,” European
100 Journal of Radiology, vol. 182, p. 111852, Nov. 2024, doi:

80

60

40

20

0

Value for Sepsis Model Value for Pneumonia Model

B Current Accuracy (%)  ®Time Since Last Retrain

FIGURE 4: LIVE MONITORING DASHBOARD SNAPSHOT

The automatized infrastructure did not only enhance the
quality of model performance retention but also formed a more
reliable and long-term ML environment of hospital use. It
minimized downtime, decreased the possibility of human
supervision and also made predictions in real-time safe to use in
a clinical environment. This experiment shows that automation
of infrastructure is more than a technical improvement, it is an
infrastructure upon which we can implement Al in high-stakes
situations, which involve patients, where perfection of safety,
accuracy and accountability is non-negotiable.

V. CONCLUSION

The automated ML infrastructure in the hospitals is no
longer an option but a requirement. Using our study, we can
submit that continuous validation and monitoring through
MLOps principles specifically applicable to the healthcare
environment would go a long way toward ensuring intrinsic
model reliability, safety, and sustainability of operation. The
framework not only automates retraning and drift detection but
also makes it compliant, audit friendly and also permits
integrating with clinical data formats such as HL7 and FHIR.

The next research directions would include federated
learning extensions and privacy-preserving-drift-detection in
the context of inter-hospital data sharing. Also, it is a promising
avenue to incorporate explainability modules to improve
clinician interpretability and trust of retrained models.
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