
 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 04 ISSUE: 03 |MAR – 2025 DOI: 10.55041/ISJEM02324

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Integrating DevOps Principles into the Deployment Lifecycle of Distributed

IoT Systems: Challenges and Best Practices

Naresh Kalimuthu

naresh.kalimuthu@gmail.com

Abstract—Exploring how DevOps principles can enhance

the deployment of distributed Internet of Things (IoT) systems

offers a novel perspective, transcending traditional software

delivery methodologies. This paper examines some of the

primary challenges involved, such as the extensive diversity of

physical devices, the unique security concerns related to

physically dispersed devices, and the complexities of automated

testing for systems integrating hardware and software. We

identify three principal challenges: the suitability of CI/CD

pipelines across various constrained and diverse hardware

platforms, methods to automate end-to-end security

(DevSecOps) on exposed surfaces susceptible to attacks, and the

development of automated testing frameworks for hybrid

systems. To address these challenges, we propose a

comprehensive framework that incorporates Hardware

Abstraction Layers (HALs) to manage device diversity, employs

lightweight cryptography for security, and utilizes multi-tiered

testing strategies through Hardware-in-the-Loop (HIL)

simulation. Our case studies support the premise that

overcoming these challenges can facilitate faster, more secure,

and resilient IoT deployments.

Keywords — DevOps, Internet of Things (IoT), CI/CD,

Distributed Systems, Edge Computing, Firmware Deployment, IoT

Security, Automated Testing, DevSecOps, Hardware-in-the-Loop

(HIL).

I. INTRODUCTION

The Internet of Things, combined with the evolving 'DevOps'

approach to software delivery and the rapid growth of IoT,

represents two crucial shifts in current technology. DevOps aims

to shorten the systems development cycle and enable continuous

delivery of high-quality software. It fosters a culture that

integrates various philosophies, practices, and tools related to

system development. This culture emphasizes collaboration,

automation, and quick feedback. By breaking down barriers

between development and operations teams, organizations can

improve how often and reliably they deploy software.

The growth of the Internet of Things (IoT) has brought about

new, complex operational challenges in managing, updating,

and protecting large, distributed systems and networks of

interconnected devices, sensors, and actuators across industries

like manufacturing, healthcare, agriculture, and transportation.

Due to their size and complexity, deployments often become

overly burdensome. Manual management approaches become

increasingly vulnerable and ineffective, leading to operational

inefficiencies, higher security risks, and higher project failure

rates. Additionally, maintaining devices as marketable products

becomes challenging, as tasks such as firmware updates,

security patches, and system overhauls often become unfeasible.

Therefore, integrating automation, continuous integration, and

continuous delivery practices is crucial. These approaches make

the complex IoT lifecycle more manageable. The operational

difficulties and high failure rates of large IoT projects put

significant pressure on businesses. Adopting DevOps practices

is no longer just a technical choice but an economic necessity for

survival and growth in a competitive IoT environment.

Organizations that fail to automate their connected product

lifecycle will struggle to scale, secure, and sustain these

products, risking commercial failure.

A. Architectural Overview of Distributed IoT Systems: The

Edge-to-Cloud Continuum

The IoT architecture is distinct and complex, and distributed

devops can be a challenge. IoT differs from a traditional

enterprise application, as they are not contained to a central

datacenter. IoT systems are divided across a multi-layer

architectural pattern IoT system is divided into three primary

layers: the edge, the fog, and the cloud.

1) The Edge Layer:

This is the lowest layer of architecture, consisting of IoT

devices such as physical sensors, smart appliances, and

actuators that interact directly with the physical world. These

devices are often limited in processing power, memory, and

battery life. Edge computing is important for applications

that are constrained by IPv4, require near real-time

responses, and need low latency, such as industrial systems,

distributed intelligent control modes, and autonomous

systems.

2) The Fog / Gateway Layer:

Also known as the Gateway Layer, the fog layer in edge

computing refers to a more geographically centralized

region. It includes devices at one or more levels higher in the

hierarchy, such as gateways or local edge fog servers. This

layer primarily aggregates data from numerous edge devices.

The main data sent is at Ethernet Level, with processing

happening later before being forwarded to the cloud. This

includes computers, lower fog level servers, cluster nodes, or

fog nodes. Fog computing helps manage lower cloud control

nodes and reduces network capacity requirements.

3) The Cloud Layer:

Cloud computing enables storing data in large repositories,

analyzing it, and keeping it accessible for future use all in

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 04 ISSUE: 03 |MAR – 2025 DOI: 10.55041/ISJEM02324

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

one place. It also allows for scaling tasks and performing

complex computing jobs, such as training machine learning

models or performing fleet-wide analytics, which fog or edge

computing cannot handle.

The complexity of the architecture's structure and scope makes

deployment very difficult. Even a simple feature update may

require extensive coordination across all three layers, each with

its own distinct hardware and software systems. The intricate

interconnection of the architecture is the main reason why

holistic deployment approaches often fall short, making

automated deployment strategies essential.

B. The Necessity of an Agile and Automated Framework for

Distributed IoT Systems

Managing the life cycles of distributed IoT systems is one of the

most daunting challenges of the Internet of Things.

Provisioning, transferring feature updates, deploying security

patches, maintaining, and finally decommissioning millions of

devices is nearly impossible due to the error-prone, inefficient,

and sluggish process of relying on manual strategies. This

realistic operational scenario further emphasizes the growing

need for DevOps methodology.

1) Continuous Integration (CI)

This process involves the systematic and automated

development and verification of software and its

components, merging multiple separate instances of IoT

software and firmware into a single consolidated version.

This step ensures that automated builds of the software and

firmware are accurately generated and validated. It is

imperative to continually enhance and integrate the software

and firmware versions.

2) Continuous Deployment and Delivery (CD)

This describes the process through which pre-production

automated deployments are executed. It ensures that concise,

over-the-air (OTA) software updates are delivered securely

and efficiently to each device within the fleet. IoT software

updates can be performed collectively, thereby minimizing

human error and reducing operational costs.

3) Infrastructure as code (IAC)

This is the system responsible for managing and

provisioning all aspects of the build infrastructure, testing

rigs, and cloud services. It automates the process of defining

infrastructure through machine-readable set files, thereby

facilitating simpler and more straightforward configuration.

Additionally, it ensures that no errors occur when handling

the diverse range of devices within the system.

The adoption of these principles fundamentally shifts companies

from a reactive stance to a proactive and adaptable posture,

enhancing their capacity to automate processes more effectively.

This transformation accelerates innovation while

simultaneously improving the security and reliability of their

IoT solutions. Such a transition necessitates that systems

engineers expand their expertise to encompass not only

hardware and firmware but also embedded systems, cloud-

native solutions, automated processes, and security. This

integrated expertise remains relatively rare within the industry.

C. Key Challenges and Objectives

While the necessity for DevOps in the Internet of Things (IoT)

is evident, its practical implementation is complicated by a series

of challenges that are not present in the conventional realm of

software development. This paper aims to analyze these

challenges systematically and to develop a set of evidence-based

best practices to address them. Specifically, the focus is on how

DevOps techniques such as continuous integration and

automation can be effectively applied to managing resource-

constrained and highly heterogeneous distributed IoT devices.

Additionally, it examines the techniques required to achieve

end-to-end security (DevSecOps) within the CI/CD pipeline,

from code commit to firmware deployment on remote devices,

which are often not only geographically dispersed but also

physically insecure. Finally, the paper explores how the DevOps

practice of automated testing, particularly for hybrid hardware

and software systems—where interactions with the environment

are critical for functionality—can be effectively implemented,

despite the complexities involved in controlling such

interactions. By systematically investigating these issues, this

paper will establish a foundation for employing the DevOps

approach throughout the deployment lifecycle of distributed IoT

systems.

II. CORE CHALLENGES IN APPLYING DEVOPS TO IOT

Applying DevOps practices within the context of IoT

technology is distinct from simply shifting practices in web

development to embedded systems. IoT's more physical aspects

and the constraints of architecture and resources challenge the

foundational principles of DevOps. This subsection delineates

the three primary challenges that are the focus of this research.

A. Managing sets of modules and associated limited resources

within an automated workflow

The distinctive physical diversity of Internet of Things (IoT)

devices constitutes the primary challenge. In a cloud

environment, an average DevOps pipeline interacts with a

collection of virtualized servers that are not physically

connected. Conversely, an IoT pipeline must establish

connections with an extensive and continuously expanding array

of devices. This heterogeneity manifests in various forms,

including processor architectures (such as ARM, MIPS, x86),

RAM and flash storage capacities, operating systems (such as

Linux, FreeRTOS, Zephyr), and a broad spectrum of

communication protocols (including WiFi, Bluetooth,

LoRaWAN).

The CI/CD pipeline encounters challenges stemming from

diversity. The build process involves multiple cross-compilation

toolchains tailored for various architectures. Validation must

verify functionality across numerous hardware variants during

testing. Deployment requires managing different firmware

packages for distinct devices. Moreover, devices are afflicted by

significant resource constraints, including limited processing

power, memory, and battery life. These limitations impose

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 04 ISSUE: 03 |MAR – 2025 DOI: 10.55041/ISJEM02324

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

constraints on size, efficiency, and software capabilities.

Executing complex processes such as on-device testing or

security protocols poses additional difficulties. The discrepancy

between the software domain and the physical realm, as outlined

in the concept of friction within the world, exemplifies the

obstacle to successful adoption in the context of embedded

hardware.

B. Securing the Entire Lifecycle from Deployment to

Development

DevOps now encompasses both development and cloud

infrastructure simultaneously, thereby minimizing the potential

attack surface. However, with IoT, the attack surface extends

far beyond the hypervisor and includes all physical

components, stretching an order of magnitude greater. Every

single element of the pipeline, stretching from a developer’s

workplace to the fielded device, has the capacity to be

compromised.

Malicious code may be inserted into a firmware update through

a vulnerability in a source code repository, a misconfiguration in

a continuous integration (CI) server, or a compromised build

tool. Such an update could potentially be propagated via an

automated continuous deployment (CD) pipeline to a fleet of

devices, leading to service disruptions, data breaches, or even

physical harm in the context of critical infrastructure or medical

devices. The over-the-air (OTA) update mechanism is

frequently exploited as an attack vector; however, it remains one

of the most neglected mechanisms. Furthermore, due to

inadequate physical security, Internet of Things (IoT) devices

are highly susceptible to tampering, which is often employed to

extract cryptographic keys or alter device identities.

Consequently, the DevSecOps approach to security becomes

increasingly vital, emphasizing the integration of automated

security practices at every stage of the pipeline, from code

commitment to device provisioning and firmware updates

deployment.

C. Comprehensive Validation of Cyber-Physical Systems

The deployment of hybrid hardware-software systems is

typically intricate and fraught with challenges, particularly

concerning the implementation of automated testing procedures.

This complex functionality is occasionally termed “DevOps”. It

is generally characterized by immediate feedback derived from

multiple tests conducted on the developed software. These tests

are categorized into units, integration, and end-to-end

assessments to optimize the virtual environment.

This specific case does not fit within the IoT context. While

software logic can still be tested through unit tests, these do not

verify the crucial interaction between software and hardware.

Accessing physical hardware becomes the main bottleneck

during integration and system-level testing. Such access issues

are particularly problematic at these higher testing levels.

Deploying physical hardware for the required tests is primarily

time-consuming, difficult to automate, and nearly impossible to

scale. When hardware isn't available, testing becomes scarce and

costly. This hardware shortage tends to create queues and delays,

disrupting the vital feedback loops in DevOps. Testing updates

in a closed, active system without full hardware access increases

risks—for example, missing issues or errors that only appear

when the system is open, resulting in potential failures when the

system is finally released.

III. RESEARCH AND RECOMMENDATIONS: STRATEGIES FOR

MITIGATION OF DEVOPS IN IOT

There is a need for tailored strategies and focused approaches to

address the complex problems arising from applying DevOps to

IoT in automation, involving software and underlying embedded

systems. This section provides a detailed explanation of the

challenges and offers a comprehensive set of recommendations

and mitigation strategies, grounded in evidence.

A. Tackling Hardware and Resource Constraints

The primary challenge faced by IoT in the context of DevOps

pertains to managing an array of hardware types. Unlike server-

side development, where applications are incorporated into a

relatively standardized and virtualized environment, IoT

solutions function across distributed, heterogeneous fleets. This

diversity constitutes the most significant barrier to achieving

universal integration within the Continuous

Integration/Continuous Deployment (CI/CD) pipeline. Each

type of hardware necessitates its own compiler, specific

libraries, and customized build configurations. Moreover, these

devices possess considerable limitations in terms of CPU

capacity, power consumption, and memory resources. For

instance, a microcontroller typically has minimal Random

Access Memory (RAM) and operates on batteries.

Consequently, resource-intensive or agent-based enterprise

DevOps processes are impractical under such conditions. This

necessitates that deployed systems be lightweight and energy-

efficient. This challenge extends beyond mere technical

considerations; it signifies a shift in values and organizational

culture. Maintaining clean interfaces is imperative, and

embedded teams adopting Standard Operating Procedures

(SOP) are not exempt from these requirements—they must

explicitly and carefully manage merging processes, boundary

definitions, and logical dependencies.

Additionally, they must establish conditions conducive to

reproducible environments. This constitutes the minimum

criterion for successful integration within DevOps practices.

Recent innovations in hardware "softwarization" have expanded

technological capabilities by facilitating greater participation of

software developers in the IoT domain.

To mitigate the complexity challenge, it is advisable to segregate

the core application logic from hardware-specific details. The

'Hardware Abstraction Layer (HAL)” is a standardized software

layer that acts as an Application Programming Interface (API)

for peripheral hardware components such as sensors and control

devices, thereby supporting various hardware peripherals. Most

hardware-dependent applications are built upon different HAL

schemes and remain portable across a wide range of

Microcontroller Units (MCUs). Only the low-level HAL

implementation requires adaptation for each new hardware

target, greatly simplifying the CI pipeline. This modular

approach not only makes development more efficient but also

eases testing.

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 04 ISSUE: 03 |MAR – 2025 DOI: 10.55041/ISJEM02324

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

Principles of Infrastructure as Code (IaC), along with associated

management strategies, are highly effective in addressing the

complexities of multi-target builds. For embedded systems, this

involves establishing distinct cross-compilation toolchains,

SDKs, and dependencies tailored to each hardware platform.

Within the Continuous Integration (CI) pipeline, tools such as

Ansible, Chef, and basic shell scripting can automate the

preparation of a clean build environment for each task, thereby

ensuring consistency and repeatability. Containerization

platforms like Docker are especially useful for encapsulating

these environments. A Docker image can contain any toolchain

and its dependencies within a portable, standalone container,

thus providing a self-contained and isolated build environment

irrespective of the host machine.

Continuous Deployment in IoT systems is implemented through

Over-the-Air updates. Given that IoT devices often possess

limited resources, these updates must be optimized for size and

efficiency. Consequently, the utilization of delta updates is

advisable, whereby only the binary differences between

firmware versions are transmitted. Such delta updates can

decrease the update payload size by over 90%, thereby

expediting the update process, enhancing reliability in unstable

network conditions, and improving overall power efficiency.

These delta packages should be generated systematically, and

staged rollouts ought to be managed by the Continuous

Deployment (CD) pipeline, which facilitates monitoring of

update success rates and enables automatic rollback in case of

deployment failures, thereby ensuring the fleet's health and

operational continuity.

B. Securing the IoT Deployment Pipeline (DevSecOps)

The interconnected nature of the Internet of Things (IoT expands

the attack surface of the DevOps pipeline significantly beyond

the walls of the data center. The implications of a security breach

at any stage of the lifecycle—from code development to field

deployment—can be devastating. The most critical aspects

include compromised source code, insecure third-party

components, pipeline poisoning, insecure Over-the-Air (OTA)

transmissions, and physical device breaches. Successful

breaches enable adversaries to gain control over entire fleets,

leading to data theft, service disruption, and physical

destruction. The Continuous Integration/Continuous

Deployment (CI/CD) pipeline has undergone substantial

transformation and is now regarded as the primary mechanism

for security maintenance throughout the product lifecycle. The

remaining segments of the product pipeline, including

Continuous Delivery (CD), must also be trustworthy and secure;

failure to ensure this elevates the product to a strategic business

risk classified at the C-level. A compromised pipeline could

result in widespread device bricking and extensive data

breaches, incurring severe financial and reputational loss. This

calls for investment in traditional web application DevOps

toward enhancing pipeline security and resilience.

The primary emphasis of DevSecOps is on security and its

incorporation at each phase of the software development

lifecycle. Shift-left approaches integrate automated security

checks within the CI/CD pipeline to deliver prompt feedback to

developers. Key automated strategies include Static Application

Security Testing (SAST) for examining application source code

for vulnerabilities, Software Composition Analysis (SCA) for

cross-examining software dependencies for known

vulnerabilities (CVEs), and secret scanning to identify and flag

sensitive data such as API keys, passwords, and tokens prior to

commits, thereby preventing accidental exposure.

For a secure IoT system, a minimal assumption is that every

device is assigned a unique and trusted identity, typically rooted

in a cryptographic key stored in a secure hardware element and

provisioned during the manufacturing process. The deployment

system should authenticate this identity before pushing an OTA

update to prevent unauthorized devices from accessing the

network. The CD pipeline is required to merge with this identity

system in order to employ a code-signing service that

cryptographically signs the firmware artifact, as a demonstration

of origin and integrity.

Indeed, the field of lightweight cryptography is of utmost

importance due to the fact that standard cryptographic

algorithms tend to consume a large volume of computational

resources, especially on low-resource devices. The first option

to consider is for the central distribution pipeline to employ a

lightweight digital signature algorithm, such as those that derive

from elliptic curve cryptography, to sign firmware packages for

OTA updates. Once the device receives an update, it utilizes the

relevant public key for signature verification to confirm that,

prior to firmware installation, the signature has not been altered

and is from a reliable source.

Figure I. IOT-CENTRIC DECSECOPS PIPELINE (A “SHIFT LEFT”

APPROACH)

C. Automating Testing for Complex IoT Systems

DevOps depends on rapid, automated feedback, primarily

provided through a comprehensive suite of automated tests. In

the context of Internet of Things (IoT) systems, the software

testing process proves to be of limited utility as it largely

neglects the hardware component. While unit tests can ascertain

the logic of software modules, they are incapable of detecting

bugs stemming from physical hardware interactions. Within a

Continuous Integration (CI) pipeline, system-level tests that

necessitate physical hardware are recognized as exceedingly

difficult to automate. These tests tend to be slow, challenging to

parallelize, and require expensive physical test laboratories. The

absence of hardware remains one of the primary impediments to

implementing Continuous Delivery in embedded systems. This

hardware testing bottleneck impedes the rapid feedback cycle

critical for Continuous Delivery, consequently delaying the

overall development process.

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 04 ISSUE: 03 |MAR – 2025 DOI: 10.55041/ISJEM02324

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

Using virtualization technology is crucial to overcoming

hardware limitations. Virtualization allows for quick and large-

scale testing without physical systems. These tests include

Software-in-the-Loop (SIL) emulation, where embedded

software is compiled and run on a host machine, and system

emulation, where tools like QEMU execute the actual cross-

compiled firmware binary in a virtual environment. Although

QEMU emulation is slower than SIL, it offers much better

scalability and speed compared to testing on physical hardware.

While simulation and emulation are useful tools, they cannot

fully replicate all the nuances of actual hardware. This

underscores the significance of Hardware-in-the-Loop (HIL)

testing, where the Device Under Test (DUT) is connected to a

real-time simulator that mimics authentic sensors and

environmental conditions. Automating HIL integration within

the CI/CD pipeline involves creating a test harness that enables

the CI server to handle firmware flashing, run specific test

scenarios, evaluate results, and generate reports. Although

setting up a HIL system can be costly, it offers increased

confidence before deployment. Automated HIL testing covers

real-world conditions, such as firmware integrity, hardware

driver interactions, and power consumption. Incorporating

Hardware-in-the-Loop (HIL) into CI/CD pipelines leads to "Test

Infrastructure as Code." This emerging discipline requires

engineers to possess a hybrid skill set, blending traditional test

engineering, software automation, and DevOps expertise.

Figure II. HARDWARE-IN-THE-LOOP(HIL) TESTING SETUP

IV. EMPIRICAL EVIDENCE FROM REAL-WORLD

APPLICATIONS

This section substantiates the proposed strategies through an

examination of fundamental DevOps implementations and an

analysis of specific IoT case studies. These cases underscore the

observable benefits of adopting an automated, collaborative, and

continuous lifecycle management methodology.

A. Lessons from Foundational DevOps Implementations

Blueprints for modern DevOps practices are based on the

successes of web-scale giants like Amazon and Netflix.

Amazon's decentralized, self-sufficient teams, empowered to

make frequent independent changes, benefited from the

microservices architecture. Their 'you build it, you run it'

approach, along with significant cultural and structural shifts,

became key to agility. Likewise, Netflix pioneered testing

system resilience in production by intentionally introducing

faults, a practice known as 'Chaos Engineering.” This required

automated Continuous Delivery systems that help systems

withstand failures by encouraging developers to create fault-

tolerant systems from the start. The main lesson from these

pioneers is that successful DevOps adoption hinges on fostering

a culture of ownership, automation, and continuous

improvement—essentials for success, even in IoT.

B. Analyzing IoT-specific implementations

1) Automotive and Fleet Management:

The adoption of DevOps for the Internet of Things has been

vigorously pursued within the automotive sector. A leading

global automotive manufacturer has modernized its legacy

Retailer Report Portal by transitioning from a monolithic

architecture to a scalable, cloud-native application hosted on

AWS. This transition enables the automation of the entire

Continuous Integration and Continuous Deployment

(CI/CD) pipeline through GitHub Actions, Terraform, and

Docker. The organization achieved a 56-fold increase in

deployment frequency, and 82% of page load times were

improved. Similarly, a provider of a fleet management

solution designed a DevOps automation workflow to address

challenges such as intermittent network connectivity and

device vibrations in moving vehicles, utilizing Jenkins for

continuous integration and Chef for configuration

management. The implementation resulted in a 40%

reduction in deployment efforts and a 90% increase in test

coverage.

2) Automated Deployment for Fleet Management

(eInfochips):

A manufacturer of in-vehicle camera systems experienced

significantly prolonged release cycles, compounded by

intermittent cellular data availability due to the dynamic

environment of moving vehicles. Regrettably, the sporadic

nature of cellular networks, coupled with the physical

context of the moving vehicle, severely disrupted the release

process. Utilizing Jenkins for continuous integration, Chef

for configuration management, and automated testing

frameworks, the organization automated the entire

verification and health monitoring procedures to achieve

comprehensive physical vehicle cycle automation. The

resulting health monitoring systems, deployed with CI/CD

practices, demonstrated notable improvements, including a

40 percent reduction in deployment effort and a 90 percent

increase in coverage of automated tests. This example

underscores the importance of implementing automated

pipelines in remote IoT systems.

3) Applications in Agriculture and Healthcare:

The influence of DevOps on the Internet of Things (IoT) is

increasingly evident within the healthcare sector. Surgical

IoT devices play a vital role in real-time remote monitoring

and intelligent patient care beyond traditional clinical

devices. This category of automated surgical instruments

connects various IoT devices with autonomous skin systems

dedicated to Patient Safety IoT devices.

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT ISSN: 2583-6129

 VOLUME: 04 ISSUE: 03 |MAR – 2025 DOI: 10.55041/ISJEM02324

 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

Figure III. CHALLENGES ENCOUNTERED, DEVOPS-CENTRIC SOLUTIONS

IMPLEMENTED, AND IMPROVEMENTS REALIZED.

Organization

/ Industry

Primary

Challenge(s)

Addressed

DevOps/IoT

Solution

Applied

Key Outcomes

/ Improvements

Global
Automotive

Manufacturer

Outdated
monolithic

architecture;

slow, manual
deployments;

poor

scalability.

Modernized
application with

microservices

on AWS;
implemented

full CI/CD

automation with
GitHub Actions,

Terraform, and

Docker.

56x increase in
deployment

frequency; 82%

faster page load
times; 65%

reduction in

database costs.

eInfochips

Client (Fleet

Mgmt)

Long release

cycles; errors

due to
intermittent

network

connectivity
and physical

vibrations.

Automated

CI/CD pipeline

(Jenkins, Chef)
for deployment,

verification, and

monitoring of
in-vehicle

camera

firmware.

40% saving in

deployment

effort; 90%
improvement in

test coverage;

quicker defect
identification.

Coca-Cola
Bottling Co.

United

Complex,
manual 11-

step ordering

and invoicing
process that

was

unscalable
and error-

prone.

Implemented
Microsoft Power

Automate RPA

integrated with
Azure DevOps

for a full CI/CD

workflow.

Avoided hiring
10 FTEs;

streamlined and

automated the
entire order-to-

invoice process;

enabled rapid
scaling of a

strategic product

line.

SIG

(Industrial

Mfg)

Disparate

data sources

from
production

machines;

lack of
operational

transparency.

Adopted PTC

ThingWorx IoT

platform to
connect

machines and

visualize data on
a real-time

dashboard.

Increased

visibility into

production
bottlenecks;

identified and

reduced
unnecessary

energy

consumption;
improved speed

KPIs.

V. CONCLUSION

This paper systematically analyzes the adoption of DevOps

practices within the deployment lifecycle of distributed IoT

systems. It confirms that although adoption is essential for

management and scalability, it is hindered by the hybrid nature

of hardware and software components. The main challenges

include hardware limitations, significant resource constraints, an

extensive and physically accessible attack surface, and the

paradox of testing automation for physical devices that are

inherently hard to examine. This research provides a framework

of suitable measures to address these challenges. The

heterogeneity of hardware is managed through strategic

abstraction and Infrastructure-as-Code (IaC) to create consistent

engineering environments. DevSecOps promotes smoother

adoption and moves security testing earlier via automated

security scans, secure remote device provisioning, and

lightweight encryption at the device layer to reduce security

risks. Testing of integrated devices is separated through scalable

simulation (SIL) supported by high-fidelity Hardware-in-the-

Loop (HIL) techniques and other methods. The case studies

verify that these practices effectively support DevOps adoption,

improving agility, security, and reliability in IoT deployment.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, "Fog computing and its
role in the internet of things," in Proc. First Edition of the MCC Workshop
on Mobile Cloud Computing, 2012, pp. 13–16. [Online]. Available:
https://dl.acm.org/doi/10.1145/2342509.2342513

[2] J. Jung, B. Kim, J. Cho, and B. Lee, “A Secure Platform Model for Low-
End IoT Devices with ARM Platform Security Architecture,” IEEE
Internet of Things Journal, vol. 9, no. 6, pp. 4773–4786, Mar. 2022.
Available:
https://web.engr.oregonstate.edu/~benl/Publications/Journals/IEEE_IoT_
Journal_2022.pdf.

[3] Óscar López, “Devsecops methodology for NG-IoT ecosystem
development lifecycle - assist-IoT perspective”, J. Comput. Sci. Cybern.,
vol. 37, no. 3, p. 321–337, Sep. 2021.

[4] Bijwe, Awantika & Shankar, Poorna. (2022). Challenges of Adopting
DevOps Culture on the Internet of Things Applications - A Solution
Model. 638-645. 10.1109/ICTACS56270.2022.9988182.

[5] AWS Well-Architected Framework, “IoT Lens: Change Management,”
Amazon Web Services. [Online]. Available:
https://docs.aws.amazon.com/wellarchitected/latest/iot-lens/change-
management.html.

[6] El Jaouhari, Saad. (2022). Toward a Secure Firmware OTA Updates for
constrained IoT devices. 1-6. 10.1109/ISC255366.2022.9922087.

[7] Revolutionizing Banking: Jason Simon Champions Agile and DevOps for
Today's Financial Landscape - Jason Simon. https://www.jason-
simon.com/news/revolutionizing-banking-jason-simon-champions-agile-
and-devops-for-todays-financial-landscape/

https://docs.aws.amazon.com/wellarchitected/latest/iot-lens/change-management.html
https://docs.aws.amazon.com/wellarchitected/latest/iot-lens/change-management.html

