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Abstract—Exploring how DevOps principles can enhance 

the deployment of distributed Internet of Things (IoT) systems 

offers a novel perspective, transcending traditional software 

delivery methodologies. This paper examines some of the 

primary challenges involved, such as the extensive diversity of 

physical devices, the unique security concerns related to 

physically dispersed devices, and the complexities of automated 

testing for systems integrating hardware and software. We 

identify three principal challenges: the suitability of CI/CD 

pipelines across various constrained and diverse hardware 

platforms, methods to automate end-to-end security 

(DevSecOps) on exposed surfaces susceptible to attacks, and the 

development of automated testing frameworks for hybrid 

systems. To address these challenges, we propose a 

comprehensive framework that incorporates Hardware 

Abstraction Layers (HALs) to manage device diversity, employs 

lightweight cryptography for security, and utilizes multi-tiered 

testing strategies through Hardware-in-the-Loop (HIL) 

simulation. Our case studies support the premise that 

overcoming these challenges can facilitate faster, more secure, 

and resilient IoT deployments.  

Keywords — DevOps, Internet of Things (IoT), CI/CD, 

Distributed Systems, Edge Computing, Firmware Deployment, IoT 

Security, Automated Testing, DevSecOps, Hardware-in-the-Loop 

(HIL). 

I. INTRODUCTION 

The Internet of Things, combined with the evolving 'DevOps' 

approach to software delivery and the rapid growth of IoT, 

represents two crucial shifts in current technology. DevOps aims 

to shorten the systems development cycle and enable continuous 

delivery of high-quality software. It fosters a culture that 

integrates various philosophies, practices, and tools related to 

system development. This culture emphasizes collaboration, 

automation, and quick feedback. By breaking down barriers 

between development and operations teams, organizations can 

improve how often and reliably they deploy software. 

 

The growth of the Internet of Things (IoT) has brought about 

new, complex operational challenges in managing, updating, 

and protecting large, distributed systems and networks of 

interconnected devices, sensors, and actuators across industries 

like manufacturing, healthcare, agriculture, and transportation. 

Due to their size and complexity, deployments often become 

overly burdensome. Manual management approaches become 

increasingly vulnerable and ineffective, leading to operational 

inefficiencies, higher security risks, and higher project failure 

rates. Additionally, maintaining devices as marketable products 

becomes challenging, as tasks such as firmware updates, 

security patches, and system overhauls often become unfeasible. 

Therefore, integrating automation, continuous integration, and 

continuous delivery practices is crucial. These approaches make 

the complex IoT lifecycle more manageable. The operational 

difficulties and high failure rates of large IoT projects put 

significant pressure on businesses. Adopting DevOps practices 

is no longer just a technical choice but an economic necessity for 

survival and growth in a competitive IoT environment. 

Organizations that fail to automate their connected product 

lifecycle will struggle to scale, secure, and sustain these 

products, risking commercial failure. 

A. Architectural Overview of Distributed IoT Systems: The 

Edge-to-Cloud Continuum 

 

The IoT architecture is distinct and complex, and distributed 

devops can be a challenge. IoT differs from a traditional 

enterprise application, as they are not contained to a central 

datacenter. IoT systems are divided across a multi-layer 

architectural pattern IoT system is divided into three primary 

layers: the edge, the fog, and the cloud. 

 

1) The Edge Layer:  

This is the lowest layer of architecture, consisting of IoT 

devices such as physical sensors, smart appliances, and 

actuators that interact directly with the physical world. These 

devices are often limited in processing power, memory, and 

battery life. Edge computing is important for applications 

that are constrained by IPv4, require near real-time 

responses, and need low latency, such as industrial systems, 

distributed intelligent control modes, and autonomous 

systems. 

 

2)  The Fog / Gateway Layer:  

Also known as the Gateway Layer, the fog layer in edge 

computing refers to a more geographically centralized 

region. It includes devices at one or more levels higher in the 

hierarchy, such as gateways or local edge fog servers. This 

layer primarily aggregates data from numerous edge devices. 

The main data sent is at Ethernet Level, with processing 

happening later before being forwarded to the cloud. This 

includes computers, lower fog level servers, cluster nodes, or 

fog nodes. Fog computing helps manage lower cloud control 

nodes and reduces network capacity requirements. 

 

3) The Cloud Layer:  

Cloud computing enables storing data in large repositories, 

analyzing it, and keeping it accessible for future use all in 
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one place. It also allows for scaling tasks and performing 

complex computing jobs, such as training machine learning 

models or performing fleet-wide analytics, which fog or edge 

computing cannot handle. 

 

The complexity of the architecture's structure and scope makes 

deployment very difficult. Even a simple feature update may 

require extensive coordination across all three layers, each with 

its own distinct hardware and software systems. The intricate 

interconnection of the architecture is the main reason why 

holistic deployment approaches often fall short, making 

automated deployment strategies essential.   

 

B. The Necessity of an Agile and Automated Framework for 

Distributed IoT Systems 

 

Managing the life cycles of distributed IoT systems is one of the 

most daunting challenges of the Internet of Things. 

Provisioning, transferring feature updates, deploying security 

patches, maintaining, and finally decommissioning millions of 

devices is nearly impossible due to the error-prone, inefficient, 

and sluggish process of relying on manual strategies. This 

realistic operational scenario further emphasizes the growing 

need for DevOps methodology. 

 

1) Continuous Integration (CI)  

This process involves the systematic and automated 

development and verification of software and its 

components, merging multiple separate instances of IoT 

software and firmware into a single consolidated version. 

This step ensures that automated builds of the software and 

firmware are accurately generated and validated. It is 

imperative to continually enhance and integrate the software 

and firmware versions. 

 

2) Continuous Deployment and Delivery (CD)  

This describes the process through which pre-production 

automated deployments are executed. It ensures that concise, 

over-the-air (OTA) software updates are delivered securely 

and efficiently to each device within the fleet. IoT software 

updates can be performed collectively, thereby minimizing 

human error and reducing operational costs. 

 

3) Infrastructure as code (IAC)  

This is the system responsible for managing and 

provisioning all aspects of the build infrastructure, testing 

rigs, and cloud services. It automates the process of defining 

infrastructure through machine-readable set files, thereby 

facilitating simpler and more straightforward configuration. 

Additionally, it ensures that no errors occur when handling 

the diverse range of devices within the system. 

 

The adoption of these principles fundamentally shifts companies 

from a reactive stance to a proactive and adaptable posture, 

enhancing their capacity to automate processes more effectively. 

This transformation accelerates innovation while 

simultaneously improving the security and reliability of their 

IoT solutions. Such a transition necessitates that systems 

engineers expand their expertise to encompass not only 

hardware and firmware but also embedded systems, cloud-

native solutions, automated processes, and security. This 

integrated expertise remains relatively rare within the industry. 

 

C. Key Challenges and Objectives 

 

While the necessity for DevOps in the Internet of Things (IoT) 

is evident, its practical implementation is complicated by a series 

of challenges that are not present in the conventional realm of 

software development. This paper aims to analyze these 

challenges systematically and to develop a set of evidence-based 

best practices to address them. Specifically, the focus is on how 

DevOps techniques such as continuous integration and 

automation can be effectively applied to managing resource-

constrained and highly heterogeneous distributed IoT devices. 

Additionally, it examines the techniques required to achieve 

end-to-end security (DevSecOps) within the CI/CD pipeline, 

from code commit to firmware deployment on remote devices, 

which are often not only geographically dispersed but also 

physically insecure. Finally, the paper explores how the DevOps 

practice of automated testing, particularly for hybrid hardware 

and software systems—where interactions with the environment 

are critical for functionality—can be effectively implemented, 

despite the complexities involved in controlling such 

interactions. By systematically investigating these issues, this 

paper will establish a foundation for employing the DevOps 

approach throughout the deployment lifecycle of distributed IoT 

systems. 

 

II. CORE CHALLENGES IN APPLYING DEVOPS TO IOT   

 

Applying DevOps practices within the context of IoT 

technology is distinct from simply shifting practices in web 

development to embedded systems. IoT's more physical aspects 

and the constraints of architecture and resources challenge the 

foundational principles of DevOps. This subsection delineates 

the three primary challenges that are the focus of this research.   

 

A. Managing sets of modules and associated limited resources 

within an automated workflow   

 

The distinctive physical diversity of Internet of Things (IoT) 

devices constitutes the primary challenge. In a cloud 

environment, an average DevOps pipeline interacts with a 

collection of virtualized servers that are not physically 

connected. Conversely, an IoT pipeline must establish 

connections with an extensive and continuously expanding array 

of devices. This heterogeneity manifests in various forms, 

including processor architectures (such as ARM, MIPS, x86), 

RAM and flash storage capacities, operating systems (such as 

Linux, FreeRTOS, Zephyr), and a broad spectrum of 

communication protocols (including WiFi, Bluetooth, 

LoRaWAN). 

 

The CI/CD pipeline encounters challenges stemming from 

diversity. The build process involves multiple cross-compilation 

toolchains tailored for various architectures. Validation must 

verify functionality across numerous hardware variants during 

testing. Deployment requires managing different firmware 

packages for distinct devices. Moreover, devices are afflicted by 

significant resource constraints, including limited processing 

power, memory, and battery life. These limitations impose 
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constraints on size, efficiency, and software capabilities. 

Executing complex processes such as on-device testing or 

security protocols poses additional difficulties. The discrepancy 

between the software domain and the physical realm, as outlined 

in the concept of friction within the world, exemplifies the 

obstacle to successful adoption in the context of embedded 

hardware. 

 

B. Securing the Entire Lifecycle from Deployment to 

Development 

 

DevOps now encompasses both development and cloud 

infrastructure simultaneously, thereby minimizing the potential 

attack surface. However, with IoT, the attack surface extends 

far beyond the hypervisor and includes all physical 

components, stretching an order of magnitude greater. Every 

single element of the pipeline, stretching from a developer’s 

workplace to the fielded device, has the capacity to be 

compromised. 

 

Malicious code may be inserted into a firmware update through 

a vulnerability in a source code repository, a misconfiguration in 

a continuous integration (CI) server, or a compromised build 

tool. Such an update could potentially be propagated via an 

automated continuous deployment (CD) pipeline to a fleet of 

devices, leading to service disruptions, data breaches, or even 

physical harm in the context of critical infrastructure or medical 

devices. The over-the-air (OTA) update mechanism is 

frequently exploited as an attack vector; however, it remains one 

of the most neglected mechanisms. Furthermore, due to 

inadequate physical security, Internet of Things (IoT) devices 

are highly susceptible to tampering, which is often employed to 

extract cryptographic keys or alter device identities. 

Consequently, the DevSecOps approach to security becomes 

increasingly vital, emphasizing the integration of automated 

security practices at every stage of the pipeline, from code 

commitment to device provisioning and firmware updates 

deployment. 

 

C. Comprehensive Validation of Cyber-Physical Systems 

 

The deployment of hybrid hardware-software systems is 

typically intricate and fraught with challenges, particularly 

concerning the implementation of automated testing procedures. 

This complex functionality is occasionally termed “DevOps”. It 

is generally characterized by immediate feedback derived from 

multiple tests conducted on the developed software. These tests 

are categorized into units, integration, and end-to-end 

assessments to optimize the virtual environment. 

 

This specific case does not fit within the IoT context. While 

software logic can still be tested through unit tests, these do not 

verify the crucial interaction between software and hardware. 

Accessing physical hardware becomes the main bottleneck 

during integration and system-level testing. Such access issues 

are particularly problematic at these higher testing levels. 

Deploying physical hardware for the required tests is primarily 

time-consuming, difficult to automate, and nearly impossible to 

scale. When hardware isn't available, testing becomes scarce and 

costly. This hardware shortage tends to create queues and delays, 

disrupting the vital feedback loops in DevOps. Testing updates 

in a closed, active system without full hardware access increases 

risks—for example, missing issues or errors that only appear 

when the system is open, resulting in potential failures when the 

system is finally released. 

 

III. RESEARCH AND RECOMMENDATIONS: STRATEGIES FOR 

MITIGATION OF DEVOPS IN IOT   

 

There is a need for tailored strategies and focused approaches to 

address the complex problems arising from applying DevOps to 

IoT in automation, involving software and underlying embedded 

systems. This section provides a detailed explanation of the 

challenges and offers a comprehensive set of recommendations 

and mitigation strategies, grounded in evidence. 

 

A. Tackling Hardware and Resource Constraints 

 

The primary challenge faced by IoT in the context of DevOps 

pertains to managing an array of hardware types. Unlike server-

side development, where applications are incorporated into a 

relatively standardized and virtualized environment, IoT 

solutions function across distributed, heterogeneous fleets. This 

diversity constitutes the most significant barrier to achieving 

universal integration within the Continuous 

Integration/Continuous Deployment (CI/CD) pipeline. Each 

type of hardware necessitates its own compiler, specific 

libraries, and customized build configurations. Moreover, these 

devices possess considerable limitations in terms of CPU 

capacity, power consumption, and memory resources. For 

instance, a microcontroller typically has minimal Random 

Access Memory (RAM) and operates on batteries. 

Consequently, resource-intensive or agent-based enterprise 

DevOps processes are impractical under such conditions. This 

necessitates that deployed systems be lightweight and energy-

efficient. This challenge extends beyond mere technical 

considerations; it signifies a shift in values and organizational 

culture. Maintaining clean interfaces is imperative, and 

embedded teams adopting Standard Operating Procedures 

(SOP) are not exempt from these requirements—they must 

explicitly and carefully manage merging processes, boundary 

definitions, and logical dependencies. 

 

Additionally, they must establish conditions conducive to 

reproducible environments. This constitutes the minimum 

criterion for successful integration within DevOps practices. 

Recent innovations in hardware "softwarization" have expanded 

technological capabilities by facilitating greater participation of 

software developers in the IoT domain. 

 

To mitigate the complexity challenge, it is advisable to segregate 

the core application logic from hardware-specific details. The 

'Hardware Abstraction Layer (HAL)” is a standardized software 

layer that acts as an Application Programming Interface (API) 

for peripheral hardware components such as sensors and control 

devices, thereby supporting various hardware peripherals. Most 

hardware-dependent applications are built upon different HAL 

schemes and remain portable across a wide range of 

Microcontroller Units (MCUs). Only the low-level HAL 

implementation requires adaptation for each new hardware 

target, greatly simplifying the CI pipeline. This modular 

approach not only makes development more efficient but also 

eases testing. 
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Principles of Infrastructure as Code (IaC), along with associated 

management strategies, are highly effective in addressing the 

complexities of multi-target builds. For embedded systems, this 

involves establishing distinct cross-compilation toolchains, 

SDKs, and dependencies tailored to each hardware platform. 

Within the Continuous Integration (CI) pipeline, tools such as 

Ansible, Chef, and basic shell scripting can automate the 

preparation of a clean build environment for each task, thereby 

ensuring consistency and repeatability. Containerization 

platforms like Docker are especially useful for encapsulating 

these environments. A Docker image can contain any toolchain 

and its dependencies within a portable, standalone container, 

thus providing a self-contained and isolated build environment 

irrespective of the host machine. 

 

Continuous Deployment in IoT systems is implemented through 

Over-the-Air updates. Given that IoT devices often possess 

limited resources, these updates must be optimized for size and 

efficiency. Consequently, the utilization of delta updates is 

advisable, whereby only the binary differences between 

firmware versions are transmitted. Such delta updates can 

decrease the update payload size by over 90%, thereby 

expediting the update process, enhancing reliability in unstable 

network conditions, and improving overall power efficiency. 

These delta packages should be generated systematically, and 

staged rollouts ought to be managed by the Continuous 

Deployment (CD) pipeline, which facilitates monitoring of 

update success rates and enables automatic rollback in case of 

deployment failures, thereby ensuring the fleet's health and 

operational continuity. 

 

B. Securing the IoT Deployment Pipeline (DevSecOps) 

 

The interconnected nature of the Internet of Things (IoT expands 

the attack surface of the DevOps pipeline significantly beyond 

the walls of the data center. The implications of a security breach 

at any stage of the lifecycle—from code development to field 

deployment—can be devastating. The most critical aspects 

include compromised source code, insecure third-party 

components, pipeline poisoning, insecure Over-the-Air (OTA) 

transmissions, and physical device breaches. Successful 

breaches enable adversaries to gain control over entire fleets, 

leading to data theft, service disruption, and physical 

destruction. The Continuous Integration/Continuous 

Deployment (CI/CD) pipeline has undergone substantial 

transformation and is now regarded as the primary mechanism 

for security maintenance throughout the product lifecycle. The 

remaining segments of the product pipeline, including 

Continuous Delivery (CD), must also be trustworthy and secure; 

failure to ensure this elevates the product to a strategic business 

risk classified at the C-level. A compromised pipeline could 

result in widespread device bricking and extensive data 

breaches, incurring severe financial and reputational loss. This 

calls for investment in traditional web application DevOps 

toward enhancing pipeline security and resilience. 

 

The primary emphasis of DevSecOps is on security and its 

incorporation at each phase of the software development 

lifecycle. Shift-left approaches integrate automated security 

checks within the CI/CD pipeline to deliver prompt feedback to 

developers. Key automated strategies include Static Application 

Security Testing (SAST) for examining application source code 

for vulnerabilities, Software Composition Analysis (SCA) for 

cross-examining software dependencies for known 

vulnerabilities (CVEs), and secret scanning to identify and flag 

sensitive data such as API keys, passwords, and tokens prior to 

commits, thereby preventing accidental exposure. 

 

For a secure IoT system, a minimal assumption is that every 

device is assigned a unique and trusted identity, typically rooted 

in a cryptographic key stored in a secure hardware element and 

provisioned during the manufacturing process. The deployment 

system should authenticate this identity before pushing an OTA 

update to prevent unauthorized devices from accessing the 

network. The CD pipeline is required to merge with this identity 

system in order to employ a code-signing service that 

cryptographically signs the firmware artifact, as a demonstration 

of origin and integrity. 

 

Indeed, the field of lightweight cryptography is of utmost 

importance due to the fact that standard cryptographic 

algorithms tend to consume a large volume of computational 

resources, especially on low-resource devices. The first option 

to consider is for the central distribution pipeline to employ a 

lightweight digital signature algorithm, such as those that derive 

from elliptic curve cryptography, to sign firmware packages for 

OTA updates. Once the device receives an update, it utilizes the 

relevant public key for signature verification to confirm that, 

prior to firmware installation, the signature has not been altered 

and is from a reliable source. 

 

 

Figure I.  IOT-CENTRIC DECSECOPS PIPELINE (A “SHIFT LEFT” 

APPROACH) 

 

C. Automating Testing for Complex IoT Systems   

 

DevOps depends on rapid, automated feedback, primarily 

provided through a comprehensive suite of automated tests. In 

the context of Internet of Things (IoT) systems, the software 

testing process proves to be of limited utility as it largely 

neglects the hardware component. While unit tests can ascertain 

the logic of software modules, they are incapable of detecting 

bugs stemming from physical hardware interactions. Within a 

Continuous Integration (CI) pipeline, system-level tests that 

necessitate physical hardware are recognized as exceedingly 

difficult to automate. These tests tend to be slow, challenging to 

parallelize, and require expensive physical test laboratories. The 

absence of hardware remains one of the primary impediments to 

implementing Continuous Delivery in embedded systems. This 

hardware testing bottleneck impedes the rapid feedback cycle 

critical for Continuous Delivery, consequently delaying the 

overall development process. 
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Using virtualization technology is crucial to overcoming 

hardware limitations. Virtualization allows for quick and large-

scale testing without physical systems. These tests include 

Software-in-the-Loop (SIL) emulation, where embedded 

software is compiled and run on a host machine, and system 

emulation, where tools like QEMU execute the actual cross-

compiled firmware binary in a virtual environment. Although 

QEMU emulation is slower than SIL, it offers much better 

scalability and speed compared to testing on physical hardware. 

While simulation and emulation are useful tools, they cannot 

fully replicate all the nuances of actual hardware. This 

underscores the significance of Hardware-in-the-Loop (HIL) 

testing, where the Device Under Test (DUT) is connected to a 

real-time simulator that mimics authentic sensors and 

environmental conditions. Automating HIL integration within 

the CI/CD pipeline involves creating a test harness that enables 

the CI server to handle firmware flashing, run specific test 

scenarios, evaluate results, and generate reports. Although 

setting up a HIL system can be costly, it offers increased 

confidence before deployment. Automated HIL testing covers 

real-world conditions, such as firmware integrity, hardware 

driver interactions, and power consumption. Incorporating 

Hardware-in-the-Loop (HIL) into CI/CD pipelines leads to "Test 

Infrastructure as Code." This emerging discipline requires 

engineers to possess a hybrid skill set, blending traditional test 

engineering, software automation, and DevOps expertise. 

 

 

Figure II.  HARDWARE-IN-THE-LOOP(HIL) TESTING SETUP 

 

IV. EMPIRICAL EVIDENCE FROM REAL-WORLD 

APPLICATIONS 

This section substantiates the proposed strategies through an 

examination of fundamental DevOps implementations and an 

analysis of specific IoT case studies. These cases underscore the 

observable benefits of adopting an automated, collaborative, and 

continuous lifecycle management methodology.  

A. Lessons from Foundational DevOps Implementations   

 

Blueprints for modern DevOps practices are based on the 

successes of web-scale giants like Amazon and Netflix. 

Amazon's decentralized, self-sufficient teams, empowered to 

make frequent independent changes, benefited from the 

microservices architecture. Their 'you build it, you run it' 

approach, along with significant cultural and structural shifts, 

became key to agility. Likewise, Netflix pioneered testing 

system resilience in production by intentionally introducing 

faults, a practice known as 'Chaos Engineering.” This required 

automated Continuous Delivery systems that help systems 

withstand failures by encouraging developers to create fault-

tolerant systems from the start. The main lesson from these 

pioneers is that successful DevOps adoption hinges on fostering 

a culture of ownership, automation, and continuous 

improvement—essentials for success, even in IoT. 

B. Analyzing IoT-specific implementations 

 

1) Automotive and Fleet Management: 

The adoption of DevOps for the Internet of Things has been 

vigorously pursued within the automotive sector. A leading 

global automotive manufacturer has modernized its legacy 

Retailer Report Portal by transitioning from a monolithic 

architecture to a scalable, cloud-native application hosted on 

AWS. This transition enables the automation of the entire 

Continuous Integration and Continuous Deployment 

(CI/CD) pipeline through GitHub Actions, Terraform, and 

Docker. The organization achieved a 56-fold increase in 

deployment frequency, and 82% of page load times were 

improved. Similarly, a provider of a fleet management 

solution designed a DevOps automation workflow to address 

challenges such as intermittent network connectivity and 

device vibrations in moving vehicles, utilizing Jenkins for 

continuous integration and Chef for configuration 

management. The implementation resulted in a 40% 

reduction in deployment efforts and a 90% increase in test 

coverage. 

 

2) Automated Deployment for Fleet Management 

(eInfochips):  

A manufacturer of in-vehicle camera systems experienced 

significantly prolonged release cycles, compounded by 

intermittent cellular data availability due to the dynamic 

environment of moving vehicles. Regrettably, the sporadic 

nature of cellular networks, coupled with the physical 

context of the moving vehicle, severely disrupted the release 

process. Utilizing Jenkins for continuous integration, Chef 

for configuration management, and automated testing 

frameworks, the organization automated the entire 

verification and health monitoring procedures to achieve 

comprehensive physical vehicle cycle automation. The 

resulting health monitoring systems, deployed with CI/CD 

practices, demonstrated notable improvements, including a 

40 percent reduction in deployment effort and a 90 percent 

increase in coverage of automated tests. This example 

underscores the importance of implementing automated 

pipelines in remote IoT systems. 

 

3) Applications in Agriculture and Healthcare: 

The influence of DevOps on the Internet of Things (IoT) is 

increasingly evident within the healthcare sector. Surgical 

IoT devices play a vital role in real-time remote monitoring 

and intelligent patient care beyond traditional clinical 

devices. This category of automated surgical instruments 

connects various IoT devices with autonomous skin systems 

dedicated to Patient Safety IoT devices. 
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Figure III.  CHALLENGES ENCOUNTERED, DEVOPS-CENTRIC SOLUTIONS 

IMPLEMENTED, AND IMPROVEMENTS REALIZED. 

Organization 

/ Industry 

Primary 

Challenge(s) 

Addressed 

DevOps/IoT 

Solution 

Applied 

Key Outcomes 

/ Improvements 

Global 
Automotive 

Manufacturer 

Outdated 
monolithic 

architecture; 

slow, manual 
deployments; 

poor 

scalability. 

Modernized 
application with 

microservices 

on AWS; 
implemented 

full CI/CD 

automation with 
GitHub Actions, 

Terraform, and 

Docker. 

56x increase in 
deployment 

frequency; 82% 

faster page load 
times; 65% 

reduction in 

database costs. 

eInfochips 

Client (Fleet 

Mgmt) 

Long release 

cycles; errors 

due to 
intermittent 

network 

connectivity 
and physical 

vibrations. 

Automated 

CI/CD pipeline 

(Jenkins, Chef) 
for deployment, 

verification, and 

monitoring of 
in-vehicle 

camera 

firmware. 

40% saving in 

deployment 

effort; 90% 
improvement in 

test coverage; 

quicker defect 
identification. 

Coca-Cola 
Bottling Co. 

United 

Complex, 
manual 11-

step ordering 

and invoicing 
process that 

was 

unscalable 
and error-

prone. 

Implemented 
Microsoft Power 

Automate RPA 

integrated with 
Azure DevOps 

for a full CI/CD 

workflow. 

Avoided hiring 
10 FTEs; 

streamlined and 

automated the 
entire order-to-

invoice process; 

enabled rapid 
scaling of a 

strategic product 

line. 

SIG 

(Industrial 

Mfg) 

Disparate 

data sources 

from 
production 

machines; 

lack of 
operational 

transparency. 

Adopted PTC 

ThingWorx IoT 

platform to 
connect 

machines and 

visualize data on 
a real-time 

dashboard. 

Increased 

visibility into 

production 
bottlenecks; 

identified and 

reduced 
unnecessary 

energy 

consumption; 
improved speed 

KPIs. 

 

V. CONCLUSION 

This paper systematically analyzes the adoption of DevOps 

practices within the deployment lifecycle of distributed IoT 

systems. It confirms that although adoption is essential for 

management and scalability, it is hindered by the hybrid nature 

of hardware and software components. The main challenges 

include hardware limitations, significant resource constraints, an 

extensive and physically accessible attack surface, and the 

paradox of testing automation for physical devices that are 

inherently hard to examine. This research provides a framework 

of suitable measures to address these challenges. The 

heterogeneity of hardware is managed through strategic 

abstraction and Infrastructure-as-Code (IaC) to create consistent 

engineering environments. DevSecOps promotes smoother 

adoption and moves security testing earlier via automated 

security scans, secure remote device provisioning, and 

lightweight encryption at the device layer to reduce security 

risks. Testing of integrated devices is separated through scalable 

simulation (SIL) supported by high-fidelity Hardware-in-the-

Loop (HIL) techniques and other methods. The case studies 

verify that these practices effectively support DevOps adoption, 

improving agility, security, and reliability in IoT deployment. 
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