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Abstract—Predicting and understanding the potential side 
effects of pharmaceutical drugs is a formidable challenge in the 
realm of medical science. The conventional process of assessing 
drug safety, primarily reliant on manual clinical testing [3] 
and post-market surveillance [4], [5], is not only arduous but 
also time-consuming, making it an impediment to rapid drug 
development and patient well-being. This paper introduces an 
innovative approach that harnesses the power of advanced 
machine learning techniques to address this challenge [6], [7], 
[8], [10], [9]. 
Our research delves into the intricate web of drug interactions 
within the human body and the complex factors contributing 
to adverse reactions. It is a realm where the exact mechanisms 
that trigger side effects often remain elusive, and the prevalence 
of rare and severe reactions complicates the task. Our approach 
encompasses the integration of diverse data sources, including 
drug characteristics, generic names, molecular structures 
(SMILES) [11], [12], and drug category [13]. Thereby providing 
a comprehensive understanding of the complex relationships 
between these factors and adverse reactions, unifying these 
disparate pieces of information, we aim to unveil hidden patterns 
and relationships that can significantly enhance the accuracy of 
drug side effect predictions. 

In this study, we employ the Random Forest classification model, 
known for its robustness and interpretability, to make predictions 
that not only incorporate the broad spectrum of drug-related 
factors [14] but also ensure the inclusion of rare and severe 
side effects in the assessment [15]. To address the challenge 
of handling non-numerical data, we employ methodologies to 
convert features such as SMILES structures, Drug generic 
names, and others into meaningful numerical descriptors, 
enabling their seamless integration into the predictive model. 
Our research does not only seek to enhance drug safety 
evaluation but also endeavors to bridge the chasm between the 
unpredictability of drug side effects and the need for a more 
efficient and informed drug development process. With the 
potential to revolutionize drug safety practices, this research 
has far-reaching implications in the domain of patient care and 
drug industry decision-making, promising a safer and more 
efficient future for the pharmaceutical research industry. 

Index Terms—SMILES (Simplified Molecular Input Line En- 
try System), Indication or Drug Target Diseases, Drug Side Effect, 
Random Forest, decision tree. 

 

I. INTRODUCTION 

The chemical composition of a medication significantly 

affects both how well it works and the likelihood of causing 

unwanted side effects. In the intricate dance between the 

field of pharmacology and the human body, a drug’s structure 

plays a vital role in how it interacts with molecules, triggers 

biological responses, and shares similarities with other 

chemical structures. [1], These factors directly impact the 

safety and effectiveness of pharmaceuticals. Therefore, 

understanding the structural foundations of these drugs is 

essential in the world of drug research as it unveils the 

intricate connections between a drug’s properties, its intended 

targets, and the occurrence of side effects [2]. 

The anticipation of potential side effects associated with 

drugs is a fundamental aspect of pharmaceutical research 

[29], with far-reaching consequences for patient well-being, 

drug development, and the broader healthcare landscape. 

Being able to predict adverse reactions to pharmaceuticals 

before they are released to the public is not only a matter 

of economic significance but, more crucially, a matter of 

safeguarding human health. Historically, assessing drug 

safety has depended on time-consuming clinical trials and 

meticulous post-market surveillance. Yet, this manual process 

often falls short in fully uncovering and predicting the 

complete range of potential side effects. This has, in the 

past, presented a significant obstacle to speeding up drug 

development and quickly delivering new treatments to those 

in need. 

In this ever-evolving field of pharmacology, machine learning- 

based predictive methods have emerged as powerful tools 

to address the multifaceted challenge of anticipating drug 

side effects. These methods offer a way to navigate the 

complexities of how drugs interact within the human body, 

especially when the exact mechanisms behind side effects 

remain mysterious. Moreover, these approaches enable the 

thorough examination of rare and severe side effects, which 

has traditionally been challenging using manual techniques. 

Our research aims to contribute to this ongoing shift in the 

field by introducing an innovative approach that utilizes a 

drug’s structure, encoded in SMILES (Simplified Molecular 

Input Line Entry System) notation, as a crucial factor in 

predicting drug side effects. The importance of drug structure 

in pharmacology is undeniable, as it underpins the interactions 

between molecules and biological responses that determine 

the safety and effectiveness of pharmaceuticals. Therefore, 

investigating the inherent relationship between drug structure 
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and side effects holds great promise for revolutionizing drug 

research. 

While machine learning methods have been employed in 

drug side effect prediction previously, our approach offers 

a distinctive contribution. We integrate a multitude of data 

sources, encompassing drug characteristics, generic names, 

molecular structures, drug target disease (indication) and drug 

category. By amalgamating these distinct dimensions, we aim 

to illuminate hidden patterns and relationships that have thus 

far eluded the grasp of traditional methodologies. 

To do this, we use a Random Forest classification 

model, which is well-known for its reliability and ease 

of interpretation. This model helps us tap into the predictive 

power hidden within the various factors we’ve gathered. 

Importantly, it allows us to tackle the challenge of handling 

non-numerical data like SMILES structures and converting 

them into meaningful numerical descriptions. 

As we embark on this research journey, our objectives In 

our research journey, we have two main objectives. First, we 

aim to improve the accuracy and efficiency of predicting drug 

side effects, with a particular emphasis on rare and severe 

ones. Second, we want to enhance our understanding of the 

complex mechanisms behind drug side effects, paving the 

way for safer and more effective drug development. 

 

II. METHODOLOGIES 

A. Problem Statement and formulation 

The task at hand involves the prediction of potential side 

effects associated with various drugs. This problem is ap- 

proached as a multi-label classification task, where each drug 

is associated with a binary vector of side effects. For a given 

drug i, the target label is represented as a binary vector yi, with 

d denoting the number of distinct side effects. Specifically, yi,j 

equals 1 when the drug i is linked to side effect j, and yi,j 

equals 0 when it is not. 

The dataset consists of n drug samples, each characterized 

by a pair of features xi that describe the drug’s attributes, 

and an associated side effect vector yi which classifies the 

presence or absence of side effects. 

The primary objective is to develop a predictive model 

capable of accurately categorizing drugs based on their side 

effect profiles and other ‘k’ dependencies for prediction. This 

model will leverage the features xi to classify each drug i into 

one or more side effect categories (yi,j). 

The successful solution to this problem will have significant 

implications for pharmaceutical research and healthcare, en- 

abling the identification of potential side effects and improving 

the safety and efficacy of drug treatments. 

B. Material and Datasets 

C. Side Effect Extraction Resource 

• Source: The SIDER (Side Effect Resource) 4.1 database 

[17] is a widely recognized and authoritative resource for 

collecting information on drug side effects. It aggregates 

data from various pharmaceutical databases, scientific 

literature, and clinical trials. 

• Data Extraction: From the SIDER 4.1 database [17], we 

extracted specific fields, including ”DRUG ATC CODE,” 

”DRUG INDICATION,” ”DRUG NAME,” and ”DRUG 

SIDE EFFECT.” 

• Data Records: Our extraction process resulted in a com- 

prehensive dataset comprising 22,115,782 data records. 

These records encompass a diverse range of drugs, each 

linked to their respective ATC code [19], drug indication, 

name, and associated side effects See Table I for details. 

• Uniqueness: Within this datasets, we identified 5,820 

unique side effects and 1,507 distinct drugs. These unique 

side effects are integral to understanding the potential 

adverse reactions associated with various pharmaceutical 

compounds See Table I for details. 

 
TABLE I 

EXTRACTED SIDE EFFECT 
 

Number of Records Unique Drugs Unique Side Effects 

22115782 1065 5820 
 

 

D. Collection of Drug Category and Drug SMILE 

• Source: The Pharmacogenomics Knowledge Base (Phar- 

mGKB) [16] is a reputable resource dedicated to the study 

of how genetic variations influence drug responses. It 

provides information on drug-gene interactions, pharma- 

cokinetics, and pharmacodynamics. 

• Data Extraction: From the PharmGKB database [16], we 

extracted two essential components: ”SMILES” (Simpli- 

fied Molecular Input Line Entry System) [20] representa- 

tions of drug structures and the categorization or ”type” 

of each drug. 

• Data Records: The integration of the PharmGKB [16] 

data into our datasets resulted in a total of 6,506,423 

records. These records encompass a wide array of drugs, 

with each drug linked to its chemical structure repre- 

sented in SMILES notation and categorized by typeSee 

Table II for details. 

• Uniqueness: Within this datasets, we identified 622 

unique drugs and 5,057 unique side effects. The inclusion 

of SMILES representations enhances our ability to ana- 

lyze the structural aspects of drugs, a critical component 

in understanding drug reactions and side effects See 

Table II for details. 

 
TABLE II 

EXTRACTING FROM PHARMGKB DATABASE 
 

Records Drugs Side Effects Structure Category 

6506423 612 5057 619 619 

 

The integration of these two diverse datasets forms the 

backbone of our research. By merging data from the au- 

thoritative SIDER 4.1 database [17], which focuses on side 

effects and drug characteristics, with information from the 
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PharmGKB database [16], which provides valuable insights 

into drug structures and categorization, we have created a 

comprehensive and multidimensional dataset. This dataset, 

consisting of a vast number of records, unique drugs, and 

distinct side effects, enables us to explore and predict drug 

side effects with depth and precision See Table III for details. 

The amalgamation of these datasets empowers our research 

to provide a more holistic understanding of the complex 

relationships between drug properties, chemical structures, 

and adverse reactions [18], ultimately contributing to the 

advancement of drug safety evaluation and patient care. 

III. STATISTICAL ANALYSIS AND VISUALIZATION 

The word cloud visualization, presented in Fig. 1, offers 

a striking portrayal of the most frequently mentioned drug 

names within the datasets. Each drug name is represented by 

a word, with the size of the word directly corresponding to its 

frequency of occurrence. Larger words within the cloud denote 

drugs that are most frequently administered or cited. This 

visualization provides an immediate and intuitive overview 

of the dominant drugs within the datasets, which is pivotal 

in discerning their potential implications in relation to side 

effects. 

Fig. 2 and 3 showcase a bar chart depicting the most preva- 

lent drug names and drug indication within the dataset. This 

chart is limited to the top N drug names, each accompanied by 

the corresponding count of occurrences. The visualization effi- 

ciently spotlights the drugs that are most commonly prescribed 

or referenced, enabling an in-depth analysis of frequently 

administered drugs in the context of side effects. 

 

 
 

Fig. 3. Indication Count Chart 

 

 

A. Abbreviations and Acronyms 

• SMILES: Simplified Molecular Input Line Entry Sys- 

tem. 

• ATC CODE: Anatomical Therapeutic Chemical. 

• PharmGKB: Pharmacogenomics Knowledge Base. 

IV. RANDOM FOREST MODEL 

A Random Forest is an ensemble machine learning model 

that combines multiple decision tree classifiers to make 

predictions. Each decision tree in the forest contributes to 

the final prediction, and the ensemble approach enhances the 

model’s robustness and generalization [21], [22], [23], [27]. 

Random Forest Model 
 

  
Tree 1 Tree 2 Tree 3 

      
Node 1 Node 2 Node 1 Node 2 Node 1 Node 2 

 

 

 
Fig. 1. World cloud Visualization 

Feature Feature Feature Feature Feature Feature 
 

 

 

 

Fig. 2. Drug Count Chart 

A. Random Forest Model Interpretation for Drug Side Effect 

Prediction 

In our Drug Side Effect Prediction model, the Random 

Forest algorithm employs a tree-based structure to make 

predictions based on the attributes of our datasets. Each tree 

within the model consists of nodes and features, which are 

directly related to the columns of our datasets. 

ATC Code: 

• Within our Random Forest model, a node may split 

the data based on the ATC Code. This code represents 

the Anatomical Therapeutic Chemical Classification, a 

system for classifying drugs based on their therapeutic 

and chemical properties. 



                           International Scientific Journal of Engineering and Management (ISJEM)                                 ISSN: 2583-6129 
                                  Volume: 04 Issue: 04 | April – 2025                                                                               DOI: 10.55041/ISJEM03072                                                                                                                                        

                                  An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        

 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                                                               |        Page 4 
 

TABLE III 
DATA SUMMARY STATISTICS 

 
 ATC Code Drug Name Indication Side Effect Type SMILES 

count 6506423 6506423 6506423 6506423 6506423 6506423 

unique 622 612 2156 5057 4 619 

top N06AB04 citalopram Renal impairment Dizziness Drug CN(C)CCCC1(C2=C(CO1)C=C(C=C2)C#N)C3=CC=C(C=C3)F 

freq 275310 550620 78667 44429 6023642 275310 

 

Drug Name: 

• In another part of the tree, the model might utilize the 

Drug Name column to make distinctions. The drug’s 

name can provide valuable information about potential 

side effects. 

Indication: 

• Indication is another feature that plays a role in our 

model’s predictions. It relates to the specific medical 

condition or purpose for which a drug is prescribed. 

Side Effect: 

• The Side Effect column is of utmost importance in our 

model, as it directly relates to the prediction task. It’s 

highly likely that nodes in the tree will make decisions 

based on the presence or absence of specific side effects. 

Type: 

• The Type column can represent various drug types or cat- 

egories, and it may guide the model in making predictions 

based on the type of drug. 

SMILES: 

• The Simplified Molecular Input Line Entry System 

(SMILES) notation can capture the chemical structure 

of drugs. Nodes in the tree may use this information to 

• Bootstrapping: The process of creating subsets of the 

training data for each tree is called bootstrapping. It 

involves sampling with replacement, which results in each 

subset having some duplicate data points [28]. 

• Voting or Averaging: For classification tasks, each tree 

predicts the class label, and the final prediction is deter- 

mined by majority voting among the trees. For regression 

tasks, the final prediction is the average of the predictions 

from all trees. 

• Feature Importance: Random Forest provides a mea- 

sure of feature importance, indicating which features con- 

tribute most to the model’s predictions. This is valuable 

for understanding the model’s decision-making process. 

C. Model Evaluation 

Model performance evaluation is a critical aspect of as- 

sessing the effectiveness of machine learning models, Several 

metrics have been used for our side effect prediction. 

Accuracy: Accuracy is a widely used metric to measure the 

overall correctness of a classification model. It calculates the 

ratio of correctly predicted instances to the total number of 

instances in the datasets. 

TP + TN 

differentiate between different drugs and their potential 
Accuracy =  

 

TP + TN + FP + FN 
(1) 

side effects. Each node in the tree represents a decision 

point, where the model chooses how to split the data 

based on one of these features. This decision process 

continues down the tree, with each node guiding the 
model closer to a prediction regarding drug side effects. 

Precision: Precision measures the accuracy of positive pre- 

dictions. It quantifies the proportion of true positive predictions 

out of all positive predictions made by the model. 

TP 

The Random Forest model combines the predictions of 
Precision =  

 

TP + FP 
(2) 

multiple trees, enhancing the overall accuracy and robustness 

of our drug side effect predictions. By analyzing the structure 

of these trees, we gain insights into how the model leverages 

the attributes of our datasets to make informed decisions about 

potential drug side effects. 

Recall (Sensitivity or True Positive Rate): Recall assesses 

the model’s ability to identify all relevant instances in the 

datasets. It calculates the proportion of true positive predic- 

tions out of all actual positive instances. 

It’s important to note that the exact formulas and decision 

boundaries in the nodes are determined by the training process 

of the Random Forest algorithm, and the interpretation pro- 

 

 
F1-Score: 

Recall = 
TP 

 
 

TP + FN 
(3) 

vided here is based on the general principles of how Random 

Forest models work. F 1 − Score = 
2 · (Precision · Recall) 

 
 

Precision + Recall 

 
(4) 
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B. Key characteristics of a Random Forest include: 

• Decision Trees: The Random Forest consists of 

multiple decision trees. Each decision tree is trained on 

a random subset of the training data, and at each node, 

it selects the best split among a random subset of 

features. This introduces diversity among the trees 

[24], [25], [26]. 

• TP (True Positives): The number of correctly 

predicted positive instances. 

• TN (True Negatives): The number of correctly 

predicted negative instances. 

• FP (False Positives): The number of instances 

predicted as positive but are actually negative. 

•  

• FN (False Negatives): The number of instances predicted 

as negative but are actually positive. 

In the context of our Drug Side Effect Prediction model, these 

metrics collectively underscore its strong performance. It 

excels in correctly predicting the presence or absence of drug 

side effects and effectively capturing the actual positive cases. 

Such performance is invaluable for real-world applications 

where the accurate identification of side effects is paramount 

for patient safety and treatment efficacy. 

 

It is crucial to consider the specific goals and requirements 

of our model’s application. Depending on the domain and 

the relative significance of false positives and false negatives, 

we may fine-tune the model to achieve the desired balance 

between precision and recall. Overall, with an accuracy of 85% 

and robust precision, recall, and F1-Score values, our Drug 

Side Effect Prediction model proves to be highly effective in 

its task. 

V. RESULTS 

Our model Accuracy, which measures the overall correct- 

ness of our model’s predictions, stands at an impressive 85%. 

This indicates that our model correctly predicts drug side 

effects in 85% of cases, demonstrating its reliability. 

Our model’s precision is 84%, signifying that when it 

predicts a drug to have a specific side effect, it is accurate 

84% of the time. This metric is vital as it reflects the model’s 

ability to minimize false positive predictions. 

The recall, or sensitivity, score of 88% showcases the 

model’s capability to identify 88% of actual drug side effects. 

In other words, it effectively captures most of the true positive 

cases. 

The F1-Score, at 86%, provides a balanced assessment of 

our model’s performance. It demonstrates the model’s ability 

to strike a harmonious balance between making accurate 

positive predictions (precision) and capturing a significant 

proportion of positive cases (recall). 

 

REFERENCES 

[1] Wang, Xiaoyan and Hripcsak, George and Markatou, Marianthi and 
Friedman, Carol, “Active computerized pharmacovigilance using natural 
language processing, statistics, and electronic health records: a feasibility 
study,” BMJ Group BMA House, Tavistock Square, London, WC1H 9JR, 
vol. 16, pp. 328–337, April 1955. 

[2] Irwin D. Kuntz, Structure-Based Strategies for Drug Design and Dis- 
covery, American Association for the Advancement of Science, 1892, 
pp.1078–1082. 

[3] Sorrentino R., “Exploring the relationship between drug side-effects and 
therapeutic indications.,”AMIA Annu Symp Proc. 2013;2013:1568- 1577., 
2013 Nov 16. 

[4] Soohyeon Lee and Sangjoon Shin and Lynn Howie and Hyunjin 
Jung and Steven Yoo and David Hong, “740 A first-in-human trial of 
hSTC810 (anti-BTN1A1 Ab), a novel immune checkpoint with a 
mutually exclusive expression with PD-1/PD-L1, in patients with 
relapsed/refractory solid tumors,” BMJ Specialist Journals, vol. 2, pp. 
740–741, August 1987 Journal for ImmunoTherapy of Cancer, p. A773– 
A773, 2022. 

[5] Lu, S., Pan, H., Wu, L. et al., Efficacy, safety and pharmacokinetics 
of Unecritinib (TQ-B3101) for patients with ROS1 positive advanced 
non-small cell lung cancer Mill Valley, a Phase I/II Trial. Sig Transduct 
Target Ther 8, 249., 2023. 

[6] Amiri, Marjan and Michel, Martin C, “Expectations and satisfaction of 
academic investigators in nonclinical collaboration with the pharmaceu- 
tical industry,” Naunyn-Schmiedeberg’s Archives of Pharmacology, vol. 
338, pp. 613–622, 2015. 

[7] Yildirim, Oktay and Gottwald, Matthias and Schu¨ler, Peter and Michel, 
Martin C, “Opportunities and challenges for drug development: public– 
private partnerships, adaptive designs and big data,” Frontiers Media SA, 
vol. 7, pp. 461, 2016. 

[8] Uddin, Shahid. ”Chapter 25: Peptide Drug/Device Combinations.” De- 
velopment of Biopharmaceutical Drug-Device Products (2020): 613-637. 

[9] De Rycker, Manu, et al. ”Challenges and recent progress in drug 
discovery for tropical diseases.” Nature 559.7715 (2018): 498-506. 

[10] VC Guido, Rafael, Glaucius Oliva, and Adriano D Andricopulo. ”Mod- 
ern drug discovery technologies: opportunities and challenges in lead 
discovery.” Combinatorial chemistry & high throughput screening 14.10 
(2011): 830-839. 

[11] Tatonetti, Nicholas P., Tianyun Liu, and Russ B. Altman. ”Predicting 
drug side-effects by chemical systems biology.” Genome biology 10.9 
(2009): 1–4. 

[12] Pauwels, Edouard, Ve´ronique Stoven, and Yoshihiro Yamanishi. ”Pre- 
dicting drug side-effect profiles: a chemical fragment-based approach.” 
BMC bioinformatics 12.1 (2011): 1-13. 

[13] Pauwels, Edouard, Ve´ronique Stoven, and Yoshihiro Yamanishi. ”Pre- 
dicting drug side-effect profiles: a chemical fragment-based approach.” 
BMC bioinformatics 12.1 (2011): 1-13. 

[14] Pauwels, Edouard, Ve´ronique Stoven, and Yoshihiro Yamanishi. ”Pre- 
dicting drug side-effect profiles: a chemical fragment-based approach.” 
BMC bioinformatics 12.1 (2011): 1-13. 

[15] Kapsiani, Sofia, and Brendan J. Howlin. ”Random forest classification 
for predicting lifespan-extending chemical compounds.” Scientific re- 
ports 11.1 (2021): 13812. 

[16] Thorn, Caroline F., Teri E. Klein, and Russ B. Altman. ”PharmGKB: 
the pharmacogenomics knowledge base.” Pharmacogenomics: Methods 
and Protocols (2013): 311-320. 

[17] Kuhn, Michael, et al. ”The SIDER database of drugs and side effects.” 
Nucleic acids research 44.D1 (2016): D1075-D1079. 

[18] Wishart, David S., et al. ”DrugBank 5.0: a major update to the DrugBank 
database for 2018.” Nucleic acids research 46.D1 (2018): D1074-D1082. 

[19] Miller, G. C., and H. Britt. ”A new drug classification for computer 
systems: the ATC extension code.” International journal of bio-medical 
computing 40.2 (1995): 121-124. 

[20] Kalyaanamoorthy, Subha, and Yi-Ping Phoebe Chen. ”Structure-based 
drug design to augment hit discovery.” Drug discovery today 16.17-18 
(2011): 831-839. 

[21] Paul, Angshuman, et al. ”Improved random forest for classification.” 
IEEE Transactions on Image Processing 27.8 (2018): 4012-4024. 



                           International Scientific Journal of Engineering and Management (ISJEM)                                 ISSN: 2583-6129 
                                  Volume: 04 Issue: 04 | April – 2025                                                                               DOI: 10.55041/ISJEM03072                                                                                                                                        

                                  An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        

 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                                                               |        Page 6 
 

[22] Liaw, Andy, and Matthew Wiener. ”Classification and regression by 
randomForest.” R news 2.3 (2002): 18-22. 

[23] Denisko, Danielle, and Michael M. Hoffman. ”Classification and in- 
teraction in random forests.” Proceedings of the National Academy of 
Sciences 115.8 (2018): 1690-1692. 

[24] Liu, Yingchun. ”Random forest algorithm in big data environment.” 
Computer modelling & new technologies 18.12A (2014): 147-151. 

[25] Ali, Jehad, et al. ”Random forests and decision trees.” International 
Journal of Computer Science Issues (IJCSI) 9.5 (2012): 272. 

[26] Ali, Jehad, et al. ”Random forests and decision trees.” International 
Journal of Computer Science Issues (IJCSI) 9.5 (2012): 272. 

[27] Jain, Nishant, and Prasanta K. Jana. ”LRF: A logically randomized 
forest algorithm for classification and regression problems.” Expert 
Systems with Applications 213 (2023): 119225. 

[28] Shah, Kanish, et al. ”A comparative analysis of logistic regression, 
random forest and KNN models for the text classification.” 
Augmented Human Research 5 (2020): 1-16. 

[29] REDDY ENUMULA, Raveendra, and Rama KRISHNA RAO. 
”Alzheimer’s disease prediction and classification using CT images 
through machine learning.” Bratislava Medical Journal/Bratislavske 
Lekarske Listy 124.5 (2023). 


