
 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02953

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page
1

INTELLIGENCE THREAT ANALYSIS AND MALWARE

DETECTION

VIJAYALAKSHMI S, JANANI K.S,

1,2,3.B.sc ISCF students, Dr.M.G.R Educational and Research Institute Deemed to be University, Chennai.

Corresponding Email ID: vijayalakshmikumar444@gmail.com

4. Professor, Dr.M.G.R Educational and Research Institute, deemed to be University, Chennai.

5. Assistant Professor, Dr.M.G.R Educational and Research Institute, Deemed to be University, Chennai.

ABSTRACT

Malware Detection entails the process of identifying and classifying malicious software (malware) that can potentially

damage devices, networks, or data. It consists of signature-based detection, heuristic analysis, behavioral analysis, and

even machine learning.

There is great concern for the impact of malware on digital security due to the possibility of exposing sensitive

information and damaging the system. The aim of this particular project is to develop an efficient malware detection

system with advanced machine learning techniques, behavioral analysis, and signature-based detection. Characterizing

files, network traffic, and monitoring systems enables the model to identify threats in real time and neutralize them.

This project is designed to improve cybersecurity by increasing detection accuracy, lowering false alarms, and

offering proactive response

to threats. This solution enables systems to withstthe continuous changes in cyber threats and creates a better

environment on the internet.

 Nowadays, with the advances in technology, digital systems make our life easier and more complicated at the same

time. This also includes an increase in the potential for cyber threats which is one of the most significant challenges

we face today. Malware comes on top of the list.

 My project aims at developing and integrating an efficient malware detection application that relies on pattern

recognition to find malware and contains advanced detection algorithms. It employs machine learning and both static

and dynamic analysis techniques.

INRODUCTION

In this globalized digital era, the concern for

cybersecurity cannot be understated and continues

becoming sophisticated with the advancement in

technology, particularly malware. Such malicious

attacks can result in the loss of sensitive information,

finances, and reputational harm that can last for an

extended period. Therefore, failure to detect such

attacks in a timely manner can lead to significantly

increased losses.

In this regard, the project focuses on the design and

implementation of an automated system dedicated to

thorough malware analysis. The main goal is the

development of a system capable of applying both

dynamic and static analysis to efficiently classify and

detect malware

Development in the field often employs machine

learning along with behavioral analysis for pattern

recognition associated with malicious activities.

Automated systems should greatly enhance

performance in this regard.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02953

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

2. LITERATURE SURVEY

2.1. Balasubramanian, K. M., et al. (2023).

Title: Obfuscated Malware Detection using Machine

Learning Models

Conference: 2023 14th International Conference on

Computing Communication and Networking

Technologies (ICCCNT)

DOI: 10.1109/ICCCNT52687.2023.10123456

Summary: This paper addresses the challenge of

detecting obfuscated malware using machine learning

techniques. The authors propose models that

effectively identify malware variants employing

obfuscation techniques, enhancing detection

capabilities.

2.2. Gunjan Varshney, et al. (2023).

Title: Machine Learning Based Malware Detection

System

Conference: 2023 3rd International Conference on

Advancement in Electronics & Communication

Engineering (AECE)

DOI: 10.1109/AECE59614.2023.10428565

Summary: This paper discusses the development of a

machine learning-based system for malware detection,

highlighting the challenges and solutions in

implementing such systems.

2.3. Sreenidhi Ganachari, et al. (2023).

Title: Machine Learning Based Malware Analysis in

Digital Forensic with IoT Devices

Conference: Intelligent Systems and Machine

Learning (ICISML 2022)

DOI: 10.1007/978-3-031-35078-8_15

Summary: This research explores the application of

machine learning techniques in analyzing malware

within IoT devices, emphasizing the importance of

digital forensics in the IoT ecosystem.

2.4. Pranav, P. R. K., et al. (2022).

Title: Detection of Botnets in IoT Networks using

Graph Theory and Machine Learning

Conference: 2022 6th International Conference on

Trends in Electronics and Informatics (ICOEI)

DOI: 10.1109/ICOEI53556.2022.9777117

Summary: This paper proposes a graph-based

machine learning approach to detect IoT botnets,

addressing challenges like multi-architecture issues

and reducing computation time.

3.MALWARE DETECTION

3.1 OVERVIEW: Malware detection refers to

the act of finding and counteracting malicious

software that may attack the security,

functionality, and integrity of data of computer

systems and networks. Malware detection is a

fundamental element of cybersecurity as it

safeguards systems from viruses, worms,

trojans, ransomware, and spyware. Detection

techniques typically belong to categories such

as signature-based detection, which uses

known patterns of malicious code.

3.2 FEATURES OF MALWARE

DETECTION:

1. Real-Time Monitoring

Ongoing monitoring of system activity, files,

and network traffic to identify malware as it

emerges.

 2. Static and Dynamic Analysis

Static Analysis: Scans the code of files without

running them to look for known malicious

patterns.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02953

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

Dynamic Analysis Executes files in a

sandboxed (isolated) environment to see how

they behave in real-time.

 3. Machine Learning Integration

Utilizes trained algorithms to identify and

classify unknown or emerging malware by

behavior and features, enhancing detection

over time.

 4. Feature Extraction

Extracts significant attributes automatically

from files or system behavior (such as API

calls, permissions, or network access) to aid

detection and classification.

 5. Automated Alerts

Provides real-time alerts or warnings to

administrators or users when malicious

activity is found.

6. Threat Classification

Recognizes the malware type (e.g., trojan,

ransomware, spyware) to facilitate proper

response and analysis.

 7. Automated Response

May perform actions such as quarantining,

deleting, or blocking malicious files without

human intervention, minimizing response

time.

 8. Model Updating and Learning

Facilitates automatic model updating and

retraining with new threat data to remain up-

to-date against new malware.

9. Integration with Security Tools

Simplifies integration with antivirus solutions,

firewalls, SIEM systems, and other security

platforms for an integrated defense strategy.

 10. Reporting and Visualization

Creates detailed logs, charts, and dashboards

for simplified analysis, audit, and threat

investigation.

3.3 ADVANTAGES:

• Efficiency and Speed:

 Automated platforms are able to examine

huge amounts of malware samples with high

speed and without tiring out, whereas analysis

of such samples manually is time-consuming

and may take weeks or months.

• Accuracy and Consistency:

Automated tools avoid human error, ensuring

each sample is examined uniformly with the

same rules, lowering the potential for

overlooked threats or misidentifications.

• Cost-Effective:

By automating the analysis procedure,

organizations are able to minimize the

requirement of large teams of security

analysts, resulting in decreased operational

expenses and better resource utilization.

• Time consuming

The systems of automated malware analysis

can work 24/7, providing continuous

monitoring and detection of fresh threats

without requiring human intervention to

ensure timely response to emerging malware.

• Real-Time Threat Monitoring

Automated malware analysis systems may be

used in conjunction with live monitoring

systems so that suspicious activity will trigger

an immediate response and mitigation.

• Minimized Human Effort

 Automating mundane analysis processes lets

cybersecurity experts dedicate themselves to

more challenging investigations and strategic

choice, enhancing productivity overall.

• Standardized Analysis Reports

 Mechanized systems provide regular and

standardized reports, which enable uniformity

to be preserved and results to be easily

compared, stored, and shared among teams

and organizations.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02953

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

REQUIREMENT SPECIFICATIONS

HARDWARE REQUIREMENTS: First of

all to perform intelligence threat analysis and

malware detection on any dataset, the

software/program requires a computer system

powerful enough to handle the computing

power necessary.

 So the following is required:

• Central Processing Unit (CPU) — Intel Core

i5 6th Generation processor or higher. An

AMD equivalent processor will also be

optimal.

• RAM — 8 GB minimum, 16 GB or higher is

recommended.

 • Operating System — Microsoft Windows

10. I recommend updating Windows 10 to the

latest version before proceeding forward.

SOFTWARE REQUIREMENTS:

 PYTHON: Python is a widely used general-

purpose, high level programming language. It

was created by Guido van Rossum in 1991 and

further developed by the Python Software

Foundation. It was designed with an emphasis

on code readability, and its syntax allows

LANGUAGE FEATURES: • Interpreted -

There are no separate compilation and

execution steps like C and C++. Directly run

the program from the source code. Internally,

Python converts the source code into an

intermediate form called bytecodes which is

then translated into native language of specific

computer to run it. No need to worry about

linking and loading with libraries, etc.

 • Platform Independent - Python programs

can be developed and executed on multiple

operating system platforms. Python can be

used on Linux, Windows, Macintosh, Solaris

and many more.

 • Free and Open Source – Redistributable.

• High-level Language - In Python, no need to

take care about low-level details such as

managing the memory used by the program.

SQLite:

SQLite is a lightweight, serverless, and self-

contained relational database management

system (RDBMS) that stores databases in a

single file. Unlike other traditional databases,

it doesn’t require a separate server process,

making it easy to set up and manage, with zero

configuration. This makes SQLite ideal for

embedded applications, mobile apps, and local

desktop applications, where simplicity and

portability are crucial.

Psutil:

psutil is a Python library used for retrieving

and managing system and process-related

information. It allows developers to access

details such as CPU usage, memory

consumption, disk usage, network statistics,

and process information, making it an

invaluable tool for system monitoring,

debugging, and resource management. With

psutil, users can gather real-time data about

system performance, track the health of

processes, and even perform actions like

terminating or suspending processes.

 Tkinter:

Tkinter is the standard Python library for

creating graphical user interfaces (GUIs).

It provides a simple and powerful way to build

cross-platform desktop applications with

windows, buttons, labels, and other interactive

elements.

METHODOLOGY

1.Threat Data Collection

The initial step is to collect threat-

related information from various sources like s

ystem logs, intrusion detection systems,

firewalls, threat intelligence feeds, open-

source intelligence (OSINT), and sandbox

environments. Honeypots and dark web

monitoring tools can also

be utilized to gather information about emergi

ng threats and attacker behavior.

2. Data Preprocessing and Normalization

After data is gathered, it is preprocessed

to strip noise, eliminate redundancies,

and normalize formats. This process makes the

data clean

and organized, thus simplifying the process of

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02953

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

analyzing and correlating events across multipl

e systems or sources.

3. Threat Intelligence Analysis

During this stage, analysts or

automated tools scan the preprocessed

data for Indicators of Compromise

(IOCs) like IP addresses, file hashes, or

domain names. They also scan Tactics,

Techniques, and Procedures

(TTPs) employed by the attackers

to learn more about the

threat vector and possible vulnerabilities.

4. Malware Detection Techniques

Malware detection may be done using a

combination of methods. Static

analysis examines code

without running it, searching for patterns

of suspicious activity or recognized signatures.

Dynamic

analysis executes files within sandbox environ

ments to observe in-time behavior such as

file writing, network I/O, and API calls.

Behavior-based detection looks for patterns of

abnormal system behavior, and machine

learning-based

detection employs learned models

to predict whether a given file is malware or

not, based on learned features such as opcodes

and execution patterns.

5. Correlation and Contextualization

The security information

is subsequently correlated across sources

to develop a holistic view of the threat. SIEM

systems are examples

of tools that assist in correlating events, identif

ying attack chains, and delivering the

context required to evaluate severity, source,

and potential impact of the malware or threat.

6. Alerting and Prioritization

When a threat is identified, alerts are

automatically triggered and

prioritized according to factors such as risk

level, impacted systems, and threat type. This

ensures that the most severe issues

are resolved first, enhancing incident

response effectiveness.

7. Incident Response Automation

To lower reaction time, automated

response processes are initiated to isolate the

threat. This can involve quarantining infected

files, isolating attacked systems, blocking

malicious IPs or URLs, and initiating

remediation processes.

8. Reporting and Threat Intelligence

Sharing

Once an incident has been

addressed, comprehensive reports

are created for internal stakeholders and teams.

Data Collection

Data collection is the initial step in an

automated malware analysis project.

It encompasses collecting raw data and

malware samples from different sources to

be processed, categorized, and utilized for

training or testing detection models.

The diversity and quality of such data play a cr

ucial role in determining the accuracy and

reliability of the analysis system.

FEATURE EXTRACTION

• Feature extraction is an important step in

automated malware

analysis, wherein useful information is extract

ed from raw malware samples to be input into

classification models or detection engines.

The aim is to transform complex malware

behavior or code into

structured, quantifiable data that can

be utilized to distinguish between benign and

malicious files—or even recognize specific

malware families.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02953

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

• Static Features

Static features are taken out of the

malware without running it. These

characteristics rely on file contents and

structure themselves. Standard static

features encompass file metadata

including size, type, and headers, and

sequences of opcodes (operation codes)

which emulate underlying binary

instruction sets. Some more static features

include API calls—the external functions

called by the malware. Malware samples

also frequently include strings such as file

paths, URLs, and command strings that

could indicate malicious activity. PE

headers (within Windows executables)

also hold useful information, such as how

the file is loaded and what resources it

holds.

• Dynamic Features

Dynamic features are obtained by running

the malware in a controlled environment,

for example, a sandbox or virtual

machine. This method captures the actual

behavior of the malware. Common

dynamic attributes are system calls, which

illustrate the ways in which the malware

communicates with the operating system

(e.g., reading files, writing to the registry,

or creating processes). Network behavior

such as domain names accessed, IP

addresses, and suspicious network traffic

patterns can also be indicative of

malicious activity. Other dynamic

attributes are memory access patterns and

any process or files created or altered by

the malware while running. Moreover,

malware attempts to create persistence

mechanisms, like placing itself in the

startup folder or altering scheduled tasks,

which can also be detected.

• Hybrid Features

Hybrid features are a blend of both static

and dynamic features. This analysis gives

a better picture of malware behavior by

taking advantage of the strengths of both

methods. Static analysis gives quick

information about the malware structure,

whereas dynamic analysis shows how the

malware acts when run. Hybrid features

are particularly helpful in detecting

polymorphic or obfuscated malware that

may go undetected using static analysis

alone.

Merging these categories of features provides better

and more holistic malware detection, allowing

automated systems to identify and categorize malware

both by its code and actual behavior.

ALGORITHM

An automated malware analysis algorithm generally

consists of a number of well-defined steps that start

from data collection, followed by static and dynamic

analysis, feature extraction, classification, and

response actions. The idea is to automatically detect

and classify malware while keeping human

intervention to a minimum.

1.Data Collection

The first step in the algorithm is to collect malware

samples and supporting data from trusted sources. This

includes malware repositories, network traffic logs,

system logs, and threat intelligence feeds. The

collected data serves as the raw input for the

subsequent analysis.

2. Static Analysis

In static analysis, the algorithm analyzes the malware

without running it. This is done by pulling file

metadata (for example, size, type), opcode sequence

analysis (machine code instructions), and looking for

API calls and strings embedded in the malware code.

Static analysis also covers checking the PE headers of

Windows executable files to collect information

regarding how the malware is organized and what

resources it can use.

3. Dynamic Analysis

Following static analysis, the malware sample is run in

a sandbox environment to track its runtime activity.

The system records system calls (e.g., file reads,

process creations, or registry changes), network

activity (e.g., contacted domain names or IP

addresses), and any other malicious activity.

Observing the malware in use, dynamic analysis gives

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02953

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 7

insight into its malicious behavior, which is not

evident using static features alone.

4. Feature Extraction

The second step is to extract features from static and

dynamic analysis. These features may be system call

patterns, network activity logs, API calls, and strings

embedded in the code. The feature set is generated by

merging static and dynamic features to create a more

complete profile of the behavior of the malware.

5. Feature Preprocessing and Engineering

After the features are extracted, preprocessing methods

like normalization (standardizing data values) and

feature selection (selecting the most significant

variables) are used by the algorithm. Vectorization

follows next, which translates the features into a

numerical representation that can be used by machine

learning models so that they are ready for the next

phase.

6. Malware Classification

features are then fed into a machine learning model

(e.g., Random Forest, Support Vector Machine (SVM),

or Neural Networks) for malware classification. The

model is trained using previously labeled malware and

clean samples, learning to label new samples with the

acquired features. The classification model determines

if the sample is malicious or clean, usually with a

confidence level.

7. Automated Response

After the malware is categorized, if it is determined to

be malicious, the system initiates automated response

measures. This can involve quarantining the file,

blocking network access to malicious IP addresses, or

notifying security teams with detailed reports of the

infection. In certain instances, the system can also

trigger remediation measures, such as deleting infected

files or terminating malicious processes.

8. Continuous Learning and Feedback

Last but not least, the system has feedback loops.

When new malware samples are seen, they are

appended to the training set, and the system gets

updated periodically to retrain the classification model.

This feedback loop provides the system with the

ability to adjust to changing malware strategies and

enhance its detection over a period of time.

Future Enhancements

1. Advanced Static and Dynamic Analysis

• Integration of ML/AI for Static Analysis:

Use machine learning to detect obfuscated or

packed code patterns without execution.

• Hybrid Analysis Engine: Combine static and

dynamic results using correlation engines to

improve detection accuracy.

• Emulation Environment: Incorporate CPU

emulators like QEMU to execute malware

without risking real systems.

2. Improved Reporting & Visualization

• Interactive Reports: Visualize system calls,

registry changes, file drops, and network

behavior using interactive graphs.

• Timeline Analysis: Chronologically display

malware activities during execution.

• YARA Rule Matching: Auto-generate and

tag analysis results with relevant YARA rules.

RESULT:

1. Malware Classification: The malware is classified as

malicious or benign depending on the analysis.

2. Behavior Report: A comprehensive report indicating

the behavior of the malware.

3. Indicators of Compromise (IOCs): Detection of

malicious indicators such as file hashes, IP addresses,

and URLs, which can be used to identify similar

threats elsewhere.

4. Automated Response: In case it is malicious,

automated responses are initiated.

5. Better Detection: The model is enhanced by

incorporating new data and feedback, hence better at

identifying threats in the future.

6. Security Advice: Insights and advice for enhancing

defenses, e.g., blocking certain IP addresses or

enhancing monitoring of the network.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02953

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

 © 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 8

CONCLUSION

In summary, the malware analysis system created in

this project effectively improves the efficiency and

effectiveness of malware detection and analysis.

Through the automation of the primary processes

engage examination—like behavior analysis, signature

creation, and network activity monitoring—the system

eliminates human error, accelerates response times,

and scales well to process high numbers of malware

samples.

The capability of the system to perform dynamic and

static analysis offers a holistic view of possible threats,

enabling finer details about malware behavior and

payloads. Additionally, the combination of machine

learning and heuristic techniques enables the tool to

identify even unknown or polymorphic malware

variants, which are on the rise in contemporary cyber-

attacks.

Despite this, there are still difficulties in better

equipping the system to deal with sophisticated

malware and evasive behavior. Future development

could include further development of the system's

ability to adapt to zero-day threats, enhanced real-time

analysis functionality, and a larger database for more

exact comparisons. Generally speaking, the project

shows a sound basis for autonomous malware

detection and provides useful assistance to

cybersecurity specialists in the war against

cyberattacks.

