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---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - This study uses Kotlin, Camera2 API, and 

TensorFlow Lite to design and construct an Android 

application for real-time object identification. The project aims 

to provide an efficient mobile solution that identifies and 

classifies objects through the phones camera in real time. To 

enhance accuracy and performance across various devices, the 

app integrates four pre-trained lightweight machine learning 

models: MobileNetV1, EfficientNet-Lite, EfficientNet-Lite1, 

and EfficientNet-Lite2. Additional features include image 

selection from the gallery, threshold-based object detection, 

and classification into categories like food, fashion, and 

electronics. The Android 14-compatible application 

implements modern runtime permission handling and supports 

smooth on-device ML operations. The results demonstrate 

satisfactory object recognition accuracy and usability, making 

it suitable for educational, lifestyle, and accessibility 

applications. 
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1.INTRODUCTION 

 
Object detection in mobile applications has advanced 
significantly due to lightweight machine learning 
frameworks like TensorFlow Lite (TFLite). This project 
focuses on creating an Android application capable of 
detecting and classifying objects in real time using the 
devices camera or images selected from the gallery. The 
growing demand for AI-powered mobile apps has led to 
the development of on-device ML tools that are fast, 
offline, and power-efficient. This project specifically 
explores the implementation of Camera2 API with Kotlin 
to access camera frames and the integration of four pre-
trained models to enhance detection accuracy and 
diversity in object classification.  

2. Methodology 

2.1 Camera Integration 

Implemented using Camera2 API for fine-grained control over 
the image capture pipeline, ensuring real-time frame access with 
optimized latency. 

 

 

2.2 Model Selection and TFLite Integration 

Integrated MobileNetV1 and three variants of EfficientNet-Lite 
to offer balanced accuracy and performance. Models were 
converted to TFLite format for lightweight execution. 

2.3 Image Processing Pipeline 

Each frame or selected image is resized and normalized before 
being passed to the ML model. Detection results include 
bounding boxes and labels. 

2.4 Threshold Feature 

A confidence score threshold enables the user to ignore low-
confidence detections, improving usability and result relevance. 

2.5 Classification Logic 

Detected labels are mapped to categories such as fashion, food, 
electronics, etc., using a custom logic module. 

2.6 Android 14 Permissions 

Android 14's runtime permission model is implemented to 
ensure camera and storage access permissions are user-friendly 
and compliant. 

 

 

 

 

 

3.Results and Discussion  
  

The application was tested on Android 14 devices and 
demonstrated the following outcomes: 

• Real-time frame processing at 10–15 FPS using 

MobileNetV1. 

• Improved accuracy with EfficientNet-Lite1 and 

Lite2, though with a slight performance trade-off. 

• Offline image classification from gallery input. 

• Seamless handling of runtime permissions for 

modern Android versions. 

• Smooth UI/UX experience with Kotlin 
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Table -1: Performance of ML Models on Android Device 

 

 
 The detection accuracy improved with more complex models, 
but performance declined slightly. The threshold-based filter 
ensured users only viewed high-confidence detections. This 
balance of speed and precision enables real-world usability in 
educational tools, accessibility support, and lifestyle 
applications. 

  

 
Fig -1: System Architecture Diagram 

 

 

The architecture demonstrates the complete workflow from 

user input to output visualization. Users set a detection 

threshold and select the image source, either live camera feed 

or gallery upload. Input data undergoes preprocessing to 

enhance model accuracy, followed by selection among multiple 

TensorFlow Lite models (MobileNetV1, EfficientDet Lite 

variants) for inference. Postprocessing refines detection results, 

which are then displayed on the UI with bounding boxes and 

labels, ensuring real-time interactive feedback. 

 

 

 

 

 

 

 

 
 

 

          Fig -2: Real-time Detection Screenshot 

 

The app detects two instances of a “remote” object in the 

image, with confidence scores of 0.71 and 0.76 respectively. 

A user-defined threshold value of 0.40 ensures that only 

detections above this confidence are displayed. The 

EfficientDet Lite0 model is used for inference, enabling 

accurate and efficient real-time object recognition. Detected 

objects are visually marked with bounding boxes and labeled 

confidence scores for clear user feedback. 

 

 

 
                                

                 Fig -3: Model Comparison Chart 

 

This chart evaluates four object detection model 

MobileNetV1, EfficientNet-Lite, EfficientNet-Lite1, and 

EfficientNet-Lite2-based on classification accuracy (%) and 

frames per second (FPS). The left Y-axis represents accuracy, 

indicating model effectiveness in object detection, while the 

right Y-axis shows FPS, reflecting real-time inference speed. 

As illustrated, MobileNetV1 offers the highest FPS, making it 

ideal for resource-constrained environments, but at the cost of 

lower accuracy. Conversely, EfficientNet-Lite2 achieves the 

highest accuracy but with reduced speed. This comparison 

underscores the trade-off between speed and precision, 
guiding model selection based on application requirements. 
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3. CONCLUSIONS 

 
Using TensorFlow Lite and Kotlin, this study effectively 

illustrates the real-world application of multi-object tracking 

and real-time object detection on Android. The accuracy, 

adaptability, and practical usability of the system are improved 

by combining various machine learning models (MobileNetV1, 

EfficientNet-Lite, Lite1, and Lite2) with variable input options 

(live camera and gallery). The application is appropriate for 

dynamic contexts since it allows for the simultaneous detection 

of several objects with adjustable confidence thresholds. 
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