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Abstract— Software development and the maintenance life 

cycle are lengthy processes. However, the possibility of having 

defects in the software can be high. Software reliability and 

performance are essential measures of software success, which 

affects user satisfaction and software cost. Predicting software 

defects using machine learning (ML) algorithms is one approach 

in this direction. Implementing this approach in the earlier 

stages of the software development improves software 

performance quality and reduces software maintenance cost. 

Different models and techniques have been implemented in 

many studies to predict software defects. This investigation 

implements ML algorithms, such as artificial neural networks 

(ANNs), random forest (RF), random tree (RT), decision table 

(DT), linear regression (LR), gaussian processes (GP), SMOreg, 

and M5P. A new software defect prediction model for software 

future defect prediction is proposed. The defect prediction is 

based on historical data. The results showed that a combination 

of ML algorithms could be used effectively to predict software 

defects. The SMOreg classifier scored the best performance 

results, where the ANN classifier scores the worst results. 

 

Keywords— software defect prediction, software defect, prediction model, 

machine learning (ML), artificial neural networks (ANN), SMOreg Classifier. 

 

I. INTRODUCTION 

In the last few years, software quality became one of the 

most critical aspects of the software. Software defect 

prediction is an essential part of the software development 

cycle, and it can increase software quality, performance and 

reduce maintenance costs. Defective software directly 

impacts software quality leading to higher software costs, 

delayed project plans, and higher maintenance costs. On the 

other hand, applying a software defect prediction model on 

the software before its deployment improves software 

performance and increases its reliability and user satisfaction. 

In this study, the software prediction performance was 

assessed using eight machine learning (ML) algorithms. The 

algorithms include artificial neural networks (ANNs), 

random forest (RF), random tree (RT), decision table (DT), 

linear regression (LR), gaussian processes (GP), SMOreg, 

and M5P. Weka 3.8.3 tool has been used to run the algorithms 

using the k-fold cross-validation and percentage split 

techniques. Dataset used in this work was obtained from a 

publicly available repository from NASA Promise [1]. The 

data set was validated using two test modes: 10-fold cross- 

validation and percentage split with different training set 

percentages (60%, 70%, 80%, 90%). Using the WEKA tool, 

the two test modes applied the data classification on the eight 

ML algorithms. 

 

In this investigation, different evaluation measures will be 

used to assess software defect prediction accuracy. 

According to the results of these measures, we can decide 

which ML algorithms we can use for software defect 

prediction. The evaluation metrics include correlation 

coefficient (R²), mean absolute error (MAE), root mean 

squared error (RMSE), relative absolute error (RAE), and 

root-relative squared error (RRSE). The ML algorithm with 

the lowest error rates can be considered the most appropriate 

algorithm to apply in the prediction process. 

The other sections of the paper are structured as follows: 

the literature review related to software prediction techniques 

is presented in Section II; background knowledge and 

description of the used Machine Learning algorithms are 

discussed in Section III; the dataset with evaluation 

methodology and experimental results are presented in 

Sections IV and V, respectively; the conclusion and future 

work are discussed in Section VI. 

II. LITERATURE REVIEW 

Many studies used machine learning (ML) algorithms to 

measure software defect prediction performance [2], [3], [4]. 

A recent study analyzed different ML algorithms’ 

performance in software defect prediction. The ML 

algorithms used are NB, MLP, RBF, SVM, KNN, K*, OneR, 

PART, DTree, and RF [3]. The researchers of this study 

implemented the ML algorithms on 12 publicly available 

NASA datasets. This study evaluated the results using 

various measures, like accuracy, recall, precision, F-measure, 

ROC area, and MCC. Another study proposed a software 

defect prediction model based on a neural network using a 

levenberg-Marquardt (LM) algorithm [4]. In this study, the 

proposed model is compared with the polynomial neural 

network, and they found that the proposed model has higher 

accuracy results. M. Ahmad et al. reviewed different ML 

algorithms, lexicon-based techniques, and hybrid techniques, 

which combines ML algorithms and lexicon technique for 

automatic sentiment classification for user-generated data 

from various social media and blogging websites [5]. Arora 

et al. proposed a software defect prediction model. The 

proposed model is comparing two ML classifiers, which are 

ANN and SVM [6]. The study performed using seven 

datasets from the PROMISE repository and assessed the 

results on various measures using accuracy, recall, and 

specificity. The SVM is better than ANN when evaluating the 

recall measure results. Alsaeedi and Mustafa compared SVM, 

DTree, and RF classifiers on ten publicly available NASA 
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datasets. The results revealed that the RF algorithm 

outperforms other classifiers [7]. 

A cross-project defect arises when different projects 

working together, which causes a class imbalance problem in 

machine learning prediction. Many studies proposed different 

methods to overcome the cross-project defect prediction 

problem [7], [8], [9], [10], [11]. Goel et al. conducted an 

empirical analysis to evaluate whether the data sampling 

approach can solve the class imbalance issue and enhance the 

cross-project defect prediction (CPDP) model performance 

[12]. In this study, machine learning classifiers have been 

implemented using twelve publicly available object-oriented 

datasets. The results showed that the data sampling technique 

could be implemented to overcome the class imbalance 

problem on CPDP. Another study proposed an over-sampling 

transfer learning technique that uses the feature weighting 

naïve Bayes approach for CPDP [13]. Experiments were 

implemented on eleven public datasets. The results showed 

that this approach is beneficial for solving class imbalance in 

the CPDP model. 

Most of the proposed software defect prediction models 

achieved a prediction performance rate of about 80% recall. 

As a result, Bowes et al. investigated four ML algorithms’ 

performance levels, which are RF, naïve Bayes, RPart, and 

SVM, when predicting defects in NASA datasets [14]. The 

defect prediction results are presented in the confusion matrix 

and compared with each algorithm prediction uncertainty. 

Each classifier detects different sets of defects. The study 

concluded that a specific classifier could identify a subset of 

errors, and some algorithms can perform best in defect 

prediction if they are not based on majority voting. 

According to many studies and surveys, software defect 

prediction models that are highly dependent on features of 

programs fail in detecting the semantics of programs [15], 

[16]. For instance, Maurice computed Halstead metrics using 

numbers of operators and operands [17]. Chidamber et al. 

calculated Chidamber and Kemerer (CK) metrics using the 

function and inheritance counts [18]. Thomas et al. used 

McCabe’s metric by analyzing the software control flow 

graph to estimate its complexity [19]. As a result, the 

algorithm performance is not so high, even after adopting 

learning algorithms and filtering the data. Accordingly, a 

recent study for Phan et al. proposed a different software 

defect prediction approach to detect software defects by 

constructing control flow graphs extracted using a source 

code compilation [20]. Moreover, Phan applied multi-view 

convolutional neural networks with the multi-layer networks 

to the extracted control flow graphs to learn the semantic 

software features. The results showed that the performance of 

the defects prediction was higher than the previous 

techniques. 

Rosli et al. proposed an application to detect software 

defects using genetic algorithms [21]. The app uses object- 

oriented metrics as input values to the algorithm and 

classifies the software modules as defective and non- 

defective. Cui et al. recent study proposed a novel software 

defect prediction model based on Genetic Algorithm and 

Back Propagation (GA-BP). The purpose of the model is to 

overcome the BP of neural networks, which can easily fall 

into local optimization when implementing software defect 

prediction [22]. GA is used to enhance the weights in BP 

neural networks. According to the results, this method is 

useful in software defect prediction. 

Rahman proposed a software defect prediction using code 

profiles as a replacement for traditional measures [23]. This 

study trains the ML algorithm using vectors. The vectors are 

generated from the source codes’ parse trees by analyzing 

language feature use. The parse trees are used as feature 

variables. Replacing the traditional metrics for predicting 

software defects with the code profiles are promising. 

However, the predictive performance can be considered as 

low in cross-version defect predictions for both metrics-based 

and code profile-based techniques. 

In this investigation, a software defects prediction model 

will be proposed using eight ML algorithms. The algorithms 

include artificial neural networks (ANNs), random forest 

(RF), random tree (RT), decision table (DT), linear regression 

(LR), gaussian processes (GP), SMOreg, and M5P. This 

study aims to assess the performance of the ML algorithms in 

predicting software defects. The performance of the used ML 

algorithms will be assessed using PROMISE Repository 

software engineering publicly available dataset, namely, 

Class-level data for KC1 (one of NASA products). WEKA 

tool will be used to run the eighth ML algorithms using two 

test modes: 10-fold cross-validation and percentage split. 

Different evaluation metrics will be used to measure the 

performance accuracy of the used ML algorithms. The 

evaluation metrics include: correlation coefficient (R²), mean 

absolute error (MAE), root mean squared error (RMSE), 

relative absolute error (RAE), and root-relative squared error 

(RRSE). 

 
III. RESEARCH METHODOLOGY 

 

A. DATASET AND EVALUATION METHODOLOGY 

In this investigation, a PROMISE repository software 

engineering publicly available dataset, namely, class-level 

data for KC1 (one of NASA products), was used. The dataset 

contains class-level and method-level attributes. Koru et al. 

converted 21 method-level attributes into 84 class-level 

attributes using maximum, minimum, average, and sum 

operations [24]. Besides the 84 attributes, the dataset consists 

of 10 class-level attributes to create 94 class-level attributes. 

The last numeric attribute represents the number of recorded 

class defects, and it is called NUMDEFECTS. It has been 

used as a response variable that will be used by ML 

algorithms in the prediction process. The dataset has 145 

instances, which contains real measured data for one of 

NASA products for KC1. The dataset was used in several 

studies [25], [26], [27], [28], [29], [30]. Table I presents the 

first ten class-level attributes and the last NUMDEFECT 

attribute. 
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TABLE I. NUMERIC ATTRIBUTES DESCRIPTION OF KC1 DATASET 
 

Item 

No. 

 

Attribute 

 

Description 

 
1 

 
PERCENT_PUB_DATA 

The percentage of data 

that is public and 
protected data in a class. 

 
2 

 
ACCESS_TO_PUB_DATA 

The number of times that 
a class's public and 
protected data is 
accessed. 

 
3 

 
COUPLING_BETWEEN_O 
BJECTS 

The number of distinct 

non-inheritance-related 
classes on which a class 
depends. 

4 DEPTH The level for a class. 

 

5 
LACK_OF_COHESION_O 

F_METHODS 

The percentage of the 

methods in the class. 

 

6 

 

NUM_OF_CHILDREN 

The number of classes 
derived from a specified 
class. 

 

7 

 

DEP_ON_CHILD 

Whether a class is 

dependent on a 

descendant. 

8 FAN_IN 
Count of calls by higher 

modules. 

 

9 

 

RESPONSE_FOR_CLASS 

Count of methods 
implemented within a 
class. 

 

10 
WEIGHTED_METHODS_ 

PER_CLASS 

Count of methods 
implemented within a 
class. 

 

11 

 

NUMDEFECTS 

 

No. of Defects 

 

Fig. 1. illustrates the model and the research methodology 

used for software defect prediction. The KC1 dataset was 

used for the prediction process and analysis. The training and 

testing of the dataset were done using the 10-folds cross- 

validation. The results of the classifiers are then evaluated 

using different error measures and metrics [31]. 
 

Fig. 1. Software Defect Prediction Model 

 

The statistical metrics include correlation coefficient (R²), 

mean absolute error (MAE), root mean squared error 

(RMSE), relative absolute error (RAE), and root relative 

squared error (RRSE). These metrics measure the error rate 

between the number of actual defects and the number of 

predicted defects in the dataset. Assuming 𝐸 is the number of 

actual  defects,  �̃�   is  the  number  of  predicted  defects,  �̅� 

 

represents the mean of E, and 𝑛 represents the number of 

instances. The following formulas represent the used 

performance metrics in the prediction process: 

 
1. R² 

 
∑𝑛   (𝐸𝑖 − �̃�𝑖)

2
 

𝑅2 = 1 −
    𝑖=1  

∑𝑛   (𝐸𝑖 − �̃�𝑖)
2

 
𝑖=1 

 

(1) 

 

2. MAE 

 
1 𝑛 

̃
 

𝑀𝐴𝐸 = 
𝑛 
∑ |𝐸𝑖 − 𝐸𝑖| 

𝑖=1 

 

(2) 

3. RMSE 
 

1 𝑛 2 
𝑅𝑀𝑆𝐸 = √   ∑ (𝐸𝑖 − �̃�𝑖) 

𝑛 𝑖=1 
(3) 

 

 
4. RAE 

 

 ∑𝑛 |𝐴𝑖 − �̃�𝑖| 
𝑅𝐴𝐸 = 𝑖=1  

∑𝑛 |𝐴𝑖 − �̅�𝑖| 
𝑖=1 

 

(4) 

 

5. RRSE 

 

∑𝑛   (𝐴𝑖 − �̃�𝑖)
2

 
𝑅𝑅𝑆𝐸 = √

  𝑖=1 
 

∑𝑛  (𝐴𝑖 − 𝐴�̅�)2 
𝑖=1 

(5) 

 

R2 gives how much the actual and predicted values are 

related.    These    values     range     between −1 and 1, 

where 1 indicates correct positive linear relation, 0 means 

there is no relation, and −1 means correct negative linear 

relation. MAE is the average of the difference between the 

actual and the predicted values. RMSE is quite like MAE, but 

RMSE represents the square’s average of the difference 

between the actual and the predicted values. As a result, the 

focus will be on more significant errors than on smaller errors 

[32]. RAE gives the average of the actual values, so the error 

is   the   total   absolute    error.    RRSE    is    similar    to 

the RAE because it is the average of the actual values, but the 

error is the total squared error [33]. 

B. USED MACHINE LEARNING ALGORITHMS 

Machine learning (ML) uses multiple algorithms to 

analyze input data and predict output values. Machine 

learning algorithms learn and improve performance and help 

with automating the labeling process. Each ML algorithm is 

purposed to perform a specific task [34]. In this study, the 

performance of eight ML algorithms was measured to predict 

software defects. These ML algorithms are summarized as 

the following: 

- Artificial Neural Networks (ANNs): 

ANNs are complicated systems that simulate the function 
of the human nervous systems. They are made up of artificial 
neurons and can be used in ML implementations as a non- 
linear classifier by taking in multiple inputs and producing a 
single output. The input neurons are connected and work 
together in parallel by sending a signal to other neurons and 
using a non-linear function to calculates its output [35]. 



 

                                International Scientific Journal of Engineering and Management                                             ISSN: 2583-6129 

                                  Volume: 03 Issue: 06 | June – 2024                                                                                                                                DOI: 10.55041/ISJEM01686               

               An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata 

 
   

© 2024, ISJEM (All Rights Reserved)     | www.isjem.com                                                                  |        Page 4   

 

- Random Forest (RF): 

RF algorithm is a supervised classification and regression 

learning algorithm. It produces a forest of decision trees and 

selects the best solution using committee voting rather than 

an individual tree decision [36]. 

- Random Tree (RT): 

RT is a graphical representation of all possible solutions 

based on specific conditions. We call it a tree because 

basically, it starts with a root and has many branches that 

produce multiple sets of data to make a decision tree [37]. 

- Decision Table (DT): 

DT is an organized model to form requirements with 

business rules. It is a classifier that can be used to model 

complicated logic. In a DT, conditions are labeled as true (T) 

or false (F). Each column in the table represents a business 

logic rule that describes the unique combination of instances. 

- Linear Regression (LR): 

LR is a supervised learning algorithm. It predicts the 

results by creating a linear regression relationship between an 

independent variable (x) to predict a dependent variable value 

(y) [38]. 

- Gaussian Processes (GP): 

GP is a distribution of probabilities of possible results. It 

is a collection of random variables represented by time or 

space, where there is a multivariate distribution for every 

group of those random variables [39]. 

- SMOreg: 

SMOreg implements a vector machine for regression and 

applies multiple algorithms for parameter learning. The 

algorithm replaces the missing values and transforming the 

nominal attributes into binary ones [40]. 

- M5P: 

M5P is a construction of the M5 algorithm, which can 

produce trees of regression models. M5P combines both 

conventional decision tree and linear regression functions at 

the nodes. 

 
IV. EXPERIMENTAL RESULTS 

In this investigation, the aforementioned eight ML 

algorithms were used across the Weka 3.8.3 platform to 

predict software defects. Cross-validation (10-fold) and 

percentage split (60%, 70%, 80%, and 90%) testing modes 

were used in the tested dataset. Table II shows the statistical 

metrics to evaluate the classifiers' error rates in predicting the 

selected dataset's software defects. 

As shown in Table II, the LR algorithm achieved the 

highest correlation coefficient (R2) value in the KC1 dataset, 

followed by the SMOreg algorithm. On the other hand, the 

SMOreg algorithm achieved the lowest error rates for the 

remaining metrics. Therefore, the SMOreg classifier scored 

the best performance results among the eighth ML 

algorithms. In contrast, the ANN algorithm scored the worst 

performance results. Besides, the error rates for both metrics, 

RAE and RRSE, reached more than 100 %, where the 

algorithm was not able to predict the valid values because the 

values were constant for all the input data. 

 
TABLE II. STATISTICAL PERFORMANCE RESULTS FOR THE ML 
ALGORITHMS USING 10 FOLDS CROSS-VALIDATION TESTING 
MODE 

 

CLASSIFI 

ER 
R2 MAE RMSE RAE RRSE 

ANN 0.1584 6.9869 14.7296 115.6751 134.899 

Random 

Forest 

(RF) 

 

0.4995 

 

4.4208 

 

9.3905 

 

73.1899 

 

86.0011 

Random 

Tree (RT) 
0.1317 5.5088 12.2059 91.2029 111.7856 

Decision 

Table (DT) 
0.2663 4.9232 11.2294 81.5082 102.8431 

Linear 

regression 

(LR) 

 

0.7594 

 

6.5889 

 

11.1759 

 

109.0851 

 

102.3526 

Gaussian 

Processes 
(GP) 

 

0.6794 

 

4.6329 

 

7.9437 

 

76.7025 

 

72.7514 

SMOreg 0.7383 4.3159 7.4378 73.1085 68.1179 

M5P 0.6989 4.3618 7.7834 72.2135 71.2835 

 

The distribution graph of the actual and predicted values of 

the SMOreg classifier are shown in Fig. 2. The graph has two 

dimensions, where the dataset instance’s number is 

represented on the x-axis. On the other hand, the actual and 

predicted defect values are represented on the y-axis. Fig. 1 

also showed that the predicted defects' values are almost the 

same as the actual defects’ values in most 145 instances. 

Therefore, the error rate of the performance metrics is 

decreased. 

 
 

Fig. 2. The distribution of the predicted and actual defect values using the 
best classifier, SMOreg 

 

Scored results of the eight ML algorithms using percentage 

split testing mode are shown in Table III. Different 

percentages for the training set and the testing set ranging 

from 60% to 90% were implemented. MAE statistical metric 

has been used as an evaluation metric for the assessment 

performance. We can conclude that as the percentage set is 

increased, the error rate will be decreased. The random forest 

(RF) algorithm achieved the lowest MAE error rate for both 

60% and 70% training sets. On the other hand, the random 

tree (RT) algorithm achieved the lowest MAE error rate for 

both 80% and 90% training sets. 
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TABLE III. STATISTICAL PERFORMANCE RESULTS FOR ML 
ALGORITHMS USING PERCENTAGE SPLIT TESTING MODE 

 

CLASSIFIER 60% 70% 80% 90% 

ANN 6.3554 5.097 5.7436 0.8393 

Random Forest (RF) 3.9995 3.604 1.9424 0.2115 

Random Tree (RT) 4.3654 4.2973 1.3014 0.0303 

Decision Table (DT) 6.2844 5.5632 2.5614 2.5614 

Linear regression (LR) 5.9445 5.5295 4.2484 2.6998 

Gaussian Processes 

(GP) 
5.1449 5.0989 3.4081 1.9759 

SMOreg 4.434 3.9551 2.7383 1.1206 

M5P 4.0811 5.9991 3.0258 0.5304 

V. CONCLUSION AND FUTURE WORK 

Software evolution is essential, so the software is 

modified over time to adapt it to changing customer and 

market requirements. During software improvement, many 

software defects may arise. The software developer should 

update the test suites, such as adding new test cases to detect 

these new defects [41]. Software defect prediction is a 

necessary process that should be considered by the software 

developer before the software deployment. Software defect 

prediction can be implemented using ML-based prediction 

model. The model can use historical data for predicting future 

software defects [42]. This paper evaluated software defect 

prediction accuracy using different ML algorithms. Eight ML 

algorithms were used: ANN, RF, RT, DT, LR, GP, SMOreg, 

and M5P. The algorithms were applied on a publicly 

available dataset from the NASA promise repository, where 

different statistical measures were used to evaluate the error 

rates of the predicted values. The metrics are R², MAE, 

RMSE, RAE, and RRSE. According to the results, we can 

conclude that the ML algorithms are efficient techniques in 

predicting future software defects. First, a 10-fold cross- 

validation testing mode was used to measure the results. The 

results showed that the SMOreg algorithm, which 

implements a vector machine classification for regression and 

replacing the missing values, and normalizing all the 

attributes by default, has the best results among the other 

algorithms. In contrast, the RT algorithm achieved the lowest 

MAE error rate using percentage split testing mode for both 

(80% and 90%) training sets, respectively. 

 

As future work, we may include the investigation of other 

ML classifiers and compare between them. Furthermore, we 

can use more datasets in the learning and prediction processes 

to increase prediction accuracy. We can also consider more 

practical software defect prediction scenarios, such as 

learning from software code with minimal defects. 
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