

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 06 | June – 2024 DOI: 10.55041/ISJEM01686

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

MACHINE LEARNING BASED SOFTWARE DEFECT

PREDICTION USING PYTHON
Dr. U.NILABAR NISHA1 , ARUNKUMAR P S1 , BABU S S2, KISHOR M S3

SUBIKSHAN A S4

` 1Head of the Department, Computer Science And Engineering, Mahendra Institute Of Engineering And Technology, Namakkal-637503
2Student, Computer Science And Engineering, Mahendra Institute Of Engineering And Technology, Namakkal-637503
3Student, Computer Science And Engineering, Mahendra Institute Of Engineering And Technology, Namakkal-637503

4Student, Computer Science And Engineering, Mahendra Institute Of Engineering And Technology, Namakkal-63750

Abstract— Software development and the maintenance life

cycle are lengthy processes. However, the possibility of having

defects in the software can be high. Software reliability and

performance are essential measures of software success, which

affects user satisfaction and software cost. Predicting software

defects using machine learning (ML) algorithms is one approach

in this direction. Implementing this approach in the earlier

stages of the software development improves software

performance quality and reduces software maintenance cost.

Different models and techniques have been implemented in

many studies to predict software defects. This investigation

implements ML algorithms, such as artificial neural networks

(ANNs), random forest (RF), random tree (RT), decision table

(DT), linear regression (LR), gaussian processes (GP), SMOreg,

and M5P. A new software defect prediction model for software

future defect prediction is proposed. The defect prediction is

based on historical data. The results showed that a combination

of ML algorithms could be used effectively to predict software

defects. The SMOreg classifier scored the best performance

results, where the ANN classifier scores the worst results.

Keywords— software defect prediction, software defect, prediction model,

machine learning (ML), artificial neural networks (ANN), SMOreg Classifier.

I. INTRODUCTION

In the last few years, software quality became one of the

most critical aspects of the software. Software defect

prediction is an essential part of the software development

cycle, and it can increase software quality, performance and

reduce maintenance costs. Defective software directly

impacts software quality leading to higher software costs,

delayed project plans, and higher maintenance costs. On the

other hand, applying a software defect prediction model on

the software before its deployment improves software

performance and increases its reliability and user satisfaction.

In this study, the software prediction performance was

assessed using eight machine learning (ML) algorithms. The

algorithms include artificial neural networks (ANNs),

random forest (RF), random tree (RT), decision table (DT),

linear regression (LR), gaussian processes (GP), SMOreg,

and M5P. Weka 3.8.3 tool has been used to run the algorithms

using the k-fold cross-validation and percentage split

techniques. Dataset used in this work was obtained from a

publicly available repository from NASA Promise [1]. The

data set was validated using two test modes: 10-fold cross-

validation and percentage split with different training set

percentages (60%, 70%, 80%, 90%). Using the WEKA tool,

the two test modes applied the data classification on the eight

ML algorithms.

In this investigation, different evaluation measures will be

used to assess software defect prediction accuracy.

According to the results of these measures, we can decide

which ML algorithms we can use for software defect

prediction. The evaluation metrics include correlation

coefficient (R²), mean absolute error (MAE), root mean

squared error (RMSE), relative absolute error (RAE), and

root-relative squared error (RRSE). The ML algorithm with

the lowest error rates can be considered the most appropriate

algorithm to apply in the prediction process.

The other sections of the paper are structured as follows:

the literature review related to software prediction techniques

is presented in Section II; background knowledge and

description of the used Machine Learning algorithms are

discussed in Section III; the dataset with evaluation

methodology and experimental results are presented in

Sections IV and V, respectively; the conclusion and future

work are discussed in Section VI.

II. LITERATURE REVIEW

Many studies used machine learning (ML) algorithms to

measure software defect prediction performance [2], [3], [4].

A recent study analyzed different ML algorithms’

performance in software defect prediction. The ML

algorithms used are NB, MLP, RBF, SVM, KNN, K*, OneR,

PART, DTree, and RF [3]. The researchers of this study

implemented the ML algorithms on 12 publicly available

NASA datasets. This study evaluated the results using

various measures, like accuracy, recall, precision, F-measure,

ROC area, and MCC. Another study proposed a software

defect prediction model based on a neural network using a

levenberg-Marquardt (LM) algorithm [4]. In this study, the

proposed model is compared with the polynomial neural

network, and they found that the proposed model has higher

accuracy results. M. Ahmad et al. reviewed different ML

algorithms, lexicon-based techniques, and hybrid techniques,

which combines ML algorithms and lexicon technique for

automatic sentiment classification for user-generated data

from various social media and blogging websites [5]. Arora

et al. proposed a software defect prediction model. The

proposed model is comparing two ML classifiers, which are

ANN and SVM [6]. The study performed using seven

datasets from the PROMISE repository and assessed the

results on various measures using accuracy, recall, and

specificity. The SVM is better than ANN when evaluating the

recall measure results. Alsaeedi and Mustafa compared SVM,

DTree, and RF classifiers on ten publicly available NASA

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 06 | June – 2024 DOI: 10.55041/ISJEM01686

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

datasets. The results revealed that the RF algorithm

outperforms other classifiers [7].

A cross-project defect arises when different projects

working together, which causes a class imbalance problem in

machine learning prediction. Many studies proposed different

methods to overcome the cross-project defect prediction

problem [7], [8], [9], [10], [11]. Goel et al. conducted an

empirical analysis to evaluate whether the data sampling

approach can solve the class imbalance issue and enhance the

cross-project defect prediction (CPDP) model performance

[12]. In this study, machine learning classifiers have been

implemented using twelve publicly available object-oriented

datasets. The results showed that the data sampling technique

could be implemented to overcome the class imbalance

problem on CPDP. Another study proposed an over-sampling

transfer learning technique that uses the feature weighting

naïve Bayes approach for CPDP [13]. Experiments were

implemented on eleven public datasets. The results showed

that this approach is beneficial for solving class imbalance in

the CPDP model.

Most of the proposed software defect prediction models

achieved a prediction performance rate of about 80% recall.

As a result, Bowes et al. investigated four ML algorithms’

performance levels, which are RF, naïve Bayes, RPart, and

SVM, when predicting defects in NASA datasets [14]. The

defect prediction results are presented in the confusion matrix

and compared with each algorithm prediction uncertainty.

Each classifier detects different sets of defects. The study

concluded that a specific classifier could identify a subset of

errors, and some algorithms can perform best in defect

prediction if they are not based on majority voting.

According to many studies and surveys, software defect

prediction models that are highly dependent on features of

programs fail in detecting the semantics of programs [15],

[16]. For instance, Maurice computed Halstead metrics using

numbers of operators and operands [17]. Chidamber et al.

calculated Chidamber and Kemerer (CK) metrics using the

function and inheritance counts [18]. Thomas et al. used

McCabe’s metric by analyzing the software control flow

graph to estimate its complexity [19]. As a result, the

algorithm performance is not so high, even after adopting

learning algorithms and filtering the data. Accordingly, a

recent study for Phan et al. proposed a different software

defect prediction approach to detect software defects by

constructing control flow graphs extracted using a source

code compilation [20]. Moreover, Phan applied multi-view

convolutional neural networks with the multi-layer networks

to the extracted control flow graphs to learn the semantic

software features. The results showed that the performance of

the defects prediction was higher than the previous

techniques.

Rosli et al. proposed an application to detect software

defects using genetic algorithms [21]. The app uses object-

oriented metrics as input values to the algorithm and

classifies the software modules as defective and non-

defective. Cui et al. recent study proposed a novel software

defect prediction model based on Genetic Algorithm and

Back Propagation (GA-BP). The purpose of the model is to

overcome the BP of neural networks, which can easily fall

into local optimization when implementing software defect

prediction [22]. GA is used to enhance the weights in BP

neural networks. According to the results, this method is

useful in software defect prediction.

Rahman proposed a software defect prediction using code

profiles as a replacement for traditional measures [23]. This

study trains the ML algorithm using vectors. The vectors are

generated from the source codes’ parse trees by analyzing

language feature use. The parse trees are used as feature

variables. Replacing the traditional metrics for predicting

software defects with the code profiles are promising.

However, the predictive performance can be considered as

low in cross-version defect predictions for both metrics-based

and code profile-based techniques.

In this investigation, a software defects prediction model

will be proposed using eight ML algorithms. The algorithms

include artificial neural networks (ANNs), random forest

(RF), random tree (RT), decision table (DT), linear regression

(LR), gaussian processes (GP), SMOreg, and M5P. This

study aims to assess the performance of the ML algorithms in

predicting software defects. The performance of the used ML

algorithms will be assessed using PROMISE Repository

software engineering publicly available dataset, namely,

Class-level data for KC1 (one of NASA products). WEKA

tool will be used to run the eighth ML algorithms using two

test modes: 10-fold cross-validation and percentage split.

Different evaluation metrics will be used to measure the

performance accuracy of the used ML algorithms. The

evaluation metrics include: correlation coefficient (R²), mean

absolute error (MAE), root mean squared error (RMSE),

relative absolute error (RAE), and root-relative squared error

(RRSE).

III. RESEARCH METHODOLOGY

A. DATASET AND EVALUATION METHODOLOGY

In this investigation, a PROMISE repository software

engineering publicly available dataset, namely, class-level

data for KC1 (one of NASA products), was used. The dataset

contains class-level and method-level attributes. Koru et al.

converted 21 method-level attributes into 84 class-level

attributes using maximum, minimum, average, and sum

operations [24]. Besides the 84 attributes, the dataset consists

of 10 class-level attributes to create 94 class-level attributes.

The last numeric attribute represents the number of recorded

class defects, and it is called NUMDEFECTS. It has been

used as a response variable that will be used by ML

algorithms in the prediction process. The dataset has 145

instances, which contains real measured data for one of

NASA products for KC1. The dataset was used in several

studies [25], [26], [27], [28], [29], [30]. Table I presents the

first ten class-level attributes and the last NUMDEFECT

attribute.

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 06 | June – 2024 DOI: 10.55041/ISJEM01686

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

TABLE I. NUMERIC ATTRIBUTES DESCRIPTION OF KC1 DATASET

Item

No.

Attribute

Description

1

PERCENT_PUB_DATA

The percentage of data

that is public and
protected data in a class.

2

ACCESS_TO_PUB_DATA

The number of times that
a class's public and
protected data is
accessed.

3

COUPLING_BETWEEN_O
BJECTS

The number of distinct

non-inheritance-related
classes on which a class
depends.

4 DEPTH The level for a class.

5
LACK_OF_COHESION_O

F_METHODS

The percentage of the

methods in the class.

6

NUM_OF_CHILDREN

The number of classes
derived from a specified
class.

7

DEP_ON_CHILD

Whether a class is

dependent on a

descendant.

8 FAN_IN
Count of calls by higher

modules.

9

RESPONSE_FOR_CLASS

Count of methods
implemented within a
class.

10
WEIGHTED_METHODS_

PER_CLASS

Count of methods
implemented within a
class.

11

NUMDEFECTS

No. of Defects

Fig. 1. illustrates the model and the research methodology

used for software defect prediction. The KC1 dataset was

used for the prediction process and analysis. The training and

testing of the dataset were done using the 10-folds cross-

validation. The results of the classifiers are then evaluated

using different error measures and metrics [31].

Fig. 1. Software Defect Prediction Model

The statistical metrics include correlation coefficient (R²),

mean absolute error (MAE), root mean squared error

(RMSE), relative absolute error (RAE), and root relative

squared error (RRSE). These metrics measure the error rate

between the number of actual defects and the number of

predicted defects in the dataset. Assuming 𝐸 is the number of

actual defects, �̃� is the number of predicted defects, �̅�

represents the mean of E, and 𝑛 represents the number of

instances. The following formulas represent the used

performance metrics in the prediction process:

1. R²

∑𝑛 (𝐸𝑖 − �̃�𝑖)

2

𝑅2 = 1 −
 𝑖=1

∑𝑛 (𝐸𝑖 − �̃�𝑖)
2

𝑖=1

(1)

2. MAE

1 𝑛

̃

𝑀𝐴𝐸 =
𝑛
∑ |𝐸𝑖 − 𝐸𝑖|

𝑖=1

(2)

3. RMSE

1 𝑛 2
𝑅𝑀𝑆𝐸 = √ ∑ (𝐸𝑖 − �̃�𝑖)

𝑛 𝑖=1
(3)

4. RAE

 ∑𝑛 |𝐴𝑖 − �̃�𝑖|
𝑅𝐴𝐸 = 𝑖=1

∑𝑛 |𝐴𝑖 − �̅�𝑖|
𝑖=1

(4)

5. RRSE

∑𝑛 (𝐴𝑖 − �̃�𝑖)
2

𝑅𝑅𝑆𝐸 = √

 𝑖=1

∑𝑛 (𝐴𝑖 − 𝐴�̅�)2
𝑖=1

(5)

R2 gives how much the actual and predicted values are

related. These values range between −1 and 1,

where 1 indicates correct positive linear relation, 0 means

there is no relation, and −1 means correct negative linear

relation. MAE is the average of the difference between the

actual and the predicted values. RMSE is quite like MAE, but

RMSE represents the square’s average of the difference

between the actual and the predicted values. As a result, the

focus will be on more significant errors than on smaller errors

[32]. RAE gives the average of the actual values, so the error

is the total absolute error. RRSE is similar to

the RAE because it is the average of the actual values, but the

error is the total squared error [33].

B. USED MACHINE LEARNING ALGORITHMS

Machine learning (ML) uses multiple algorithms to

analyze input data and predict output values. Machine

learning algorithms learn and improve performance and help

with automating the labeling process. Each ML algorithm is

purposed to perform a specific task [34]. In this study, the

performance of eight ML algorithms was measured to predict

software defects. These ML algorithms are summarized as

the following:

- Artificial Neural Networks (ANNs):

ANNs are complicated systems that simulate the function
of the human nervous systems. They are made up of artificial
neurons and can be used in ML implementations as a non-
linear classifier by taking in multiple inputs and producing a
single output. The input neurons are connected and work
together in parallel by sending a signal to other neurons and
using a non-linear function to calculates its output [35].

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 06 | June – 2024 DOI: 10.55041/ISJEM01686

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

- Random Forest (RF):

RF algorithm is a supervised classification and regression

learning algorithm. It produces a forest of decision trees and

selects the best solution using committee voting rather than

an individual tree decision [36].

- Random Tree (RT):

RT is a graphical representation of all possible solutions

based on specific conditions. We call it a tree because

basically, it starts with a root and has many branches that

produce multiple sets of data to make a decision tree [37].

- Decision Table (DT):

DT is an organized model to form requirements with

business rules. It is a classifier that can be used to model

complicated logic. In a DT, conditions are labeled as true (T)

or false (F). Each column in the table represents a business

logic rule that describes the unique combination of instances.

- Linear Regression (LR):

LR is a supervised learning algorithm. It predicts the

results by creating a linear regression relationship between an

independent variable (x) to predict a dependent variable value

(y) [38].

- Gaussian Processes (GP):

GP is a distribution of probabilities of possible results. It

is a collection of random variables represented by time or

space, where there is a multivariate distribution for every

group of those random variables [39].

- SMOreg:

SMOreg implements a vector machine for regression and

applies multiple algorithms for parameter learning. The

algorithm replaces the missing values and transforming the

nominal attributes into binary ones [40].

- M5P:

M5P is a construction of the M5 algorithm, which can

produce trees of regression models. M5P combines both

conventional decision tree and linear regression functions at

the nodes.

IV. EXPERIMENTAL RESULTS

In this investigation, the aforementioned eight ML

algorithms were used across the Weka 3.8.3 platform to

predict software defects. Cross-validation (10-fold) and

percentage split (60%, 70%, 80%, and 90%) testing modes

were used in the tested dataset. Table II shows the statistical

metrics to evaluate the classifiers' error rates in predicting the

selected dataset's software defects.

As shown in Table II, the LR algorithm achieved the

highest correlation coefficient (R2) value in the KC1 dataset,

followed by the SMOreg algorithm. On the other hand, the

SMOreg algorithm achieved the lowest error rates for the

remaining metrics. Therefore, the SMOreg classifier scored

the best performance results among the eighth ML

algorithms. In contrast, the ANN algorithm scored the worst

performance results. Besides, the error rates for both metrics,

RAE and RRSE, reached more than 100 %, where the

algorithm was not able to predict the valid values because the

values were constant for all the input data.

TABLE II. STATISTICAL PERFORMANCE RESULTS FOR THE ML
ALGORITHMS USING 10 FOLDS CROSS-VALIDATION TESTING
MODE

CLASSIFI

ER
R2 MAE RMSE RAE RRSE

ANN 0.1584 6.9869 14.7296 115.6751 134.899

Random

Forest

(RF)

0.4995

4.4208

9.3905

73.1899

86.0011

Random

Tree (RT)
0.1317 5.5088 12.2059 91.2029 111.7856

Decision

Table (DT)
0.2663 4.9232 11.2294 81.5082 102.8431

Linear

regression

(LR)

0.7594

6.5889

11.1759

109.0851

102.3526

Gaussian

Processes
(GP)

0.6794

4.6329

7.9437

76.7025

72.7514

SMOreg 0.7383 4.3159 7.4378 73.1085 68.1179

M5P 0.6989 4.3618 7.7834 72.2135 71.2835

The distribution graph of the actual and predicted values of

the SMOreg classifier are shown in Fig. 2. The graph has two

dimensions, where the dataset instance’s number is

represented on the x-axis. On the other hand, the actual and

predicted defect values are represented on the y-axis. Fig. 1

also showed that the predicted defects' values are almost the

same as the actual defects’ values in most 145 instances.

Therefore, the error rate of the performance metrics is

decreased.

Fig. 2. The distribution of the predicted and actual defect values using the
best classifier, SMOreg

Scored results of the eight ML algorithms using percentage

split testing mode are shown in Table III. Different

percentages for the training set and the testing set ranging

from 60% to 90% were implemented. MAE statistical metric

has been used as an evaluation metric for the assessment

performance. We can conclude that as the percentage set is

increased, the error rate will be decreased. The random forest

(RF) algorithm achieved the lowest MAE error rate for both

60% and 70% training sets. On the other hand, the random

tree (RT) algorithm achieved the lowest MAE error rate for

both 80% and 90% training sets.

 International Scientific Journal of Engineering and Management ISSN: 2583-6129

 Volume: 03 Issue: 06 | June – 2024 DOI: 10.55041/ISJEM01686

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2024, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

TABLE III. STATISTICAL PERFORMANCE RESULTS FOR ML
ALGORITHMS USING PERCENTAGE SPLIT TESTING MODE

CLASSIFIER 60% 70% 80% 90%

ANN 6.3554 5.097 5.7436 0.8393

Random Forest (RF) 3.9995 3.604 1.9424 0.2115

Random Tree (RT) 4.3654 4.2973 1.3014 0.0303

Decision Table (DT) 6.2844 5.5632 2.5614 2.5614

Linear regression (LR) 5.9445 5.5295 4.2484 2.6998

Gaussian Processes

(GP)
5.1449 5.0989 3.4081 1.9759

SMOreg 4.434 3.9551 2.7383 1.1206

M5P 4.0811 5.9991 3.0258 0.5304

V. CONCLUSION AND FUTURE WORK

Software evolution is essential, so the software is

modified over time to adapt it to changing customer and

market requirements. During software improvement, many

software defects may arise. The software developer should

update the test suites, such as adding new test cases to detect

these new defects [41]. Software defect prediction is a

necessary process that should be considered by the software

developer before the software deployment. Software defect

prediction can be implemented using ML-based prediction

model. The model can use historical data for predicting future

software defects [42]. This paper evaluated software defect

prediction accuracy using different ML algorithms. Eight ML

algorithms were used: ANN, RF, RT, DT, LR, GP, SMOreg,

and M5P. The algorithms were applied on a publicly

available dataset from the NASA promise repository, where

different statistical measures were used to evaluate the error

rates of the predicted values. The metrics are R², MAE,

RMSE, RAE, and RRSE. According to the results, we can

conclude that the ML algorithms are efficient techniques in

predicting future software defects. First, a 10-fold cross-

validation testing mode was used to measure the results. The

results showed that the SMOreg algorithm, which

implements a vector machine classification for regression and

replacing the missing values, and normalizing all the

attributes by default, has the best results among the other

algorithms. In contrast, the RT algorithm achieved the lowest

MAE error rate using percentage split testing mode for both

(80% and 90%) training sets, respectively.

As future work, we may include the investigation of other

ML classifiers and compare between them. Furthermore, we

can use more datasets in the learning and prediction processes

to increase prediction accuracy. We can also consider more

practical software defect prediction scenarios, such as

learning from software code with minimal defects.

REFERENCES

[1] Promise.site.uottawa.ca. 2005. [online]

Available: http://promise.site.uottawa.ca/SERepository/datasets/kc1-
class-level-numericdefect.arff [Accessed 16 March 2020].

[2] Alenezi, M., Banitaan, S., and Obeidat, Q.. "Fault-proneness of open
source systems: An empirical analysis." Synapse 1 (2014): 256.

[3] Iqbal, Ahmed, et al. "Performance Analysis of Machine Learning

Techniques on Software Defect Prediction using NASA Datasets." Int.
J. Adv. Comput. Sci. Appl 10.5, 2019.

[4] Singh, Malkit, and Dalwinder Singh Salaria. "Software defect
prediction tool based on neural network." International Journal of
Computer Applications, 70(22), 2013.

[5] M. Ahmad, S. Aftab, and S. S. Muhammad, ―Machine Learning
Techniques for Sentiment Analysis: A Review, Int. J. Multidiscip. Sci.
Eng., vol. 8 (3). 3, p. 27, 2017.

[6] I. A. and A. Saha, ―Software Defect Prediction: A Comparison
Between Artificial Neural Network and Support Vector Machine,‖
Adv. Comput. Commun. Technol., pp. 51–61, 2017.

[7] Alsaeedi, Abdullah, and Mohammad Zubair Khan. "Software Defect
Prediction Using Supervised Machine Learning and Ensemble
Techniques: A Comparative Study." Journal of Software Engineering
and Applications 12.5, 85-100, 2019.

[8] Wang, Shuo, and Xin Yao. "Using class imbalance learning for
software defect prediction." IEEE Transactions on Reliability 62.2,
434-443, 2013.

[9] Tomar, Divya, and Sonali Agarwal. "Prediction of defective software
modules using class imbalance learning." Applied Computational
Intelligence and Soft Computing 2016, 2016.

[10] Song, Qinbao, Yuchen Guo, and Martin Shepperd. "A comprehensive
investigation of the role of imbalanced learning for software defect
prediction." IEEE Transactions on Software Engineering 45.12, 1253-
1269, 2018.

[11] Goel, Lipika, et al. "Cross-project defect prediction using data
sampling for class imbalance learning: an empirical
study." International Journal of Parallel, Emergent and Distributed
Systems, 1-14, 2019.

[12] Goel, Lipika, and Sonam Gupta. "Cross Projects Defect Prediction
Modeling." Data Visualization and Knowledge Engineering. Springer,
Cham, 1-21, 2020.

[13] Tong, Haonan, et al. "Transfer-Learning Oriented Class Imbalance
Learning for Cross-Project Defect Prediction." arXiv preprint
arXiv:1901.08429, 2019.

[14] Bowes, David, Tracy Hall, and Jean Petrić. "Software defect
prediction: do different classifiers find the same defects?." Software
Quality Journal 26.2, 525-552, 2018.

[15] Jones, Capers. "Strengths and weaknesses of software
metrics." American Programmer 10 (1997): 44-49.

[16] Menzies, Tim, Jeremy Greenwald, and Art Frank. "Data mining static
code attributes to learn defect predictors." IEEE transactions on
software engineering 33.1, 2-13, 2006.

[17] Halstead, Maurice Howard. Elements of software science. Vol. 7. New
York: Elsevier, 1977.

[18] Chidamber, Shyam R., and Chris F. Kemerer. "A metrics suite for
object oriented design." IEEE Transactions on software
engineering 20.6, 476-493, 1994.

[19] McCabe, Thomas J. "A complexity measure." IEEE Transactions on
software Engineering 4, 308-320, 1976.

[20] Phan, Anh Viet, Minh Le Nguyen, and Lam Thu Bui. "Convolutional
neural networks over control flow graphs for software defect
prediction." 2017 IEEE 29th International Conference on Tools with
Artificial Intelligence (ICTAI). IEEE, 2017.

[21] M. M. Rosli, N. H. I. Teo, N. S. M. Yusop and N. S. Moham, "The
Design of a Software Fault Prone Application Using Evolutionary
Algorithm," IEEE Conference on Open Systems, 2011.

[22] Cui, Mengtian, Yameng Huang, and Jing Luo. "Software Defect
Prediction Model Based on GA-BP Algorithm." International
Symposium on Cyberspace Safety and Security. Springer, Cham, 2019.

[23] Rahman, Ashiqur. Software Defect Prediction Using Rich
Contextualized Language Use Vectors. Diss. 2019.

[24] A. Gunes Koru and Hongfang Liu, "An Investigation of the Effect of
Module Size on Defect Prediction Using Static Measures," PROMISE-
Predictive Models in Software Engineering Workshop, ICSE 2005,
Saint Louis, Missouri, US, May 15th 2005.

[25] Shanthini, A. "Effect of ensemble methods for software fault prediction
at various metrics level," 2014.

[26] Shanthini, A., and R. M. Chandrasekaran. "Analyzing the effect of
bagged ensemble approach for software fault prediction in class level
and package level metrics." International Conference on Information
Communication and Embedded Systems (ICICES2014). IEEE,

http://promise.site.uottawa.ca/SERepository/datasets/kc1-

