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1. INTRODUCTION 

Air pollution remains a major global concern and one of the 

leading environmental threats to public health (WHO, 2023). 

Fine particles such as PM₂.₅ and PM₁₀ can reach deep lung 

tissues and enter the bloodstream, contributing to respiratory 

and cardiovascular disorders. Gaseous pollutants—including 

ozone (O₃), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and 

carbon monoxide (CO)—are associated with reduced lung 

capacity, cognitive decline, and increased hospital admissions 

(Cohen et al., 2017). Beyond human health, pollution intensifies 

climate change, harms ecosystems, and causes significant 

economic losses through healthcare expenses and productivity 

reduction (UNEP, 2021). Developing predictive systems that 

are both accurate and interpretable is therefore essential for 

informed environmental policy and community well-being.  

 

Earlier approaches such as linear regression and generalized 

additive models were valued for their simplicity and 

interpretability but struggled to represent nonlinear and 

spatiotemporal dependencies in air-quality data. Modern data-

driven techniques—Random Forest, Gradient Boosting, Support 

Vector Machines, and deep learning architectures like LSTM, 

CNN, and Transformer networks—achieve far better accuracy 

by modeling complex relationships across diverse datasets.  

 

    Yet, these sophisticated models often behave as “black 

boxes,” offering limited insight into how specific inputs 

influence outputs. This opacity restricts their use by 

policymakers who require transparent reasoning behind 

predictions. Explainable AI (XAI) methods aim to address this 

gap by clarifying the contribution of each input feature.  

 

 

 

Model-agnostic tools such as SHAP, LIME, and Partial 

Dependence Plots, together with model-specific approaches 

including Layer-wise Relevance Propagation and Guided 

Backpropagation, are increasingly applied to enhance 

interpretability (Adadi & Berrada, 2018; Samek et al., 2017; 

Lundberg & Lee, 2017). 

 

Nevertheless, uncertainty persists regarding which 

explanation methods are most effective for air-quality 

applications, how they treat correlated variables, and how their 

visualizations can best support environmental decisions. 

Accordingly, this review:  

1. Summarizes major model families and interpretability   

       approaches used in recent air-quality research;  

2. Examines situations where each method yields the most 

informative insights; and  

3. Highlights current challenges and future directions for  

       transparent forecasting systems that assist       

       policymakers and local communities. 

 

2. METHODOLOGY 

2.1 Information Sources  

Relevant studies were collected from ResearchGate, MDPI, 

ScienceDirect, arXiv, and Google Scholar — databases known 

for covering environmental and AI research extensively. Most 

papers were open-access, allowing transparent assessment and 

easy verification. 

 

 

2.2 Search Strategy  

The search combined four main topics: air pollution, ozone, 

machine learning, and interpretability/explainability, along with 

their related terms. The keywords were applied to titles, 

abstracts, and keywords of studies published in English between 

2019 and 2025. This period was chosen to reflect the latest 
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developments in interpretable ML applied to environmental 

systems. No subject filters were used, but the results naturally 

included environmental science, engineering, computer science, 

and atmospheric studies. 

  

2.3 Inclusion and Exclusion criteria  

A paper was included if it used ML or DL to forecast or 

classify air quality indicators and incorporated interpretability 

or explainability methods. Studies related to pollutant 

forecasting, spatiotemporal mapping, and air quality assessment 

with an explainability component were all considered. Papers 

were excluded if they lacked sufficient methodological details, 

had poor accuracy, or mentioned interpretability without 

actually applying it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. RESULTS 

3.1 Study Selection  

Out of 426 papers identified, 282 were removed for lacking 

interpretability and 5 were outside the time window. After 

reviewing 139 full texts, 64 were excluded for low accuracy and 

23 for insufficient details. The final review included 52 studies 

that met all selection criteria. 

 

3.2 Characteristics of the Reviewed Studies  

Most studies came from China (38.5%), followed by India 

(11.5%) and Germany (5.8%). A few others originated from 

Europe, North America, and global datasets. PM2.5 was the 

most studied pollutant (30 papers), followed by ozone (18) and 

NO₂ (12). The dominance of PM2.5 and ozone reflects their 

serious health and environmental effects. The geographic 

distribution shows that East and South Asia are the most active 

regions in explainable air quality research.  
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3.3 Interpretable Machine Learning  

Machine-learning methods for predicting air quality can be 

broadly classified as white-box models, which are simple and 

interpretable but sometimes less accurate, and black-box 

models, which achieve high predictive skill but offer little 

transparency (Molnar, 2022). Interpretable machine learning 

provides tools that clarify how complex algorithms make 

decisions. These tools fall into two categories: model-agnostic, 

which analyze inputs and outputs independently of model 

architecture, and model-specific, which rely on the internal 

structure of neural or ensemble systems (Ribeiro et al., 2016; 

Bach et al., 2015).  

 

Across the 52 studies reviewed, several trends emerged. 

SHAP was the most frequently adopted technique, appearing in 

61.5 percent of papers, while LIME appeared in roughly 13.5 

percent. LRP, used mainly in deep learning settings, accounted 

for about 9.6 percent. Only a few studies employed Partial 

Dependence Plots (PDPs) or Grad-CAM (≈ 3.8 percent each). A 

smaller group explored new interpretable designs such as graph 

attention networks, symbolic regression, and hybrid deep-

learning frameworks that embed transparency within the model 

itself.  

 

3.3.1 Model-Agnostic Methods  

These methods explain a model’s predictions by examining 

input–output behaviour rather than its internal structure. Their 

flexibility makes them suitable for tree ensembles, regression 

models, and neural networks alike.  

 

Shapley Additive Explanations (SHAP)  

SHAP, derived from cooperative game theory (Shapley, 

1953), distributes a model’s prediction among its input variables 

according to their contribution. It can provide both global 

feature rankings and local case-level explanations (Lundberg & 

Lee, 2017).  

 

Several studies demonstrated its value. Gao et al. (2023) applied 

SHAP to a hybrid Graph Neural Network– Temporal 

Convolutional Network model for multi-horizon PM₂.₅ 

forecasting in eastern China. Their system improved root- 

 

 

 

 

 

 

 

 

 

 

 

 

mean-square error by ≈ 12 percent relative to baselines and 

revealed that lagged PM₂.₅, humidity, and wind speed were the 

main temporal drivers of pollution dynamics.  

Yenkikar et al. (2025) combined Random Forest regression 

with ARIMA for urban air-quality prediction across several 

Indian cities. SHAP analysis highlighted particulate matter 

(PM₂.₅ and PM₁₀) and traffic indices as the most influential 

variables, linking statistical and machine-learning approaches in 

one interpretable framework. Similarly, Dimitriou & 

Kassomenos (2022) used SHAP with LSTM, GRU, and CNN 

networks to study PM₁₀ behaviour in Athens. Their best LSTM 

model achieved R² > 0.85, and SHAP confirmed that 

meaningful meteorological variables—wind speed and 

temperature—rather than mere persistence, explained its 

performance.  

 

Local Interpretable Model-Agnostic Explanations (LIME)  

LIME (Ribeiro et al., 2016) builds locally perturbed samples 

around a prediction and fits a simple surrogate, often a linear 

model, to approximate the complex model’s behaviour near that 

point. It is designed for local interpretability, showing why a 

specific prediction was produced.  

 

Chakraborty et al. (2024) paired LIME with SHAP to 

interpret AQI predictions from Random Forest, KNN, and 

XGBoost models across Indian cities. SHAP identified PM₂.₅ 

and PM₁₀ as global drivers, while LIME exposed local 

meteorological influences—mainly wind and temperature—that 

differed by region. Nabavi et al. (2021) used LIME to interpret 

ozone (O₃) forecasting models and showed that short-term 

variations in solar radiation and temperature were key to 

episodic O₃ peaks. Their model reached R² > 0.80, and LIME 

explanations verified that accuracy stemmed from realistic 

atmospheric factors.  

 

Partial Dependence Plots (PDPS)  

 Introduced by Friedman (2001), PDPs visualize how one or 

two features affect predicted outputs while averaging others. In 

air-quality applications, they help reveal nonlinear or monotonic 

pollutant–predictor relations. Dimitriou & Kassomenos (2022) 

used PDPs alongside SHAP to confirm that wind speed and 

temperature show nonlinear effects on PM₁₀ levels, validating 

the physical realism of their deep-learning models.  



                           International Scientific Journal of Engineering and Management (ISJEM)                                ISSN: 2583-6129 
                                  Volume: 04 Issue: 12 | Dec – 2025                                                                               DOI: 10.55041/ISJEM05244                                                                                                                                         

                                  An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        

 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                                                                                     |        Page 4 
 

Bootstrapping (BS)  

Bootstrapping (Efron, 1979) repeatedly resamples data to 

evaluate the stability of model interpretations. Kleinert et al. 

(2021) used a bootstrapped deep-learning framework for O₃ 

forecasting. By perturbing inputs and recalculating feature 

importance, they confirmed that temperature and wind speed 

remained robust drivers across resampled sets, increasing trust 

in their model’s explanations.  

 

3.3.2 Model-Specific Methods  

Model-specific techniques use internal computations of 

algorithms to attribute predictions to features, offering fine-

grained but architecture-dependent insights.  

 

Layer-wise Relevance Propagation (LRP)  

LRP (Bach et al., 2015; Montavon et al., 2019) back-

propagates a prediction through neural layers to assign 

“relevance scores” to input variables. Mirzavand Borujeni et al. 

(2023) applied LRP to a GRU encoder–decoder model for 

ozone forecasting, identifying temporal lags as dominant 

contributors and enabling pruning without accuracy loss. Park et 

al. (2019) used LRP in CNNs for PM₂.₅ mapping, locating 

monitoring stations that produced high-error events. Kim et al. 

(2022) separated meteorological influences from autoregressive 

ones in pollutant forecasts using LRP, and Chen et al. (2025) 

used it at continental scale to validate seasonal patterns within a 

physics-informed deep-learning setup.  

 

Guided Backpropagation (GB)  

Guided Backpropagation (Springenberg et al., 2014) filters 

gradients so that only positive contributions are propagated 

backward, creating sharper saliency maps. Song et al. (2023) 

applied it within their MCST-Tree ensemble to reconstruct fine-

scale PM₂.₅ maps in Chengdu, China. Their model combined 

gradient-boosted trees with calibration layers and achieved R² ≈ 

0.94 and RMSE ≈ 4.04 µg/m³. GB visualizations showed that 

traffic density and road networks were dominant local drivers, 

while meteorological factors provided background influence.  

 

Gradient-Weighted Class Activation Mapping (GRAD-CAM)  

Grad-CAM (Selvaraju et al., 2017) produces spatial heatmaps 

from CNNs to highlight regions most responsible for outputs. 

Saxena et al. (2025) integrated Grad-CAM, SHAP, and LIME 

within a ConvLSTM–XGBoost pipeline to forecast PM₂.₅ and 

NO₂ across 15 megacities. Their saliency maps confirmed that 

industrial and traffic-dense zones drove predicted hotspots (R² ≈ 

0.92). Alauddin et al. (2025) employed Grad-CAM on a CNN-

based AQI classifier using street-level photos in Indonesia, 

linking visible haze and traffic directly to model decisions.  

 

3.3.3 Emerging and Divergent Approaches  

Beyond standard tools, newer studies embed interpretability 

within model architecture.  

Graph-Attention Spatio-Temporal Models  

Graph-convolution and attention hybrids, such as the Graph-

LSTM + GCN + multi-head attention model (Wang et al., 

2024), explicitly encode station connectivity and temporal 

relations. Using a Qinghai Province dataset (2019–2021), this 

model achieved lower MAE and RMSE than VAR, LSTM, 

GRU, and CNN-LSTM baselines. Attention maps revealed 

which stations and time lags most affected predictions, offering 

interpretable, time resolved insights.  

 

 

 

Satellite-Driven Interpretable Retrievals  

Remote-sensing models such as EntityDenseNet and SIDLM 

(Yan et al., 2020; 2021) integrate CNN/DenseNet structures 

with interpretability features. EntityDenseNet, trained on 

Himawari-8 imagery, achieved province level RMSE 

improvements over tree baselines and visualized which spectral 

or spatial patterns informed PM₂.₅ retrievals. SIDLM separated 

linear seasonal effects from nonlinear spatial ones, enabling 

clearer explanation of physical drivers in satellite-based PM₂.₅ 

estimation.  

 

Traffic-Centric Interpretable Models  

Lešnik et al. (2019) developed GA-based multivariate 

regression with traffic telemetry for PM₁₀ prediction, comparing 

it with ANN, SVM, and ensemble methods. Retaining explicit 

regression coefficients allowed direct interpretation of which 

lagged traffic volumes most influenced morning peaks—

providing actionable insights for urban planners.  

 

Symbolic And Causal Models  

Symbolic regression and fuzzy cognitive maps (FCMs) offer 

human-readable expressions or causal graphs. Lucena-Sánchez 

et al. (2021) presented a symbolic regression pipeline for air-

quality time series that yielded closed-form equations 

competitive with neural networks. Peng et al. (2022) used 

FCMs to link energy use and air-quality variables, highlighting 

causal-like influence patterns that can be easily communicated 

to policymakers.  

 

Hybrid Interpretable Architectures  

Hybrid models combine the strengths of deep learning and 

interpretable modules. Gu et al. (2022) proposed HIP-ML, 

merging a deep neural network with a nonlinear ARMA 

component and feature-selection stage to output horizon-

specific importance values. Chen et al. (2021) built a Self-

Adaptive Deep Neural Network (SADNN) with embedded 

attention layers, generating daily predictor-importance maps. 

These hybrids preserved accuracy while producing time-

resolved explanations directly from within the model.  

 

Variational Bayes and Information-Filtering Frameworks  

Jin et al. (2023) introduced a Variational Bayesian Network 

with a mutual-information-based filtering stage to retain only 

the most informative inputs for PM₂.₅ forecasting in Beijing. 

The approach slightly improved accuracy over deterministic 

baselines and enhanced interpretability by identifying key 

conditional dependencies among variables.  

  

Multi-Target / Multi-Horizon Explainable Forecasting  

Jiménez-Navarro et al. (2024) designed multi-target 

architectures with built-in explanation modules that separate 

drivers for each pollutant and forecast horizon. This approach 

helps reveal how control actions may affect several pollutants 

differently, supporting coordinated air-quality management. 

 

4. DISCUSSION 

4.1 Dominance of SHAP & LIME 

Across recent literature, SHAP and LIME dominate as 

interpretability tools. SHAP, rooted in game theory, assigns fair 

importance to each variable and supports both global and local 

explanations. It helps link general pollutant patterns with case-

specific variations, though it can overweight correlated inputs 
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and sometimes shows contribution differences rather than direct 

prediction changes.  

 

LIME is simpler and easy to interpret, using small local 

surrogates around individual cases—ideal for short term events 

such as pollution spikes. Its main weakness is sensitivity to 

neighborhood settings, which can affect consistency. Many 

studies combined both: SHAP for broad global insight, LIME 

for localized clarity. Together they balanced transparency and 

detail, explaining their widespread adoption in explainable-AI 

air quality research.  

4.2 Limited Use of Other Methods 

Methods like PDPs, Grad-CAM, and LRP appeared in few 

papers despite their value. PDPs reveal nonlinear pollutant–

meteorology links (Friedman, 2001); Grad-CAM visualizes 

spatial regions driving CNN forecasts (Selvaraju et al., 2017); 

and LRP traces feature relevance through deep layers (Bach et 

al., 2015). Their rarity likely stems from limited generalizability 

and interpretive complexity. A smaller group built 

interpretability into model design—using hybrid neural 

networks with attention layers, symbolic-regression pipelines, 

or Bayesian variable-filtering frameworks. These show a shift 

toward models that are transparent by construction rather than 

explained afterward.  

Overall, interpretability serves three roles: validating models 

against atmospheric science, converting forecasts into policy-

relevant insights, and building public trust. SHAP remains the 

most versatile, LIME offers accessible local detail, and newer 

hybrid approaches point toward inherently interpretable 

forecasting systems. Regional context also matters: large Asian 

datasets favour robust general tools, whereas European and 

North-American work often experiments with new techniques.  

5. LIMITATIONS AND FUTURE DIRECTIONS 

This review systematically summarized how interpretability 

is applied in air-quality forecasting, revealing clear trends 

across 52 studies. By emphasizing interpretability over accuracy 

alone, it shows how SHAP and LIME help confirm whether 

models align with atmospheric knowledge. Yet, several limits 

remain: most work centers on a few pollutants and regions; 

SHAP dominates, with little exploration of alternatives such as 

Grad-CAM, LRP, or symbolic approaches; and inconsistent 

reporting on preprocessing or correlation handling restricts 

cross-comparison.  

 

Future studies should expand interpretability techniques and 

improve methodological transparency. The next step is real-time 

interpretable systems that process live pollution and 

meteorological data and present outputs through user-friendly 

dashboards highlighting key drivers and uncertainties. Turning 

prototypes into operational tools would make interpretability a 

direct resource for health and environmental agencies. 

 

6. CONCLUSION 

Explainable AI is now vital for ensuring that complex 

forecasting models remain transparent and trustworthy. Among 

52 studies, SHAP and LIME emerged as the leading methods, 

combining global understanding with local explanation. Their 

popularity reflects the need for tools that validate model logic 

and convey results clearly to policymakers and the public.  

 

Less common methods—Grad-CAM, LRP, symbolic or 

Bayesian frameworks—show promise but need broader 

application. Overall, interpretability in this field is still uneven, 

concentrated in limited pollutants and regions. The future lies in 

real-time, user-oriented forecasting systems that merge strong 

predictive accuracy with clear reasoning interfaces, turning 

explainable AI from an academic goal into a practical 

instrument for environmental decision-making. 
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