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Abstract— Air-quality forecasting is essential for public health and urban planning because pollutants such as PM2.5 and
ozone have major adverse effects. Recent progress in machine learning and deep learning has substantially enhanced the
precision of air-quality predictions, but their complexity often hides how predictions are formed. This review surveys peer-
reviewed and preprint work published between 2019 and 2025, retrieved from open access repositories and publisher
platforms, and focuses on methods that improve model interpretability. From an initial pool of records we screened, 52
studies met predefined inclusion criteria and were analysed in detail. Tree ensembles (for example Random Forest and
gradient-boosted models) and deep networks (including LSTM and CNN variants) dominate forecasting experiments;
alongside these, post-hoc explainability tools such as SHAP and LIME are increasingly applied to expose driver variables.
We summarize the main strengths and limitations of current XAl practices in air-quality forecasting and outline priorities
for method validation, reporting standards, and operational deployment.
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1. INTRODUCTION

Air pollution remains a major global concern and one of the
leading environmental threats to public health (WHO, 2023).
Fine particles such as PMa.s and PMio can reach deep lung
tissues and enter the bloodstream, contributing to respiratory
and cardiovascular disorders. Gaseous pollutants—including
ozone (0s), nitrogen dioxide (NO-), sulfur dioxide (SO.), and
carbon monoxide (CO)—are associated with reduced lung
capacity, cognitive decline, and increased hospital admissions
(Cohen et al., 2017). Beyond human health, pollution intensifies
climate change, harms ecosystems, and causes significant
economic losses through healthcare expenses and productivity
reduction (UNEP, 2021). Developing predictive systems that
are both accurate and interpretable is therefore essential for
informed environmental policy and community well-being.

Earlier approaches such as linear regression and generalized
additive models were valued for their simplicity and
interpretability but struggled to represent nonlinear and
spatiotemporal dependencies in air-quality data. Modern data-
driven techniques—Random Forest, Gradient Boosting, Support
Vector Machines, and deep learning architectures like LSTM,
CNN, and Transformer networks—achieve far better accuracy
by modeling complex relationships across diverse datasets.

Yet, these sophisticated models often behave as “black
boxes,” offering limited insight into how specific inputs
influence outputs. This opacity restricts their use by
policymakers who require transparent reasoning behind
predictions. Explainable Al (XAI) methods aim to address this
gap by clarifying the contribution of each input feature.

Model-agnostic tools such as SHAP, LIME, and Partial
Dependence Plots, together with model-specific approaches
including Layer-wise Relevance Propagation and Guided
Backpropagation, are increasingly applied to enhance
interpretability (Adadi & Berrada, 2018; Samek et al., 2017;
Lundberg & Lee, 2017).

Nevertheless, uncertainty persists regarding  which
explanation methods are most effective for air-quality
applications, how they treat correlated variables, and how their
visualizations can best support environmental decisions.
Accordingly, this review:

1.  Summarizes major model families and interpretability

approaches used in recent air-quality research;

2. Examines situations where each method yields the most

informative insights; and

3. Highlights current challenges and future directions for

transparent forecasting systems that assist
policymakers and local communities.

2. METHODOLOGY
2.1 Information Sources
Relevant studies were collected from ResearchGate, MDPI,
ScienceDirect, arXiv, and Google Scholar — databases known
for covering environmental and Al research extensively. Most
papers were open-access, allowing transparent assessment and
easy verification.

2.2 Search Strategy

The search combined four main topics: air pollution, ozone,
machine learning, and interpretability/explainability, along with
their related terms. The keywords were applied to titles,
abstracts, and keywords of studies published in English between
2019 and 2025. This period was chosen to reflect the latest
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developments in interpretable ML applied to environmental
systems. No subject filters were used, but the results naturally
included environmental science, engineering, computer science,
and atmospheric studies.

2.3 Inclusion and Exclusion criteria

A paper was included if it used ML or DL to forecast or
classify air quality indicators and incorporated interpretability
or explainability methods. Studies related to pollutant
forecasting, spatiotemporal mapping, and air quality assessment
with an explainability component were all considered. Papers
were excluded if they lacked sufficient methodological details,
had poor accuracy, or mentioned interpretability without
actually applying it.

3.2 Characteristics of the Reviewed Studies

Most studies came from China (38.5%), followed by India
(11.5%) and Germany (5.8%). A few others originated from
Europe, North America, and global datasets. PM2.5 was the
most studied pollutant (30 papers), followed by ozone (18) and
NO: (12). The dominance of PM2.5 and ozone reflects their
serious health and environmental effects. The geographic
distribution shows that East and South Asia are the most active
regions in explainable air quality research.

[ Identification of studies via databases and registers ]

Records identified from:
ResearchGate (n = 106)
MDPI (n = 217)
ScienceDirect (n=34)
Arxiv (n=29)

Google Scholar (n=40)

Identification

A4

Records screened by relevance
to application field:
(n=426)

Y

Screening

Studies assessed for eligibility :
(n=139)

Final Studies included in review
(n=52)

Included

3. RESULTS

3.1 Study Selection

Out of 426 papers identified, 282 were removed for lacking
interpretability and 5 were outside the time window. After
reviewing 139 full texts, 64 were excluded for low accuracy and
23 for insufficient details. The final review included 52 studies
that met all selection criteria.

Records removed before screening:
(n=0)

Records excluded:
Lack Interpretability (n =282 )

Published outside the
predefined study period (n=5)

Records excluded:
Explainable but low accuracy models (n = 64)

Insufficient methodological detail (n=23)
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3.3 Interpretable Machine Learning

Machine-learning methods for predicting air quality can be
broadly classified as white-box models, which are simple and
interpretable but sometimes less accurate, and black-box
models, which achieve high predictive skill but offer little
transparency (Molnar, 2022). Interpretable machine learning
provides tools that clarify how complex algorithms make
decisions. These tools fall into two categories: model-agnostic,
which analyze inputs and outputs independently of model
architecture, and model-specific, which rely on the internal
structure of neural or ensemble systems (Ribeiro et al., 2016;
Bach et al., 2015).

Across the 52 studies reviewed, several trends emerged.
SHAP was the most frequently adopted technique, appearing in
61.5 percent of papers, while LIME appeared in roughly 13.5
percent. LRP, used mainly in deep learning settings, accounted
for about 9.6 percent. Only a few studies employed Partial
Dependence Plots (PDPs) or Grad-CAM (= 3.8 percent each). A
smaller group explored new interpretable designs such as graph
attention networks, symbolic regression, and hybrid deep-
learning frameworks that embed transparency within the model
itself.

3.3.1 Model-Agnostic Methods

These methods explain a model’s predictions by examining
input—output behaviour rather than its internal structure. Their
flexibility makes them suitable for tree ensembles, regression
models, and neural networks alike.

Shapley Additive Explanations (SHAP)

SHAP, derived from cooperative game theory (Shapley,
1953), distributes a model’s prediction among its input variables
according to their contribution. It can provide both global
feature rankings and local case-level explanations (Lundberg &
Lee, 2017).

Several studies demonstrated its value. Gao et al. (2023) applied
SHAP to a hybrid Graph Neural Network— Temporal
Convolutional Network model for multi-horizon PMo..s
forecasting in eastern China. Their system improved root-

Year ¢

L . S _ and
revealed that lagged PM2.s, humidity, and wind speed were the
main temporal drivers of pollution dynamics.

Yenkikar et al. (2025) combined Random Forest regression
with ARIMA for urban air-quality prediction across several
Indian cities. SHAP analysis highlighted particulate matter
(PM2.s and PMio) and traffic indices as the most influential
variables, linking statistical and machine-learning approaches in
one interpretable framework. Similarly, Dimitriou &
Kassomenos (2022) used SHAP with LSTM, GRU, and CNN
networks to study PMio behaviour in Athens. Their best LSTM
model achieved R? > 0.85, and SHAP confirmed that
meaningful meteorological variables—wind speed and
temperature—rather than mere persistence, explained its
performance.

Local Interpretable Model-Agnostic Explanations (LIME)

LIME (Ribeiro et al., 2016) builds locally perturbed samples
around a prediction and fits a simple surrogate, often a linear
model, to approximate the complex model’s behaviour near that
point. It is designed for local interpretability, showing why a
specific prediction was produced.

Chakraborty et al. (2024) paired LIME with SHAP to
interpret AQI predictions from Random Forest, KNN, and
XGBoost models across Indian cities. SHAP identified PMaz.s
and PMio as global drivers, while LIME exposed local
meteorological influences—mainly wind and temperature—that
differed by region. Nabavi et al. (2021) used LIME to interpret
ozone (0Os) forecasting models and showed that short-term
variations in solar radiation and temperature were key to
episodic Os peaks. Their model reached R? > 0.80, and LIME
explanations verified that accuracy stemmed from realistic
atmospheric factors.

Partial Dependence Plots (PDPS)

Introduced by Friedman (2001), PDPs visualize how one or
two features affect predicted outputs while averaging others. In
air-quality applications, they help reveal nonlinear or monotonic
pollutant—predictor relations. Dimitriou & Kassomenos (2022)
used PDPs alongside SHAP to confirm that wind speed and
temperature show nonlinear effects on PMio levels, validating
the physical realism of their deep-learning models.
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Bootstrapping (BS) Satellite-Driven Interpretable Retrievals

Bootstrapping (Efron, 1979) repeatedly resamples data to
evaluate the stability of model interpretations. Kleinert et al.
(2021) used a bootstrapped deep-learning framework for Os
forecasting. By perturbing inputs and recalculating feature
importance, they confirmed that temperature and wind speed
remained robust drivers across resampled sets, increasing trust
in their model’s explanations.

3.3.2 Model-Specific Methods

Model-specific techniques use internal computations of
algorithms to attribute predictions to features, offering fine-
grained but architecture-dependent insights.

Layer-wise Relevance Propagation (LRP)

LRP (Bach et al.,, 2015; Montavon et al., 2019) back-
propagates a prediction through neural layers to assign
“relevance scores” to input variables. Mirzavand Borujeni et al.
(2023) applied LRP to a GRU encoder—decoder model for
ozone forecasting, identifying temporal lags as dominant
contributors and enabling pruning without accuracy loss. Park et
al. (2019) used LRP in CNNs for PM..s mapping, locating
monitoring stations that produced high-error events. Kim et al.
(2022) separated meteorological influences from autoregressive
ones in pollutant forecasts using LRP, and Chen et al. (2025)
used it at continental scale to validate seasonal patterns within a
physics-informed deep-learning setup.

Guided Backpropagation (GB)

Guided Backpropagation (Springenberg et al., 2014) filters
gradients so that only positive contributions are propagated
backward, creating sharper saliency maps. Song et al. (2023)
applied it within their MCST-Tree ensemble to reconstruct fine-
scale PM2.s maps in Chengdu, China. Their model combined
gradient-boosted trees with calibration layers and achieved R? =
0.94 and RMSE = 4.04 pg/m*. GB visualizations showed that
traffic density and road networks were dominant local drivers,
while meteorological factors provided background influence.

Gradient-Weighted Class Activation Mapping (GRAD-CAM)
Grad-CAM (Selvaraju et al., 2017) produces spatial heatmaps
from CNNs to highlight regions most responsible for outputs.
Saxena et al. (2025) integrated Grad-CAM, SHAP, and LIME
within a ConvLSTM—XGBoost pipeline to forecast PMz.s and
NO: across 15 megacities. Their saliency maps confirmed that
industrial and traffic-dense zones drove predicted hotspots (R? =
0.92). Alauddin et al. (2025) employed Grad-CAM on a CNN-
based AQI classifier using street-level photos in Indonesia,
linking visible haze and traffic directly to model decisions.

3.3.3 Emerging and Divergent Approaches

Beyond standard tools, newer studies embed interpretability
within model architecture.
Graph-Attention Spatio-Temporal Models

Graph-convolution and attention hybrids, such as the Graph-
LSTM + GCN + multi-head attention model (Wang et al.,
2024), explicitly encode station connectivity and temporal
relations. Using a Qinghai Province dataset (2019-2021), this
model achieved lower MAE and RMSE than VAR, LSTM,
GRU, and CNN-LSTM baselines. Attention maps revealed
which stations and time lags most affected predictions, offering
interpretable, time resolved insights.

Remote-sensing models such as EntityDenseNet and SIDLM
(Yan et al., 2020; 2021) integrate CNN/DenseNet structures
with interpretability features. EntityDenseNet, trained on
Himawari-8 imagery, achieved province level RMSE
improvements over tree baselines and visualized which spectral
or spatial patterns informed PM..s retrievals. SIDLM separated
linear seasonal effects from nonlinear spatial ones, enabling
clearer explanation of physical drivers in satellite-based PMo.s
estimation.

Traffic-Centric Interpretable Models

Lesnik et al. (2019) developed GA-based multivariate
regression with traffic telemetry for PMio prediction, comparing
it with ANN, SVM, and ensemble methods. Retaining explicit
regression coefficients allowed direct interpretation of which
lagged traffic volumes most influenced morning peaks—
providing actionable insights for urban planners.

Symbolic And Causal Models

Symbolic regression and fuzzy cognitive maps (FCMs) offer
human-readable expressions or causal graphs. Lucena-Sanchez
et al. (2021) presented a symbolic regression pipeline for air-
quality time series that yielded closed-form equations
competitive with neural networks. Peng et al. (2022) used
FCMs to link energy use and air-quality variables, highlighting
causal-like influence patterns that can be easily communicated
to policymakers.

Hybrid Interpretable Architectures

Hybrid models combine the strengths of deep learning and
interpretable modules. Gu et al. (2022) proposed HIP-ML,
merging a deep neural network with a nonlinear ARMA
component and feature-selection stage to output horizon-
specific importance values. Chen et al. (2021) built a Self-
Adaptive Deep Neural Network (SADNN) with embedded
attention layers, generating daily predictor-importance maps.
These hybrids preserved accuracy while producing time-
resolved explanations directly from within the model.

Variational Bayes and Information-Filtering Frameworks

Jin et al. (2023) introduced a Variational Bayesian Network
with a mutual-information-based filtering stage to retain only
the most informative inputs for PM..s forecasting in Beijing.
The approach slightly improved accuracy over deterministic
baselines and enhanced interpretability by identifying key
conditional dependencies among variables.

Multi-Target / Multi-Horizon Explainable Forecasting
Jiménez-Navarro et al. (2024) designed multi-target
architectures with built-in explanation modules that separate
drivers for each pollutant and forecast horizon. This approach
helps reveal how control actions may affect several pollutants
differently, supporting coordinated air-quality management.

4. DISCUSSION

4.1 Dominance of SHAP & LIME

Across recent literature, SHAP and LIME dominate as
interpretability tools. SHAP, rooted in game theory, assigns fair
importance to each variable and supports both global and local
explanations. It helps link general pollutant patterns with case-
specific variations, though it can overweight correlated inputs
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and sometimes shows contribution differences rather than direct
prediction changes.

LIME is simpler and easy to interpret, using small local
surrogates around individual cases—ideal for short term events
such as pollution spikes. Its main weakness is sensitivity to
neighborhood settings, which can affect consistency. Many
studies combined both: SHAP for broad global insight, LIME
for localized clarity. Together they balanced transparency and
detail, explaining their widespread adoption in explainable-Al
air quality research.

4.2 Limited Use of Other Methods

Methods like PDPs, Grad-CAM, and LRP appeared in few
papers despite their value. PDPs reveal nonlinear pollutant—
meteorology links (Friedman, 2001); Grad-CAM visualizes
spatial regions driving CNN forecasts (Selvaraju et al., 2017);
and LRP traces feature relevance through deep layers (Bach et
al.,, 2015). Their rarity likely stems from limited generalizability
and interpretive complexity. A smaller group built
interpretability into model design—using hybrid neural
networks with attention layers, symbolic-regression pipelines,
or Bayesian variable-filtering frameworks. These show a shift
toward models that are transparent by construction rather than
explained afterward.

Overall, interpretability serves three roles: validating models
against atmospheric science, converting forecasts into policy-
relevant insights, and building public trust. SHAP remains the
most versatile, LIME offers accessible local detail, and newer
hybrid approaches point toward inherently interpretable
forecasting systems. Regional context also matters: large Asian
datasets favour robust general tools, whereas European and
North-American work often experiments with new techniques.

5. LIMITATIONS AND FUTURE DIRECTIONS

This review systematically summarized how interpretability
is applied in air-quality forecasting, revealing clear trends
across 52 studies. By emphasizing interpretability over accuracy
alone, it shows how SHAP and LIME help confirm whether
models align with atmospheric knowledge. Yet, several limits
remain: most work centers on a few pollutants and regions;
SHAP dominates, with little exploration of alternatives such as
Grad-CAM, LRP, or symbolic approaches; and inconsistent
reporting on preprocessing or correlation handling restricts
cross-comparison.

Future studies should expand interpretability techniques and
improve methodological transparency. The next step is real-time
interpretable systems that process live pollution and
meteorological data and present outputs through user-friendly
dashboards highlighting key drivers and uncertainties. Turning
prototypes into operational tools would make interpretability a
direct resource for health and environmental agencies.

6. CONCLUSION

Explainable Al is now vital for ensuring that complex
forecasting models remain transparent and trustworthy. Among
52 studies, SHAP and LIME emerged as the leading methods,
combining global understanding with local explanation. Their
popularity reflects the need for tools that validate model logic
and convey results clearly to policymakers and the public.

Less common methods—Grad-CAM, LRP, symbolic or
Bayesian frameworks—show promise but need broader
application. Overall, interpretability in this field is still uneven,
concentrated in limited pollutants and regions. The future lies in
real-time, user-oriented forecasting systems that merge strong
predictive accuracy with clear reasoning interfaces, turning
explainable Al from an academic goal into a practical
instrument for environmental decision-making.
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