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Abstract - Thyroid conditions such as hypothyroidism and 

hyperthyroidism are prevalent endocrine disorders that can 

significantly affect metabolic function, cardiovascular health, 

and daily well being. Conventional diagnostic procedures, 

typically based on clinical assessments and laboratory 

evaluations, may delay early diagnosis and can be subject to 

human oversight. In recent developments, machine learning has 

emerged as a valuable aid in identifying thyroid related issues. 

Logistic regression, in particular, is recognized for its 

simplicity and transparency, making it a favored model in 

healthcare analytics. Variable selection techniques, including 

methods like SelectKBest and recursive feature elimination, 

assist in identifying the most relevant predictors, while 

approaches such as random oversampling help to address class 

imbalance in datasets. These practices contribute to improving 

the accuracy and dependability of diagnostic models, especially 

in nuanced or early-stage cases. Additionally, research 

indicates that such models may assist in fine tuning therapeutic 

strategies, for instance, adjusting treatment plans for 

individuals with hypothyroidism. Nonetheless, obstacles 

persist such as inconsistencies across datasets, the necessity for 

interpretable decision making, and integration into clinical 

routines. This review explores the advancements and current 

limitations in employing machine learning, with a focus on 

logistic regression, for managing and diagnosing thyroid 

disorders. 

 

 

Key Words: Thyroid Disease Prediction, Machine Learning, 

Ensemble Methods, Feature Selection, Class Balancing, 

Diagnostic Accuracy. 

 

 

 

1. INTRODUCTION ( Size 11, Times New roman) 

 
Thyroid-related illnesses, especially hypothyroidism and 

hyperthyroidism, rank among the most frequently identified 
endocrine disorders. These conditions interfere with essential 
physiological processes, including metabolic regulation, cardiac 
performance, and cognitive functioning (Aversano et al., 2023). 
In the Indian population, close to 10% are affected by such 
disorders, with women between the ages of 17 and 54 showing 
a notably higher prevalence (Sankar et al., 2022). Traditional 
diagnostic practices, which involve evaluating hormone levels 
and clinical manifestations, are often time-consuming and 
susceptible to inaccuracies particularly when symptoms mimic 
those of other health problems (Islam et al., 2025; Rehman et 
al., 2021). 

Recent studies emphasize the role of logistic regression a 
widely adopted statistical approach in healthcare analytics as a 
means to enhance diagnostic precision. Rehman et al. (2021) 
observed that applying L1 regularization within logistic 

regression frameworks contributed to greater accuracy by 
prioritizing the most informative features. Furthermore, 
integrating logistic regression with preprocessing steps such as 
class balancing has proven effective for managing imbalanced 
data distributions, leading to more reliable outcomes in clinical 
decision-making (Islam et al., 2025). 

This review explores the application of logistic regression 
for predicting thyroid disorders, highlighting its ease of use, 
transparency, and practical utility in analyzing clinical datasets. 
It also outlines existing limitations and suggests possible 
enhancements to inform upcoming studies and support 
improved integration in healthcare practices. 

2. Dataset description 

 
The thyroid dataset is a structured medical dataset developed 

to facilitate the prediction and categorization of various thyroid- 
related conditions in patients. It contains a combination of 
demographic, medical history, clinical observations, and 
biochemical measurements. The dataset consists of around 25 
features, including both numerical and categorical types, each 
reflecting different aspects of a patient's health and thyroid 
function. The main outcome variable, labeled as "class," serves 
as the diagnostic indicator and includes several categories such 
as normal (negative), compensated hypothyroidism, primary 
hypothyroidism, and possibly other thyroid conditions. Due to 
the presence of multiple target classes, this represents a 
multiclass classification problem. 

 

 

3. Variable types 

 
This dataset comprises both numerical and categorical 

variables. The numerical attributes, represented as integers or 
floating-point values, primarily reflect laboratory measurements 
including TSH (Thyroid Stimulating Hormone), T3 
(Triiodothyronine), TT4 (Total Thyroxine), T4U (Thyroxine 
Uptake), and FTI (Free Thyroxine Index), all of which are 
essential biochemical markers for assessing thyroid function. 
Additional continuous features include the patient’s age and 
TBG (Thyroxine-Binding Globulin) levels. Alongside these, the 
dataset includes multiple binary categorical fields such as on 
thyroxine, on antithyroid medication, sick, pregnant, goitre, 
tumor, and psych—each recorded as either 0 or 1 to indicate the 
absence or presence of a particular condition or treatment 
history. Nominal categorical variables like sex and referral 
source are also present; these are transformed into numeric 
values using binary encoding (e.g., M/F as 0/1) or one-hot 
encoding to ensure they are suitable for use in machine learning 
algorithms. 



                           International Scientific Journal of Engineering and Management (ISJEM)                                ISSN: 2583-6129 
                                  Volume: 04 Issue: 08 | Aug – 2025                                                                               DOI: 10.55041/ISJEM04940                                                                                                                                         
                                  An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        
 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                                                                |        Page 2 
 

4. Target variable 
The variable named "class" serves as the target output, 

specifying the type of thyroid condition diagnosed for each 
patient. This is a categorical attribute containing multiple 
classes, which distinguish among different diagnoses such as 
normal thyroid function (negative), primary hypothyroidism, 
compensated hypothyroidism, secondary hypothyroidism, and 
hyperthyroidism. In machine learning applications particularly 
with classification models like logistic regression or decision 
trees these category labels are translated into numerical format. 
To handle multiple classes effectively, encoding methods such 
as label encoding or one hot encoding are generally used to 
convert the class variable into a format suitable for model 
processing. This variable operates as the dependent feature that 
the model aims to predict using the available input attributes. 

 

 

5. Key features (independent variables) 

5.1 Biochemical features: These are critical in diagnosing 

thyroid conditions: 
• TSH (Thyroid Stimulating Hormone): Primary 

marker for thyroid function. High TSH often indicates 

hypothyroidism; low TSH suggests hyperthyroidism. 

• T3 (Triiodothyronine): A hormone that helps regulate 

metabolism; low in hypothyroidism, high in 

hyperthyroidism. 

• TT4 (Total Thyroxine): Total amount of thyroxine in 

the blood. 

• FTI (Free Thyroxine Index): A calculated value 

indicating free thyroxine availability. 

• T4U (Thyroxine Utilization): Indicates binding 

capacity; helpful in distinguishing types of thyroid 

dysfunction. 

5.2 Demographic features: 

• Age: Thyroid issues are more common in certain age 

groups (e.g., middle-aged or elderly). 

• Sex: Women are more likely to develop thyroid 

disorders. 
5.3 Medical & treatment history: 

• thyroxine: Indicates whether the patient is receiving 

thyroid hormone replacement therapy. 

• antithyroid medication: Suggests treatment for 

hyperthyroidism. 

• Thyroid surgery: History of thyroidectomy or surgery 

may directly impact hormone levels. 

• I131 treatment: Indicates prior radioactive iodine 

therapy, commonly used for hyperthyroidism. 

• Goitre: Enlargement of the thyroid gland—can be 

associated with both hypo- and hyperthyroidism. 

• Tumor: Presence of thyroid or pituitary tumors may 

influence hormone production. 
5.4 Preprocessing: 

The dataset was cleaned to remove invalid or inconsistent 

entries. Irrelevant or redundant attributes were either dropped 

or consolidated. 

 

 

5.5 Missing values: 

Missing values were examined across all features 
continuous variables with missing values were typically 
imputed using mean or median values, while categorical or 
binary fields were filled using mode or a place holder (like 
unknown), depending on their distribution and impact. Rows 
with excessive missing values were removed to ensure data 
quality and modelling reliability. 

5.6 Categorical encoding: 

For binary categories, label encoding was applied (e.g., F = 
0, M = 1), while one-hot encoding was used for multi-class 
categories such as referral source to maintain numerical 
compatibility for machine learning models. 

5.7 Normalization/ scaling: 

Continuous features such as TSH, T3, TT4, and FTI, which 
can vary over wide ranges, were standardized using z-score 
normalization (mean = 0, standard deviation = 1). This ensures 
that all features contribute equally to distance-based or gradient- 
based algorithms and improves model convergence and 
accuracy. 
 

Figure 1: Correlation heatmap of thyroid dataset features. It 

visualizes the pairwise relationships between numerical and 

encoded categorical variables, showing the strength and 

direction of linear associations. 

 

6. Methodology 

6.1 Data preprocessing 

Data preprocessing is a foundational step in the machine 
learning pipeline, ensuring data quality and consistency. The 
thyroid dataset comprises both numerical and categorical 
variables, including patient demographics, clinical history, and 
laboratory test results. 

Addressing missing values: Numerous variables exhibited 
missing values, particularly continuous features such as TSH, 
T3, TT4, T4U, FTI, and TBG. Median imputation was applied 
to these features due to its robustness to outliers. For categorical 
variables like Sex, on thyroxine, goitre, and referral source, 
mode imputation was used to preserve the most frequent values. 
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Outlier detection and treatment: Outliers in numerical 
features were identified via boxplots and Z-score analysis. 
While logistic regression can tolerate moderate outliers, extreme 
values were either capped or removed to mitigate their influence 
on model coefficients. 

Data type conversion: Categorical variables were 
transformed into numerical format. Binary variables (e.g., Sex, 
Pregnant) were label encoded (0 and 1), while multi-class 
variables such as referral source were one-hot encoded to avoid 
implying ordinal relationships. 

Feature normalization: To harmonize scale differences 
among continuous features (e.g., TSH, T3, TT4, FTI), z-score 
normalization was applied, centering the data around a mean of 
zero and standard deviation of one. This prevents bias in model 
training caused by features with larger numeric ranges. 

Feature selection: To reduce redundancy and enhance model 
generalizability, multicollinearity was examined using 
correlation matrices. Highly correlated features were either 
removed or combined. Domain knowledge further guided the 
selection of clinically significant variables. 

 

6.2 Train-test split 

 
Following preprocessing, the dataset was split into training 

and testing subsets using an 80:20 ratio. Stratified sampling was 
applied to the target variable to maintain class distribution 
across both sets-crucial for imbalanced medical datasets. This 
step ensures realistic evaluation of the model's generalization 
capability. 

 

6.3 Logistic regression model 

 
Logistic regression was chosen as the baseline model due to 

its simplicity, interpretability, and effectiveness in both binary 
and multi-class classification. The multiclass variant (softmax 
regression) was used to handle multiple thyroid conditions. 
Class probabilities were computed using the softmax function, 
converting linear combinations of input features into 
interpretable outputs. Regularization via L2 penalty (Ridge 
Regression) was implemented to mitigate overfitting. The 
regularization strength (C) was optimized through grid search 
and cross validation. Feature coefficients provided insight into 
the relative importance of each predictor. 

 

6.4 Addressing class imbalance 

 
Class imbalance is a common issue in medical datasets, 

often leading to models biased toward the majority class. 

Two primary techniques were employed: 

Class Weighting: The logistic regression model utilized 

class_weight='balanced' in Scikit-learn, adjusting class weight 

inversely proportional to their frequencies to improve learning 

on minority classes. 

Synthetic Oversampling (SMOTE): SMOTE was applied to the 

training set to generate synthetic examples of underrepresented 

classes. This method helps balance the data without simple 

replication, improving model learning for rare conditions. 

Performance was compared between models trained with and 

without SMOTE to determine its effectiveness. 

 

6.5 Model evaluation metrics 

 
Model performance was assessed using multiple evaluation 

metrics on the test dataset. 

Accuracy: Measures overall correctness but may be misleading 

with imbalanced data. 

Precision: Indicates the proportion of true positives among 

predicted positives, reflecting the model's ability to avoid false 

positives. 

Sensitivity: Measures the proportion of actual positives 

correctly identified-critical in medical diagnostics to minimize 

false negatives. 

F1 Score: The harmonic mean of precision and recall, offering 

a balanced performance indicator for imbalanced classes. 

Confusion Matrix: Provides a detailed breakdown of true/false 

positives and negatives, aiding in error analysis across classes. 

ROC Curve & AUC: For multi-class settings, ROC-AUC was 

computed using a one vs rest approach. AUC quantifies model 

performance across various threshold settings. 

Classification Report: Presents precision, recall, F1-score, and 

support for each class, facilitating a holistic understanding of 

model behaviour. To ensure reliability, k-fold cross-validation 

(k=5 or 10) was performed on the training set to evaluate model 

consistency and reduce variance due to random data splits. 

 

7. Results 

 
The results of the logistic regression model were evaluated 

on the test dataset and interpreted in terms of classification 
performance, confusion matrix analysis, and clinical relevance. 

7.1 Model Accuracy and Classification Report: 

The logistic regression model achieved an overall accuracy 
of 96.0% on the test set. Detailed performance metrics are 
shown below: 
 

precision  recall 

f1-score support   

0 0.97 0.99 
0.98 697   

1 0.84 0.64 

0.73 58   

accuracy 
 

0.96 
755   

macro avg 0.91 0.81 
0.85 755   

weighted avg 0.96 0.96 

0.96 755   

 

The logistic regression model achieved an overall accuracy of 

96.0% on the test set, indicating strong discriminative power 

between thyroid and non-thyroid cases. The model exhibited 

superior performance for the majority class (class 0 – no 

thyroid), achieving a precision of 0.97, recall of 0.99, and an 
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F1-score of 0.98, thereby ensuring that most non-thyroid 

individuals were correctly identified with minimal false 

positives. 

For the minority class (class 1 – thyroid), the model showed 

moderate performance, with a precision of 0.84, recall of 0.64, 

Figure 3: Confusion matrix showing the performance of the 

logistic regression model in predicting thyroid and non- 

thyroid. 

and F1-score of 0.73, suggesting that approximately 36% of 

actual thyroid cases were not correctly detected, which could 

have implications in clinical screening settings. 
The macro average scores – precision (0.91), recall (0.81), and 

Predicted: 

thyroid 

Predicted:non- 

thyroid 

F1-score (0.85) – indicate a slight imbalance in predictive 

performance across both classes. However, the weighted 

average scores (precision: 0.96, recall: 0.96, F1-score: 0.96) 

Actual: No thyroid 

(0) 
690 7 

reflect a high overall performance, influenced by the higher 

number of correctly predicted non-thyroid cases. 

 

 

Figure 2: Logistic regression model coefficients indicate the 

relative importance of features. 

 

 

 

7.2 Confusion matrix analysis: 

In order to illustrate the model's classification outcomes in 
terms of true positives, true negatives, false positives, and false 
negatives. It offers a clear representation of the model's 
effectiveness regarding classifications of thyroid and non- 
thyroid. 

Actual: Thyroid(1) 21 37 

 

 

True Negatives (690): Correctly identified non- 

thyroid cases. 

True Positives (7): Correctly identified thyroid cases. 

False Negatives (21): Thyroid cases missed by the 

model. 

False Positives (37): Individuals with thyroid are 

incorrectly flagged as positive 

 

 

7.3 ROC curve and model discrimination: 

Alongside the confusion matrix and classification metrics, 
the Receiver Operating Characteristic (ROC) curve was utilized 
to evaluate the model’s effectiveness in differentiating between 
thyroid and non thyroid cases at various classification 
thresholds. The ROC curve, along with its corresponding Area 
Under Curve (AUC), offers an in-depth perspective on the 
model’s overall ability to distinguish between the two 
categories. 

 

 

 

Figure 4: ROC curve showing model performance in 

distinguishing thyroid vs. non-thyroid cases. The AUC of 0.99 

indicates strong discriminatory power. 
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8.Discussion 

Logistic regression has proven to be a dependable method 
for predicting thyroid conditions when used with structured 
clinical datasets. In this research, the model achieved a notable 
overall accuracy of 96%, largely attributed to its effectiveness 
in correctly classifying non-thyroid cases. It demonstrated 
strong precision and recall for the majority class, which helps 
minimize false positives an advantage in widespread screening 
efforts. Nevertheless, the model showed limited sensitivity in 
detecting thyroid-positive instances, with a recall rate of 0.64. 
This implies that a number of true cases may go undetected, 
posing a concern in clinical applications. 

To mitigate class imbalance, the study incorporated both 

synthetic oversampling (SMOTE) and class weighting 

techniques. While these approaches improved the 

representation of underrepresented classes during model 

training, they did not entirely eliminate performance 

disparities. The model’s ROC AUC value of 0.99 reflects its 

strong ability to distinguish between thyroid and non-thyroid 

categories across different thresholds. A key advantage of 

logistic regression lies in its interpretability its feature 

coefficients offer clear insight into the variables most 

influencing the prediction, supporting clinical understanding. 

Although outcomes are promising, challenges such as skewed 

class distributions and symptom overlap persist. Future work 

may benefit from assembling more balanced datasets and 

implementing advanced feature selection methods to improve 

classification across all groups. 

 

 

9.Conclusion 

 
This research highlights the effective use of logistic 

regression for predicting thyroid-related conditions by 
leveraging medical datasets containing both biochemical and 
demographic information. After applying essential 
preprocessing steps such as normalization, encoding, and 
handling of missing values the model attained a notable 
accuracy of 96%. Its straightforward structure and ease of 
interpretation make logistic regression a valuable asset for 
healthcare professionals aiming to identify thyroid disorders. 

However, the model exhibited limitations in detecting patients 

with thyroid abnormalities, as demonstrated by its lower recall 

for the minority class. This issue reflects a broader challenge in 

medical data analysis, where class imbalance can negatively 

influence model performance. Although techniques like 

SMOTE and class weighting helped improve detection of 

underrepresented cases, they were insufficient to completely 

resolve the imbalance. While logistic regression successfully 

revealed the relative importance of various features, enhancing 

sensitivity for less frequent classes remains an important area 

for improvement. 

In summary, logistic regression, when combined with thorough 

data preparation, provides reliable results for classifying 

thyroid disorders. Further performance gains may be possible 

by improving feature selection, acquiring more balanced data, 

or incorporating hybrid modeling techniques. This study 

reinforces the idea that even basic algorithms, when properly 

refined, can offer meaningful support in early diagnosis and 

clinical decision-making. 
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