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Abstract—The project is an example of a stress detection 
system that uses a number of sensors to track physiological 
signals such body temperature, respiration rate, acceleration, 
EMG, ECG, and EDA. The device uses a unique analysis model to 
classify stress levels as low, medium, or high.A software platform 
processes the data gathered from sensors, such as the Seeed 
Studio Grove GSR Sensor, Spinkky MPU-6050 Module, Heart 
BioAmp, Muscle BioAmp Patch v0.2, and temperature sensor. 
The platform offers tailored stress management advice based 
on the user’s stress level. The goal of this effective and user- 
friendly technology is to promote mental health and enable real- 
time stress monitoring. 

I. INTRODUCTION 

Stress has become an unavoidable aspect of modern life and 

exerts a profound impact on physical and mental well-being. 

It manifests itself in various forms, such as physical stress 

caused by fatigue or illness and psychological stress driven 

by emotional or cognitive factors such as fear, frustration, or 

worry. Although some stress can be beneficial in small doses, 

chronic or elevated levels lead to adverse effects, including 

anxiety, depression, sleep disorders, heart disease, and memory 

problems. 

In today’s fast-paced world, people often lack real-time 

awareness of their stress levels, making it difficult to address 

the problem proactive. India, in particular, faces alarmingly 

high rates of stress-related issues among young adults aged 15 

to 29, highlighting the need for innovative solutions [?].Tra- 

ditional stress management tools are largely reactive, focusing 

on addressing symptoms rather than preventing escalation. 

Advancements in wearable technology and sensor systems 

provide an opportunity to bridge this gap. Real-time monitor- 

ing of physiological parameters, such as acceleration, body 

temperature, respiratory rate, electrodermal activity (EDA), 

electrocardiogram (ECG), and electromyography (EMG), al- 

lows for early detection of stress. This paper proposes a 

web application that leverages these parameters to analyze 

stress levels, categorizing them as low, medium, or high. The 

following sections of this paper discuss the methodology for 

developing the application, relevant machine learning models, 

implementation details, and the ability of the system to provide 

actionable feedback to users. By proactive stress management, 

this research aims to contribute to a practical and accessible 

solution to stress management. 

II. LITERATURE REVIEW 

Recent studies have explored the use of machine learning 

techniques for detecting mental stress through physiological 

signals. A comprehensive review [2] highlighted the effective- 

ness of algorithms such as Support Vector Machines (SVM), 

Neural Networks, and Deep Learning in classifying stress 

levels using EEG, ECG, GSR, skin temperature, and heart 

rate variability. The integration of multimodal data sources, 

including facial expressions and speech, has been shown to 

improve accuracy, although ethical concerns, privacy issues, 

and hardware integration challenges persist. Another study [3] 

focused on wearable sensors for the detection of stress stress in 

free-living environusinging physiological signals such as ECG, 

skin temperature, and skin conductance. Features such as heart 

rate variability and phasic/tonic skin conductance components 

were linked to stress responses. Machine learning models like 

Random Forest and XGBoost achieved high accuracy, with 

pre-processing techniques like SMOTE effectively addressing 

data imbalances. 

Further research has delved into fatigue detection using 

machine learning, examining physiological signals such as 

EMG, ECG, and EDA, combined with behavioral data such 

as gait and posture [4]. These studies emphasized the need 

for robust sensor calibration, consideration of environmental 

factors, and integration of multiple data sources for im- 

proved accuracy. The WESAD data set has been pivotal in 

multimodal stress detection research [5], using physiological 

characteristics from EDA, EMG, ECG, respiration rate, and 

temperature for stress classification. Both machine learning 

(Random Forest, SVM) and deep learning (Artificial Neural 

Networks) models were validated through Leave-One-Subject- 

Out (LOSO) cross-validation, demonstrating robust, subject- 

independent performance. 

Personalized stress detection models have gained traction, 

particularly those that use EEG and ECG signals to create 
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patient-specific models that significantly outperform general 

ones [6]. This personalized approach underscores the impor- 

tance of accounting for interindividual variability in physiolog- 

ical responses. Furthermore,ensemble learning models trained 

on synthesized datasets combining SWELL, WESAD, and 

NEURO have demonstrated strong generalization capabilities 

in stress prediction, achieving accuracies up to 85 percent [7]. 

Innovations in wearable technology, such as the development 

of microfluidic electrochemical sensors for the noninvasive 

monitoring of oxidative stress biomarkers in sweat [8], and 

wrist-worn devices that detect stress-related behaviors via 

motion sensors [9], showcase practical applications of machine 

learning in real-time, non-invasive stress detection systems. 

III. METHODOLOGY 

A. Dataset Overview 

The WESAD (Wearable Stress and Affect Detection) 

dataset, a widely used multimodal physiological dataset, forms 

the foundation for this research on stress detection. The data 

set includes data from 15 participants, each exposed to various 

conditions designed to elicit specific physiological responses. 

These conditions are as follows: 

removal, missing data handling, normalization, and feature 

extraction. 

All signals were resampled to a uniform frequency to main- 

tain temporal alignment. Filtering techniques were applied to 

remove noise from ECG, EDA, EMG, and respiration signals, 

ensuring reliable feature extraction. Missing values were han- 

dled using interpolation and median imputation, minimizing 

data loss. Z-score normalization was performed to standardize 

the features, preventing scale variations from affecting model 

performance. 

This structured preprocessing approach ensures data in- 

tegrity, enhances model interpretability, and optimizes clas- 

sification performance. 

D. Sensor Data Conversion 

To convert the raw sensor values into SI units, each channel 

has to transformed based on the formulas given below: 

1) ECG (mV):
 

signal − 0.5
 

· 3 

2) EDA (µS):
  

signal · 3
 

/0.12 

3) EMG (mV):
 

signal − 0.5
 

· 3 
4) TEMP (◦C): signal·3 

Baseline: Participants are in a neutral, relaxed state, pro- 

viding a reference for normal physiological activity. Key 

216−1 

5) XYZ Acceleration (g): 
6) 

Respiration (%):
  

signal 

signal−28000 
38000−28000 

· 2 − 1 

indicators include stable heart rate, low electrodermal activity 

(EDA), and relaxed respiration. 

Stress: Participants undergo stress-inducing tasks such 

as public speaking or timed problem-solving. Physiological 

markers include elevated heart rate, increased EDA, and rapid 

respiration. 

Amusement: Positive emotional stimuli, like watching hu- 

morous videos, evoke moderate physiological arousal without 

stress. Indicators include slightly elevated heart rate and EDA. 

Meditation 1 and 2: Guided meditation sessions promote 

relaxation, leading to decreased heart rate, lower EDA, and 

slow, deep breathing. 

B. Dataset Preparation 

The WESAD dataset, consisting of physiological data from 

15 subjects, was utilized for stress classification. It includes 

216 − 0.5 

E. Correlation with stress levels 

· 100 

multimodal signals such as ECG, EDA, EMG, respiration rate, 

body temperature, and acceleration, recorded under three stress 

levels: Low, Medium, and High. 

To ensure a well-balanced dataset, 5,000 samples per 

stress level were extracted from each subject, leading to a 

final dataset of 225,000 samples (75,000 per class). This 

balanced representation minimizes bias, prevents overfitting, 

and enhances the model’s ability to generalize across diverse 

physiological patterns, ensuring robust stress classification. 

C. Data Preprocessing 

To enhance data quality and ensure consistency across phys- 

iological signals, preprocessing was applied to the WESAD 

dataset before model training. Given the multimodal nature of 

the data, preprocessing involved signal synchronization, noise 

Fig. 1. Correlation matrix of numerical features 

 

The heatmap reveals key relationships among physiologi- 

cal signals for stress classification. Strong correlations (red) 

indicate synchronized variations, while negative correlations 

(blue) highlight inverse trends. 

The Z-axis acceleration strongly correlates with the X- 

axis (0.76), suggesting motion influence on stress responses. 

EDA moderately correlates with acceleration, linking skin 

conductance to movement. Temperature negatively correlates 

with Z (-0.45), reflecting thermoregulatory effects. 

ECG, EMG, and RESP show minimal correlation with 

other features, contributing independently. This analysis re- 

fines feature selection, reducing redundancy and enhancing 

classification accuracy. 
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F. Distribution of Features Across Stress Levels 

Understanding the distribution of physiological signals 

across stress levels is critical for developing robust machine 

learning models in stress classification. Violin plots provide an 

effective visualization of data density, variability, and feature 

separability, making them ideal for stress detection analysis. 

 

Fig. 2. EDA Distribution Across Stress Levels 

 

Primary stress biomarker:EDA values increase significantly 

with rising stress levels, confirming its strong correlation with 

autonomic nervous system activation. High stress levels exhibit 

a wider distribution, reflecting individual variability in stress 

response. EDA serves as the most critical feature for stress 

classification in machine learning models. 

 

Fig. 3. TEMP Distribution Across Stress Levels 

 

Inverse correlation with stress: Higher stress levels lead to 

lower skin temperature, likely due to sympathetic nervous 

system-induced vasoconstriction. Well-separated distributions 

between Low and High stress support its use as a secondary 

stress marker. 
 

Fig. 4. RESP Distribution Across Stress Levels 

 

Irregular breathing patterns under High stress, indicated by 

greater distribution spread. More stable breathing in Low and 

Medium stress states, reinforcing RESP as a secondary feature 

for classification. 
 

Fig. 5. EMG Distribution Across Stress Levels 

 

Increased muscle activation in High stress, demonstrating 

stress-induced muscular tension. Medium and Low stress 

levels exhibit lower EMG values, supporting its role as a stress 

response indicator. 

 

Fig. 6. ECG Distribution Across Stress Levels 

 

ECG raw values show minimal separation across stress levels, 

indicating it may require derived features such as Heart Rate 

Variability (HRV) for effective classification. 

 

 
Fig. 7. ACC Distribution Across Stress Levels 

 

Accelerometer data shows increased movement intensity in 

High stress states, with the Z-axis exhibiting the most variation 

due to postural adjustments and involuntary movements. X and 

Y axes remain relatively stable, indicating limited lateral or 

forward-backward motion under stress. 
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IV. MACHINE LEARNING MODEL 

Machine learning techniques are extensively utilized 

in physiological signal classification due to their ability 

to capture intricate patterns and variations. This study 

implements multiple ML models, including Decision Trees, 

Random Forest, Support Vector Machines (SVM), K-Nearest 

Neighbors (KNN), Extra Trees, AdaBoost, and Gradient 

Boosting, to classify stress levels based on physiological data. 

Among these, Random Forest emerged as the most effective 

model due to its superior accuracy and robustness. 

 

Random Forest is a robust ensemble learning algorithm that 

enhances classification accuracy by aggregating predictions 

from multiple decision trees. Each tree is trained on a random 

subset of the data, and final classification is determined 

through majority voting, improving generalization, and 

reducing overfitting. In this study, Random Forest was used 

for stress classification (Low, Medium, High) based on 

physiological signals, including electrodermal activity (EDA), 

temperature (TEMP), respiration (RESP), electrocardiogram 

(ECG), electromyography (EMG) and accelerometer (ACC) 

data. 

 

A. Working Mechanism 

1. Bootstrap Aggregation (Bagging): Random Forest 

employs bootstrap sampling, where each decision tree is 

trained on a random subset of the dataset drawn with 

replacement. This process enhances diversity among trees, 

leading to a reduction in variance and improved generalization. 

 

2. Random Feature Selection: At each node split, a random 

subset of features is selected rather than evaluating all 

available features. This prevents over-reliance on dominant 

features, ensuring that trees remain decorrelated and 

independent, thereby enhancing model robustness. 

 

3. Majority Voting for Classification: Each decision tree in 

the forest independently predicts a stress level (Low, Medium, 

or High). The final classification decision is determined 

through majority voting, where the most frequently predicted 

class among all trees is chosen as the output. 

 

4. Parallelization and Scalability: Since decision trees 

are trained independently, Random Forest supports parallel 

processing, significantly reducing computation time. This 

property makes it ideal for real-time stress classification in 

wearable and biomedical applications. 

 

B. Mathematical Representation 

Given a dataset D with N training samples: 

1) Create k decision trees, where each tree Ti is trained on 

a random bootstrap sample Di from D. 

2) At each node, the best feature is chosen from a random 

subset Fs ⊂ F , where F is the full feature set. 

3) The final predicted class Yˆ is determined by majority 

voting: 

Yˆ = mode{T1(X), T2(X), . . . , Tk(X)} (1) 

where Ti(X) represents the prediction of the i-th tree for 

input X, and mode represents the majority vote across 

all decision trees. 

C. Advantages 

• High Accuracy: Random Forest reduces overfitting by 

averaging the predictions of multiple trees, resulting in higher 

accuracy and generalization. 

• Robustness to Noise: It is less sensitive to noisy data and 

outliers, which is beneficial when working with physiological 

signals that may have inherent variability. 

• Handles Mixed Data Types: It can process both numerical 

and categorical data effectively, making it suitable for this 

project’s diverse physiological inputs. 

• Scalability: Random Forest works well with large datasets 

and high-dimensional data, which is useful when handling 

multiple physiological signals. 

 

D. Model Training and Evaluation 

The Random Forest algorithm can be implemented using the 

RandomForestClassifier from the sklearn.ensemble library in 

Python.It requires the tuning of several hyperparameters to 

optimize performance such as 

• n estimators = 300: Number of trees in the forest. 

• criterion = ”gini”: Uses the Gini impurity for splitting 

nodes. 

• random state = 3: Ensures reproducibility of results. 

• max samples = 0.5: Uses 50% of samples for training 

each tree. 

• max features = 0.75: Considers 75% of features when 

looking for the best split. 

• max depth = 25: Limits the depth of trees to prevent 

overfitting. 

• bootstrap = True: Enables bootstrapping for sampling 

data. 

 

 
Fig. 8. Confusion Matrix for Random Forest 
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• Excellent classification across all stress levels: 

o 33 instances of ”High” stress were misclassified as ”Low.” 

o 21 instances of ”Low” stress were misclassified as ”High.” 

o Only 2 instances of ”Low” stress were misclassified as 

”Medium.” 

• Random Forest is a reliable choice for high accuracy and 

robustness, particularly when interpretability is not a primary 

concern. 

 

E. Accuracy and Precision Comparison 

 
ML Algorithms Train Acc(%) Test Acc(%) Acc(%) Precision (%) 

LOW MEDIUM HIGH 

Decision Tree 98.81 98.75 98.75 99.99 97.95 98.31 

KNN 99.02 98.69 98.69 99.25 98.4 98.42 

Random Forest 99.99 99.87 99.87 99.85 99.77 99.98 

Extra Tree 99.88 99.85 99.85 99.74 99.81 99.99 

Adaboost 71.13 71.28 71.28 56.02 66.91 96.24 

Gradient Boosting 99.79 99.77 99.77 99.66 99.67 99.99 

SVM 99.33 99.23 99.23 98.69 99.05 99.96 

 

V. HARDWARE DESIGN 

The proposed system utilizes multiple biosensors and an 

inertial measurement unit (IMU) interfaced with an Arduino 

UNO for the acquisition of physiological signals and further 

processing.The key hardware components include: 

1) Heart BioAmp Candy: Records electrocardiogram (ECG) 

signals for cardiac monitoring and extraction of respiration 

rate. 

2) Muscle BioAmp Patchy: Measures electromyographic 

signals to analyze muscle activity. 

3) MPU6050 : Provides motion tracking using accelerometer 

and body temperature data. 

4) Galvanic Skin Response: Monitors skin conductance 

variations to assess physiological stress levels. 

 

VI. WEB APPLICATION 

The proposed web application is developed using Flask, 

HTML, and CSS, integrating a machine learning model 

(stress-ml-model.pkl) to analyze user inputs and generate 

personalized stress assessments. Additionally, an AI-powered 

chatbot, built with Automation Anywhere AI, enhances 

user interaction by providing real-time assistance, answering 

queries, and offering stress management recommendations. 

 

The system follows a structured workflow, beginning with 

the homepage (home.html), where users are introduced to 

the platform. They then proceed to a questionnaire module 

(/basic question), where preliminary stress-related data is 

collected, followed by the detailed input module (/inputs), 

which gathers additional parameters for a more precise 

evaluation. The Flask backend processes this data using the 

pre-trained ML model, which predicts stress levels based on 

predefined parameters. The results are then translated into 

personalized feedback, delivered through an interactive user 

interface with visual aids such as stress-indicating images 

(breathing high.jpg, diet low.jpg), helping users understand 

their stress levels and recommended coping strategies. 

 

To further improve user experience, the AI-integrated chatbot 

enables real-time engagement, guiding users through the 

platform and providing stress management insights. This 

combination of machine learning and AI-driven automation 

ensures an efficient, interactive, and accessible stress 

assessment tool, offering data-driven insights and promoting 

effective stress management practices. 


