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Abstract—Moore’s Law, the prediction that transistor density 
on integrated circuits would double approximately every two 
years, has been the driving force behind advancements in 
computing for decades. However, as semiconductor fabrication 
approaches the physical limits of silicon, the traditional scaling 
benefits of Moore’s Law are diminishing. Simultaneously, the 
demand for AI compute has surged, leading to an unprecedented 
need for high-performance chips. This paper explores the decline 
of Moore’s law, the resulting AI compute bottleneck, and poten- 
tial technological breakthroughs that could redefine the future 
of AI hardware. 
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I. INTRODUCTION 

Moore’s Law has long been the foundation of computing 

progress, enabling exponential growth in processing power at 

decreasing costs [13]. However, as transistors shrink to atomic 

scales, see figure 1, manufacturing constraints, rising costs, 

and energy inefficiencies threaten to slow down or even halt 

this trend [5]. Meanwhile, AI models such as GPT-4o and 

DeepSeek-R1 require exponentially more compute resources, 

exacerbating the limitations of current hardware[15]. This 

paper examines how the slowing of Moore’s Law impacts AI 

development and explores potential solutions to overcome the 

AI compute bottleneck. 

II. THE DECLINE OF MOORE’S LAW 

1) The Physical and Economic Limits of Scaling : The 

steady march of transistor miniaturization faces critical 

physical and economic barriers that are reshaping the 

semiconductor industry’s future[4]. At sub-5nm scales, 

quantum effects such as electron tunneling introduce 

significant instability, as electrons can spontaneously 

bypass the physical barriers meant to control their flow. 

This quantum behavior leads to unpredictable current 

leakage, threshold voltage variations, and ultimately 

compromises the reliability of integrated circuits, mak- 

ing further miniaturization increasingly difficult without 

fundamental changes to transistor architecture or mate- 

rials science. 

Meanwhile, the cost of semiconductor fabrication at 

advanced nodes has skyrocketed to unprecedented levels. 

TSMC’s 3nm and 2nm process development requires 

multi-billion dollar investments in extreme ultraviolet 

lithography equipment, ultra-pure materials, and increas- 

ingly complex multi-patterning techniques. A single 

leading-edge fabrication facility now costs upwards of 

20 billion dollar, requiring enormous production vol- 

umes to achieve economic viability and limiting access 

to only the largest semiconductor companies, thus reduc- 

ing economic feasibility for widespread adoption across 

the industry. 

Additionally, increased transistor density inevitably 

leads to higher power consumption and thermal man- 

agement challenges that threaten to undermine efficiency 

gains. As billions of transistors switch states in increas- 

ingly confined spaces, the resulting heat concentration 

creates hotspots that can compromise structural integrity, 

accelerate electron migration, and necessitate aggressive 

power throttling. These thermal issues have contributed 

to the end of Dennard scaling, where newer chips often 

cannot run all transistors at full power simultaneously, 

limiting chip efficiency improvements and requiring 

sophisticated power management techniques to maintain 

performance within thermal constraints. 

2) The End of Dennard Scaling : The fundamental principle 

of Dennard scaling, which historically allowed power 

efficiency to improve as transistors shrank, has largely 

broken down in modern semiconductor development. 

This scaling law, formulated by IBM’s Robert Dennard 

in 1974, predicted that as transistors became smaller, 

they would consume proportionally less power while 

operating faster—enabling the continuous performance 

improvements the industry enjoyed for decades [9]. 

However, as feature sizes approached atomic scales 

below 22nm, unavoidable physical limitations emerged 

involving gate oxide thickness and threshold voltages 

that prevented voltage scaling from keeping pace with 

size reduction. While transistor density continues to 

increase according to Moore’s Law—doubling approx- 

imately every two years through advanced packaging 

techniques and 3D integration—power efficiency gains 

have stagnated dramatically. 

This power wall has created a situation where chip 

designers can place more transistors on silicon, but can- 

not power them all simultaneously at full performance, 

leading to diminishing performance improvements per 

watt and the rise of ”dark silicon” where portions 

of a chip must remain inactive to maintain thermal 

limits. This breakdown has forced a paradigm shift in 

processor architecture toward specialized accelerators, 

heterogeneous computing, and domain-specific designs 

that prioritize efficiency over raw transistor counts. 

III. THE AI COMPUTE BOTTLENECK 

1) Exponential Growth in AI Compute Needs: Modern AI 

models exhibit a voracious appetite for computational 

resources, requiring quadratically or even exponentially 

increasing compute power with each new generation 
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Fig. 1. Moore’s Law : Transistor density over time 

 

 

as their parameter counts and architectural complexity 

grow. This scaling challenge stems from the fundamental 

mathematics of neural networks, where both training 

time and inference costs rise dramatically with model 

size—a phenomenon quantified in research showing that 

model capabilities often scale as power laws relative to 

compute. 

The computational demands have reached such extreme 

levels that training large-scale AI models, such as Ope- 

nAI’s GPT-4o, demands thousands of high-performance 

GPUs running for months, consuming vast amounts of 

energy. These massive training runs operate in special- 

ized data centers with custom cooling infrastructure, 

often requiring hundreds of megawatts of power and 

costing tens or even hundreds of millions of dollars per 

model. The resulting carbon footprint has become a sig- 

nificant environmental concern [7], with single training 

runs potentially generating CO emissions equivalent to 

the lifetime emissions of multiple cars, spurring research 

into more efficient architectures and training methods. 

Compounding these challenges, AI chip demand is out- 

pacing production capabilities, leading to severe supply 

chain constraints across the semiconductor ecosystem. 

This shortage has created a situation where leading 

AI research organizations must secure chip allocations 

years in advance, while smaller startups struggle to 

access the hardware necessary for innovation, potentially 

concentrating AI development capabilities among a few 

well-resourced entities and creating national security 

concerns as countries compete for limited semiconductor 

manufacturing capacity. 

 

2) The Energy Challenge : AI compute clusters are con- 

suming gigawatts of electricity, raising concerns about 

sustainability as the environmental footprint of artificial 

intelligence continues to grow at an alarming rate. These 

massive computational facilities now rival small cities in 

their energy demands, with single AI research organi- 

Fig. 2. AI compute demand Vs Hardware performance growth 

 

 

zations sometimes requiring hundreds of megawatts of 

continuous power—enough to supply tens of thousands 

of homes[8]. The carbon impact varies dramatically 

depending on energy sources [11], with AI clusters in 

regions powered by coal or natural gas contributing 

significantly to greenhouse gas emissions, while those 

with access to hydroelectric, nuclear, or renewable en- 

ergy sources fare better environmentally. This growing 

energy consumption has prompted increased scrutiny 

from environmental groups, regulators, and even AI 

researchers themselves[12], many of whom are working 

to develop more efficient algorithms and specialized 

hardware that can deliver comparable performance with 

reduced power requirements. 

Data centers struggle with power limitations, and ex- 

panding AI infrastructure requires new energy solutions 

as existing electrical grids in many technology hubs 

approach capacity constraints. In areas like Silicon Val- 

ley, Dublin, and Singapore, data center operators face 

strict power allocation quotas, with some municipali- 

ties implementing moratoriums on new facilities due 

to grid capacity concerns. This infrastructure challenge 

has sparked innovation in several directions, including 

the strategic relocation of compute resources to regions 

with abundant renewable energy, investments in on-site 

power generation using solar, wind, or small modular 

nuclear reactors, and the development of advanced liquid 

cooling technologies that significantly reduce cooling- 

related energy overhead. Beyond technical solutions, 

the industry is also exploring new operational models, 

including workload scheduling that prioritizes non-time- 

sensitive AI training during periods of renewable energy 

abundance and innovative power purchase agreements 

that fund the development of new clean energy sources 

to offset consumption. 

3) The Bottleneck in AI Hardware Supply : 

The global chip shortage and increasing restrictions 

on semiconductor exports to China have exacerbated 
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hardware supply issues, creating a perfect storm for 

AI infrastructure expansion. This shortage, initially trig- 

gered by pandemic-related supply chain disruptions, 

has been prolonged by geopolitical tensions and ex- 

port controls, particularly those imposed by the United 

States targeting China’s access to advanced computing 

technologies. These restrictions have limited the flow of 

cutting-edge semiconductors and equipment to Chinese 

companies and research institutions, effectively bifur- 

cating the global AI hardware ecosystem and forcing 

parallel development tracks. The ripple effects extend 

beyond China, as global manufacturers face increased 

scrutiny of their supply chains, longer lead times for 

critical components, and significantly higher prices for 

specialized AI accelerators. This situation has led to 

strategic stockpiling by major technology companies and 

nations treating semiconductor manufacturing capacity 

as a matter of national security, further straining an 

already tight market. 

NVIDIA dominates AI compute hardware with its 

purpose-built GPU architectures and comprehensive 

software ecosystem, holding over 80% market share in 

AI accelerators and creating a near-monopoly that con- 

cerns both industry and government stakeholders. The 

company’s specialized tensor cores, optimized mem- 

ory hierarchies, and mature CUDA programming envi- 

ronment have created significant barriers to entry for 

potential competitors, allowing NVIDIA to command 

premium prices for its H100 and A100 chips that 

power most large-scale AI training. This dominance 

has prompted companies like AMD, Intel, and Google 

to invest billions in alternative solutions to reduce de- 

pendence on a single provider. AMD has accelerated 

development of its Instinct MI300 series[14], Google 

continues to expand its TPU (Tensor Processing Unit) 

architecture for internal use and cloud customers, and 

numerous startups are pursuing novel approaches in- 

cluding photonic computing, in-memory processing, and 

neuromorphic designs. These diversification efforts are 

critical for ensuring both competitive pricing and re- 

silience against supply disruptions, though most industry 

analysts believe NVIDIA will maintain its leadership 

position for the foreseeable future given its substantial 

head start and continued aggressive investment in next- 

generation AI hardware 

IV. ALTERNATIVE APPROACHES TO OVERCOMING THE 

COMPUTE BOTTLENECK 

1) Specialized AI Hardware : Application-Specific Inte- 

grated Circuits (ASICs) are revolutionizing AI compute 

efficiency through dedicated hardware architectures op- 

timized for the specific mathematical operations that 

underpin machine learning. Google’s Tensor Processing 

Units (TPUs) exemplify this approach, with their matrix 

multiplication units specifically designed to accelerate 

the tensor operations central to neural network training 

and inference. These purpose-built chips achieve per- 

formance gains of 15-30x over general-purpose GPUs 

for certain workloads while consuming significantly less 

power. The TPU v4, for instance, delivers over 275 

petaFLOPS of compute in a single pod configuration, 

enabling previously impossible model training scenar- 

ios. This specialization trend extends beyond the tech 

giants, with companies like Cerebras Systems develop- 

ing wafer-scale chips containing trillions of transistors 

specifically arranged to minimize data movement—the 

primary energy bottleneck in AI computation. 

Neuromorphic Computing represents a radical depar- 

ture from conventional von Neumann architectures by 

mimicking the structure and function of biological neu- 

ral systems[2], [3]. IBM’s TrueNorth and Intel’s Loihi 

chips implement spiking neural networks (SNNs) that 

process information through discrete events rather than 

continuous calculations, dramatically improving energy 

efficiency by up to 1000x for certain tasks. These 

neuromorphic systems excel at processing sensory data 

and pattern recognition while consuming mere watts 

of power, making them ideal for edge AI applications 

where energy constraints are paramount. The event- 

driven processing paradigm enables these chips to per- 

form real-time learning and adaptation with minimal 

energy expenditure, opening new possibilities for au- 

tonomous systems that can operate without constant 

cloud connectivity. Research groups at universities and 

national laboratories are pushing this technology further 

by incorporating novel materials that more closely ap- 

proximate biological neurons’ adaptive properties. 

Optical and Photonic Computing leverages light in- 

stead of electrons to perform calculations, promising 

transformative improvements in both speed and energy 

efficiency for AI workloads. Light-based processors 

can theoretically operate at frequencies in the hun- 

dreds of terahertz range—orders of magnitude faster 

than electronic systems—while generating minimal heat. 

Companies like Lightmatter and Luminous Comput- 

ing are developing photonic chips that specialize in 

the matrix multiplication operations central to deep 

learning, with demonstrations showing 10-100x im- 

provements in energy efficiency compared to electronic 

alternatives. These systems manipulate light through 

programmable interference patterns using components 

like Mach-Zehnder interferometers arranged in massive 

arrays. Beyond raw performance, photonic computing 

offers the potential for direct integration with fiber optic 

communication networks, eliminating energy-intensive 

conversions between optical and electronic domains that 

currently plague data center operations. 

2) Advanced Semiconductor Materials : Graphene and Car- 

bon Nanotubes represent potential silicon replacements 

that could extend Moore’s Law beyond its current 

physical limits. These carbon-based materials exhibit 

exceptional electrical properties, including electron mo- 
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bility up to 100 times greater than silicon and thermal 

conductivity superior to diamond. Carbon nanotubes 

can form transistors with channel lengths below 5nm 

without the quantum tunneling effects that plague silicon 

at these scales, potentially enabling another decade of 

transistor scaling. Research at universities like Stanford 

and MIT has demonstrated functional carbon nanotube 

processors, though significant manufacturing challenges 

remain in precisely positioning these molecular struc- 

tures. Graphene, a single-atom-thick sheet of carbon, 

offers even more exotic possibilities, including ballistic 

electron transport that could enable terahertz-frequency 

operation. While commercialization timelines remain 

uncertain, these materials represent the most promising 

path to continue the exponential improvement in com- 

puting capabilities that has driven technological progress 

for generations. 

3D Stacking and Chiplet Architectures represent 

a paradigm shift in semiconductor design philoso- 

phy—instead of shrinking transistors further, compa- 

nies are exploring vertical integration and modular 

approaches to improve performance without requiring 

smaller manufacturing processes. Advanced packaging 

technologies like TSMC’s System on Integrated Chips 

(SoIC) and Intel’s Foveros enable the stacking of multi- 

ple silicon dies with thousands of connections between 

layers, dramatically increasing transistor density while 

improving data bandwidth and reducing energy con- 

sumption. This approach allows mixing and matching 

of components manufactured using different process 

nodes, optimizing each function for performance or 

cost. AMD’s EPYC processors demonstrate the chiplet 

concept’s effectiveness, using multiple smaller dies in- 

stead of one monolithic chip to improve manufacturing 

yields and performance scaling. For AI applications, 

chiplet architectures enable the integration of special- 

ized accelerators, high-bandwidth memory, and even 

optical I/O components into unified packages that can 

be customized for specific workloads while maintaining 

manufacturability and thermal management advantages. 

3) Quantum Computing for AI : Quantum computers have 

the potential to drastically accelerate AI workloads by 

exploiting quantum mechanical properties like superpo- 

sition and entanglement to perform certain calculations 

exponentially faster than classical computers. Quantum 

machine learning algorithms [16], [1] could transform 

tasks like reinforcement learning, optimization prob- 

lems, and generative modeling by sampling from proba- 

bility distributions and exploring solution spaces in ways 

fundamentally impossible for classical systems. Recent 

theoretical work has demonstrated quantum advantage 

for kernel methods and dimensionality reduction tech- 

niques central to many AI approaches. However, prac- 

tical implementation remains challenging, with current 

quantum processors limited by qubit coherence times, 

gate fidelities, and error rates that restrict their applica- 

tion to small-scale problems. Despite these challenges, 

quantum AI represents perhaps the most transformative 

long-term computing paradigm on the horizon. 

Companies like IBM, Google, and startups such as 

PsiQuantum are working on hybrid quantum-classical 

systems that leverage each paradigm’s strengths to tackle 

AI’s compute needs. These hybrid approaches utilize 

quantum processors for specific subroutines where they 

excel, such as feature mapping or optimization steps, 

while relying on classical hardware for the remainder 

of the workflow. IBM’s Quantum Conditional toolkit 

exemplifies this strategy, providing interfaces between 

quantum circuits and classical neural networks. Google’s 

quantum supremacy experiments with its Sycamore pro- 

cessor demonstrated the potential for quantum advantage 

in sampling problems relevant to generative AI. Mean- 

while, PsiQuantum is pursuing a photonic approach to 

quantum computing that promises improved scalability 

over superconducting or trapped-ion systems. These 

diverse technical approaches reflect the nascent state of 

quantum AI, with no clear winner yet emerging. Industry 

projections suggest that practical quantum acceleration 

for commercial AI applications may begin to appear 

within 5-10 years, initially focusing on specific bottle- 

necks in training and optimization before expanding to 

more general applications. 

V. THE FUTURE OF AI COMPUTE BEYOND MOORE’S LAW 

1) AI-Driven Hardware Innovations : AI itself is now 

being used to design better chips, creating a fascinating 

recursive relationship where artificial intelligence 

improves the very hardware it runs on. Advanced 

machine learning systems from companies like Google, 

NVIDIA, and Synopsys are revolutionizing the chip 

design process by optimizing floor plans, power delivery 

networks, and routing configurations that would take 

human engineers months to perfect. These AI-driven 

design tools can explore solution spaces containing 

billions of potential configurations, identifying non- 

intuitive architectures that maximize performance 

within current physical constraints. Google’s work 

on TPU [10] design using reinforcement learning 

has demonstrated up to 30% improvement in power 

efficiency compared to human-designed layouts. 

This approach is particularly valuable as traditional 

scaling approaches falter, allowing designers to extract 

maximum performance from existing fabrication 

technologies. The recursive improvement cycle—where 

better AI leads to better chips which enable better 

AI—creates an accelerating feedback loop that could 

dramatically speed hardware evolution beyond what 

traditional engineering approaches could achieve. 

AI-automated semiconductor manufacturing is emerging 

as a key area of research as the complexity of chip 

fabrication reaches levels that challenge human 

oversight  capabilities.  Modern  semiconductor  fabs 
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contain thousands of sophisticated machines performing 

hundreds of processing steps, each with dozens of 

parameters that must be precisely controlled. Machine 

learning systems are now being deployed to monitor and 

optimize these processes in real-time, detecting subtle 

patterns in manufacturing data that indicate potential 

yield issues before they become critical problems. 

Applied Materials, ASML, and other equipment 

manufacturers are integrating ML capabilities directly 

into their tools, allowing for adaptive process control 

that continuously optimizes parameters based on 

incoming sensor data. These systems can predict 

equipment failures before they occur, automatically 

adjust for process drift, and even suggest novel process 

recipes that improve yield or performance. As feature 

sizes shrink to atomic scales, AI assistance becomes 

not just advantageous but necessary, as the physics of 

semiconductor manufacturing becomes too complex for 

traditional analytical approaches. 

 

2) The Role of Cloud AI Distributed Compute: AI 

companies are shifting toward distributed training 

across multiple data centers to reduce reliance on 

single hardware clusters, improving both scalability and 

resilience in the face of supply chain constraints. This 

architectural shift requires sophisticated orchestration 

systems that can manage model training across 

geographically dispersed computing resources while 

minimizing the latency penalties inherent in long- 

distance data transfer. Companies like Meta have 

pioneered techniques such as their ”Sharded Data 

Parallel” approach, which allows models with trillions 

of parameters to be trained across thousands of GPUs in 

different physical locations. This distributed paradigm 

also enables more efficient resource utilization, as 

training workloads can be dynamically allocated to 

regions with excess capacity or lower energy costs. 

Beyond technical advantages, this approach provides 

strategic benefits by allowing AI development to 

continue even if specific hardware components become 

unavailable due to supply chain disruptions or export 

restrictions. The most advanced implementations 

even incorporate heterogeneous computing resources, 

combining different accelerator types to optimize for 

specific portions of the training process. 

Innovations like federated learning and edge AI 

reduce the need for centralized compute power by 

fundamentally rethinking where and how AI processing 

occurs. Federated learning enables model training 

across thousands or millions of devices without 

centralizing sensitive data, allowing each device to 

contribute to model improvement while keeping raw 

data local. This approach, pioneered by Google and now 

adopted by Apple, Samsung, and others, dramatically 

reduces the bandwidth and centralized compute 

requirements for model training while simultaneously 

addressing privacy concerns. Concurrently, advances 

in model compression, quantization, and neural 

architecture search have enabled sophisticated AI 

capabilities to run directly on edge devices with 

limited computational resources. Qualcomm’s Hexagon 

processors and Google’s Edge TPUs exemplify this 

trend, bringing multi-TOPS (trillion operations per 

second) performance to devices consuming mere 

watts of power. These distributed approaches not only 

alleviate the pressure on centralized data centers but 

also enable entirely new applications where latency, 

connectivity, or privacy constraints would otherwise 

make AI deployment impossible. 

 

3) Policy Industry Collaboration : Governments and pri- 

vate sector players must collaborate to ensure semi- 

conductor supply chain stability as the strategic im- 

portance of advanced computing becomes increasingly 

apparent. The highly specialized nature of semicon- 

ductor manufacturing—where a single advanced chip 

might require components and expertise from dozens of 

countries—makes this industry particularly vulnerable 

to geopolitical tensions and trade disruptions. Effec- 

tive collaboration requires creating resilient, diversi- 

fied supply networks while addressing national security 

concerns through carefully calibrated export controls 

and technology transfer policies. Organizations like the 

newly formed Chip 4 Alliance (U.S., Japan, South 

Korea, and Taiwan) represent emerging frameworks for 

coordinating semiconductor policy across democratic 

nations. These collaborative efforts must balance com- 

peting priorities: maintaining technological leadership, 

ensuring economic competitiveness, protecting intellec- 

tual property, and promoting sufficient global access to 

prevent technological fragmentation. Industry consortia 

like the Semiconductor Industry Association play a 

crucial role in articulating technical requirements and 

implementation challenges to policymakers, helping to 

shape regulations that protect strategic interests without 

unnecessarily constraining innovation. 

Investments in domestic chip manufacturing, exempli- 

fied by the CHIPS Act in the U.S. and similar initiatives 

in Europe, Japan, and South Korea, are crucial for 

maintaining long-term AI compute capabilities in an 

increasingly fractured geopolitical landscape. These pro- 

grams, which commit hundreds of billions of dollars to 

semiconductor research and fabrication capacity, repre- 

sent a significant shift from the globalized supply chain 

model that dominated the industry for decades. The U.S. 

CHIPS Act allocates $52.7 billion for semiconductor 

research, development, and manufacturing, including 

$39 billion in manufacturing incentives and $13.2 billion 

for R&D and workforce development. These investments 

aim to increase domestic production capacity for the 

most advanced logic and memory chips[6], reducing 

vulnerability to supply disruptions and foreign depen- 
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dency. However, building a robust domestic semiconduc- 

tor ecosystem requires more than capital investment—it 

demands coordinated workforce development, university 

research partnerships, and supporting infrastructure. The 

long-term success of these initiatives will depend on 

sustaining investment beyond initial funding cycles and 

fostering the specialized talent pipeline necessary to 

operate increasingly sophisticated fabrication facilities. 

VI. CONCLUSION 

Moore’s Law is approaching its limits, posing a significant 

challenge to the future of AI compute[17]. The increasing 

computational demands of AI models have outpaced tradi- 

tional semiconductor advancements, leading to the AI compute 

bottleneck. While new materials, specialized AI hardware, and 

quantum computing offer potential solutions, the industry must 

also embrace alternative strategies like distributed compute, 

energy-efficient architectures, and AI-optimized hardware. The 

future of AI will depend not only on overcoming technological 

constraints but also on strategic investments in next-generation 

computing infrastructure. 
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