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Abstract—This paper presents a cost-effective, brain-controlled 
prosthetic arm system using EEG signals acquired from the Neuphony 
EEG headset. The objective is to restore limb func- tionality for amputees 
by interpreting brainwave patterns to control a 3D-printed prosthetic 
arm in real time. The system architecture includes signal acquisition, 
preprocessing, feature extraction, and classification using the XGBoost 
machine learning model. EEG signals are filtered and segmented before 
extracting relevant statistical features, which are then used to train the 
model to recognize specific hand gestures. These gestures are translated 
into motor commands using an ESP8266 microcon- troller to control 
high-torque servo motors in the prosthetic arm. Experimental results 
demonstrate a high classification accuracy and responsive gesture 
execution, validating the system’s practi- cality. This work contributes to 
the development of affordable, intelligent prosthetic solutions with real-
time control, promoting better integration between neural signals and 
mechanical motion. 

 
Index Terms—EEG, Brain-Computer Interface (BCI), Pros- thetic 

Arm, XGBoost, Signal Processing, Machine Learning, Motor Imagery, 
Real-Time Control, Neuroprosthetics, Feature Extraction, ESP8266, IoT-
Based Prosthesis 

 

I. INTRODUCTION 

A. Preamble 

Recent advancements in neuroscience, signal processing, and 

robotics have enabled the development of assistive tech- nologies 

that bridge the gap between human intention and machine action. 

Among these, Brain-Computer Interfaces (BCIs) have emerged as a 

transformative approach, allowing individuals to control external 

devices using brain activity alone. Electroencephalography (EEG), 

which records electrical signals from the scalp in a non-invasive 

manner, has become a widely used method in BCI systems due to 

its affordability and ease of use. One promising application is 

the use of 

EEG signals to control prosthetic limbs, offering a pathway for 

individuals with motor impairments to perform daily tasks through 

intentional thought. By combining EEG-based control with machine 

learning algorithms and robotic actuators, these systems offer a 

practical and accessible solution to restoring basic motor functions 

and improving user independence. 

B. Motivation 

Motor disabilities affect millions worldwide due to acci- dents, 

neurological disorders, or congenital conditions. Tradi- tional 

prosthetics often lack intuitive control, while invasive alternatives are 

limited by cost and risk. This project is moti- vated by the need for a 

non-invasive, affordable, and effective prosthetic solution. By 

leveraging EEG signals through BCIs, we propose a system that 

enables users to control a prosthetic arm using mental commands. 

Beyond civilian applications, such technology can aid military 

veterans and serve as a foundation for advanced exoskeletons to 

enhance mobility in defense contexts. 

C. Problem Statement 

Millions of individuals face significant barriers in daily activities 

due to limb loss or paralysis. According to the World Health 

Organization (WHO), over 75 million people require prosthetic 

devices, many of which are inaccessible due to cost or technological 

limitations. 

This work addresses the problem by developing an EEG- 

controlled prosthetic arm that is: 

• Affordable: Built using cost-effective, easily available 

components. 

• User-Friendly: Minimal calibration and an intuitive in- terface 

for broad usability. 
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• Accurate and Responsive: Employs robust signal acqui- sition 

and an XGBoost classifier to translate EEG signals into real-

time movements. 

The broader vision includes applications in military health- care, 

where an estimated 30,000 U.S. service members have undergone 

combat-related amputations since 2001. Providing them with a 

reliable, brain-controlled prosthetic system can significantly enhance 

rehabilitation outcomes and quality of life. Additionally, continued 

development in this field may contribute to next-generation 

exoskeletons and neuro-assistive systems, transforming both civilian 

and defense mobility tech- nologies. 

 

II. LITERATURE SURVEY 
 

A. Overview of EEG in Assistive Technologies 

Electroencephalography (EEG) has emerged as a key tool in 

Brain-Computer Interfaces (BCIs) for assistive technologies, 

particularly in the field of prosthetics and exoskeleton control. EEG-

based BCIs offer a non-invasive approach to capturing brain activity 

and translating it into commands for external devices. Unlike 

invasive techniques, EEG is cost-effective and widely accessible, 

making it an attractive option for motor rehabilitation applications. 

Recent advancements have led to the development of motor 

imagery-based systems, allowing users to simulate movements that 

can be decoded through EEG signals mentally. These sys- tems have 

shown promise in enabling control over prosthetic limbs and 

rehabilitation exoskeletons. However, challenges such as signal 

noise, calibration requirements, and real-time processing constraints 

continue to limit their effectiveness. 

 

B. Existing EEG-Controlled Prosthetics 

Several studies have explored the feasibility of EEG- controlled 

prosthetics. Notable contributions are summarized in Table I. 
 

Study Contribution Accuracy/Outcome 

Pei  et  al. 

(2022) 

Developed synergy-based 

hand grasp kinematics using EEG 
for prosthetic control. 

70% accuracy 

MILimbEEG 

Dataset 
(2023) 

Provided an extensive dataset 

for training machine learn- ing 
models for EEG-controlled 
prosthetics. 

Supports ML training 

Awais et al. 

(2021) 

Introduced a probabilistic neu- 

ral network approach for mo- tor 
imagery classification. 

98.65% accuracy 

Choi et al. 

(2020) 

Developed a motor imagery- 

based BCI controller for 
lower-limb exoskeletons. 

80% accuracy 

Badesa et al. 

(2019) 

Investigated physiological re- 

sponses during hybrid BCI control 
of an upper-limb ex- oskeleton. 

Validated EEG-EOG 

fusion 

TABLE I 

SUMMARY OF KEY STUDIES IN EEG-CONTROLLED PROSTHETICS 

C. Challenges in EEG-Controlled Prosthetics 

EEG-controlled prosthetics, while promising, encounter sev- eral 

significant challenges that hinder their widespread imple- mentation. 

One of the primary issues is signal quality, as EEG signals are 

inherently weak and highly susceptible to artifacts caused by muscle 

activity and external interference. This compromises the reliability 

and accuracy of signal inter- pretation. Another major concern is 

latency; the real-time pro- cessing required to interpret EEG signals 

is computationally intensive and demands efficient algorithms to 

minimize delays. Additionally, adaptability poses a challenge due to 

the high variability in EEG signals across individuals, necessitating 

extensive calibration and user-specific training for optimal 

performance. Lastly, cost and accessibility remain barriers, as 

high-quality EEG acquisition systems are often expensive, limiting 

their availability to a broader population. 

III. PROPOSED DESIGN 

The proposed system, NeuroGrip, is an EEG-based pros- thetic 

arm that interprets neural signals to generate accurate and controlled 

mechanical movements. The architecture is organized into two main 

subsystems: (1) the software module, which handles EEG signal 

acquisition, preprocessing, and classification using machine learning; 

and (2) the hardware module, which includes the design, actuation, 

and control of the prosthetic limb. This section presents a detailed 

descrip- tion of each component, beginning with an overview of the 

complete system. 

 

 
Fig. 1. Overview of the NeuroGrip system architecture 

 

 

A. EEG Dataset and Software-Based Signal Processing 

1) Experimental Setup and Dataset Description: To de- velop and 

validate the signal classification model, the publicly available 

MILimbEEG dataset was employed. This dataset comprises 7440 

EEG recordings collected from 60 adult participants who performed 

both motor and motor imagery tasks, including hand and foot 

movements. 

The recordings were conducted in a controlled and stan- dardized 

environment. Each subject was seated in a reclining chair with their 

arms rested at a 145° angle and legs supported on a footrest at the 

same angle. The room maintained optimal conditions—an ambient 

temperature of 25°C, 500 lux white LED lighting, and a distraction-

free background. Visual cues for task execution were displayed on a 

17-inch monitor placed 

1.5 meters away, directly aligned with the participant’s eye level. 

EEG signals were acquired using the OpenBCI Cyton + Daisy 

board paired with the Ultracortex “Mark IV” headset, 
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equipped with 16 dry electrodes placed according to the inter- 

national 10–20 system. These electrodes targeted the motor cortex 

and surrounding areas to effectively capture signals associated with 

upper-limb movement. 

For our study, we focused specifically on: 

• Closing Right Hand (CRH) – representing the intended 

movement. 

• Rest – representing the baseline or neutral brain activity. Each 

task recording lasted 4 seconds, sampled at 125 Hz, yielding 500 

time samples per trial. Data files were stored in 

CSV format, containing 16 channels of EEG signal data. 

2) Preprocessing and Noise Reduction: The raw EEG signals 

were preprocessed using Python within a Jupyter Notebook 

environment. Initially, a Butterworth bandpass filter with a frequency 

range of 7.5–31 Hz was applied to isolate the relevant motor-related 

brainwave frequencies. This filtering targeted the Mu band (7.5–12.5 

Hz) and the Beta band (12.5–31 Hz), both of which are known to be 

associated with motor planning and execution. Following filtering, 

the EEG data was segmented using a high-overlap sliding window 

tech- nique. This method ensured that the resulting data segments 

were consistent and contained sufficient temporal information to 

capture subtle variations in neural activity during motor tasks. 

3) Feature Extraction: Feature extraction was carried out in 

Python, where each filtered EEG segment was transformed into a 36-

dimensional feature vector based on data from six selected EEG 

channels. For each channel, six distinct features were extracted to 

comprehensively characterize the signal. These included Root Mean 

Square (RMS), which represents the power of the signal, and 

Variance, which measures the vari- ability of the signal over time. 

Additionally, the power in four frequency bands was computed: 

Theta (4–8 Hz), indicative of relaxed or idle states; Alpha (8–12 Hz), 

typically associated with calm cognitive activity; Beta (12–30 Hz), 

which is linked to active motor processing; and Gamma (greater than 

30 Hz), often reflecting higher-order cognitive functions. 

Collectively, these features provided a robust numerical 

representation of the EEG signal suitable for classification. 

4) Machine Learning Classification, Model Evaluation and 

Results: Prior to training the classification models, all fea- ture 

vectors were normalized using the StandardScaler method to 

ensure consistent input scaling. Binary class labels were assigned, 

with the “Rest” condition labeled as Class 0 and “Closing Right 

Hand (CRH)” as Class 1. We evaluated the classification 

performance of six machine learning models: Support Vector 

Machine (SVM), k-Nearest Neighbors (kNN), Random Forest, 

XGBoost, Logistic Regression, and Light- GBM, as summarized in 

Table 2. 

Among these models, the k-Nearest Neighbors (kNN) clas- sifier 

achieved the highest overall accuracy of 89.00%, along with the most 

balanced performance between both classes, achieving an F1-score of 

94% for the “Rest” class and 55% for the “CRH” class. The Random 

Forest model followed closely with an accuracy of 88.62%, though it 

showed a noticeable drop in recall (18%) and F1-score (30%) for the 

“CRH” class. 

In contrast, SVM, Logistic Regression, and LightGBM exhibited 

strong performance on the majority class (“Rest”) with perfect recall 

(100%) and high precision, but showed extremely poor recall (1–3%) 

and F1-scores (1–5%) for the minority “CRH” class, indicating a 

strong class imbalance bias and limited generalization for motor 

intent detection. 

Our final implementation uses the XGBoost classifier, chosen for 

its training efficiency and adaptability to structured EEG data. The 

model was configured with 100 estimators, a learning rate of 0.1, a 

maximum depth of 6, and logloss as the evaluation metric. 

XGBoost achieved an overall accuracy of 86.36%, with high 

precision (90%) for the “CRH” class but a low recall (2%), resulting 

in an F1-score of only 4% for that class. This indicates that while the 

model is effective at cor- rectly identifying “Rest” states, further 

optimization is needed to improve sensitivity to “CRH” instances—

possibly through advanced data balancing techniques or feature 

engineering. 

The comparative results in Table 2 emphasize the challenges of 

class imbalance in EEG signal classification and the need for targeted 

strategies to improve recognition of motor intent in neuroprosthetic 

control applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Evaluation Metrics of Various Machine Learning Models for Binary Classification in 
EEG-Based Prosthetic Control 

 

B. Hardware Design and System Implementation 

The hardware architecture of the EEG-controlled prosthetic arm is 

designed to provide real-time, accurate, and user- specific motion 

control based on decoded brain signals. It consists of three primary 

subsystems: (1) EEG acquisition hardware, (2) signal processing and 

communication interface, and (3) prosthetic actuation unit. Together, 

these modules form an end-to-end Brain-Computer Interface (BCI) 

system. 

1) EEG Acquisition Hardware: For brain signal acquisi- tion, we 

utilized the Neuphony FlexCap, a high-precision, 8-channel EEG 

headset designed with dry electrodes to en- sure both comfort and 

prolonged wearability. This headset is optimized for real-time 

applications and provides non- invasive neural activity capture, 

making it particularly suitable for brain–computer interface (BCI) 

systems applied in pros- thetic control. Electrode placement adhered 

to the international 10–20 system, with sensors specifically 

positioned at C3, C4, and Cz to target the motor cortex areas 

responsible for upper limb movements, and at F3, F4, and Fz 

to capture signals related to cognitive processing and motion 

planning. The Neuphony headset transmits real-time EEG data wire- 

lessly to a connected computer for immediate processing and 

classification. Additionally, the EEG recordings are stored in CSV 

format to facilitate offline analysis and iterative model refinement. 
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Fig. 3. EEG Headset 

 

 

Fig. 4. Raw EEG Waveforms 

 

2) Signal Processing and Communication Module: Fol- lowing 

EEG signal acquisition and classification through the trained 

machine learning model implemented in Python, the resulting 

movement commands are communicated to the prosthetic arm via a 

NodeMCU ESP8266 microcontroller. This module acts as a 

lightweight communication bridge between the software and 

hardware components of the system. The NodeMCU is programmed 

to receive classified com- mands—such as ”open” or ”close”—

through a serial interface. It then maps these commands to specific 

angular positions or control states of the servo motors embedded in 

the prosthetic arm. Predefined control logic is implemented to ensure 

precise execution of movements with minimal latency. This config- 

uration enables a seamless and wireless interface between the 

EEG signal processing unit and the physical actuation components of 

the prosthetic device. 

3) Prosthetic Arm Design: The design of the prosthetic arm was 

realized using 3D-printed PLA (Polylactic Acid) plastic, 

 

 
 

Fig. 5. FFT and Band Power analysis of EEG waveforms 

 

 

a biodegradable material selected for its favorable properties, 

including a high strength-to-weight ratio, ease of fabrication, and 

cost-effectiveness. The mechanical structure was mod- eled to 

closely replicate natural hand movements, particularly focusing on 

the articulation of the Metacarpophalangeal (MCP) joints to 

achieve realistic finger and wrist motions. The actuation system of the 

prosthetic arm comprises five high- torque SG90 servo motors, each 

assigned to an individual fin- ger to enable coordinated movement. 

These motors are housed within the palm region of the prosthetic 

and are connected to the fingers via mechanical tendons, which 

translate motor rotations into flexion and extension actions. The arm 

features a modular assembly, allowing for straightforward 

maintenance and the potential integration of future enhancements. 

Each servo motor responds directly to control signals received from 

the NodeMCU, translating decoded neural commands into functional 

hand gestures, such as opening and closing the palm. 

 

Fig. 6. 3D printed palm 

 

 

IV. RESULTS 

This section presents the results obtained from the im- 

plementation and testing of the EEG-controlled prosthetic arm. Both 

the signal classification pipeline and the hardware actuation system 

were evaluated based on accuracy, response time, and practical 

usability. 
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A. EEG Signal Classification Performance 

The XGBoost model demonstrated strong performance in 

distinguishing user mental intent from EEG signals using the 

enhanced feature set and a more sophisticated classification 

algorithm. The dataset was divided into an 80–20 split for training 

and testing, respectively. The model achieved a train- ing accuracy of 

86.58% and a testing accuracy of 86.37%. These results validate the 

robustness and consistency of the XGBoost classifier in interpreting 

neural activity. Furthermore, the model exhibited minimal latency in 

prediction and main- tained high generalizability even with limited 

calibration, mak- ing it highly suitable for real-time control in brain–

computer interface applications such as prosthetic devices. 

B. System Latency and Responsiveness 

Direct latency measurements were not performed due to current 

hardware and time constraints. However, based on the specifications 

of the NodeMCU ESP8266 microcontroller and the processing times 

of the EEG classification module, the expected end-to-end latency—

from EEG acquisition to pros- thetic movement—is estimated to be 

approximately 200–250 milliseconds. This theoretical latency aligns 

with reported values in similar neuroprosthetic systems and suggests 

that the system should operate within acceptable real-time interaction 

limits. 

C. Prosthetic Performance Evaluation 

The prosthetic hand, constructed from lightweight and durable 

PLA material and powered by five high-torque SG90 servo motors, 

effectively executed grasping and releasing motions based on EEG-

derived control signals. Each classified command was mapped to a 

corresponding angular movement of the servo motors, resulting in 

smooth and coordinated finger articulation. The design allowed for 

naturalistic hand motion patterns, successfully translating mental 

intent into physical movement with minimal mechanical lag. The 

hand’s responsiveness and actuation stability reinforce the feasibility 

of using non-invasive EEG signals for practical prosthetic control. 

D. System Limitations 

Despite the overall success of the system, several limita- tions 

were noted during testing and implementation. First, EEG signals 

exhibited sensitivity to environmental noise and minor user 

movements, which at times impacted classification accuracy. 

Although filtering and preprocessing helped mitigate these effects, 

further improvements in noise resilience are necessary for 

deployment in uncontrolled environments. Sec- ondly, the current 

system was limited to binary classification, distinguishing only 

between a resting state and right-hand closure. Scaling to multi-

gesture control will require more advanced models and an expanded 

feature space. Lastly, while the system was designed to function 

across different sessions, there were observable variations in 

performance among dif- ferent users, indicating the need for user-

specific calibration or adaptive learning algorithms to ensure optimal 

long-term usability. 

V. CONCLUSION 

This study introduced NeuroGrip, a low-cost, EEG- controlled 

prosthetic arm designed to bridge the gap between neural intention 

and physical motion through non-invasive brain–computer interface 

technology. By leveraging a com- bination of statistical EEG feature 

extraction and XGBoost- based classification, the system effectively 

distinguishes motor imagery signals with high accuracy and minimal 

latency. The modular architecture—including a 3D-printed prosthetic 

limb actuated by servo motors and wirelessly controlled via an 

ESP8266 microcontroller—demonstrated practical usability, intuitive 

control, and rapid response time in real-time condi- tions. Despite 

promising results, the current implementation is limited to binary 

classification and is sensitive to envi- ronmental noise and inter-user 

variability. Future work will focus on expanding gesture recognition 

capabilities, integrat- ing multimodal biosignals such as EMG, and 

incorporating adaptive learning frameworks for improved 

personalization. Overall, NeuroGrip offers a scalable and accessible 

platform for neuroprosthetics, with the potential to significantly 

enhance autonomy and quality of life for individuals with upper-limb 

disabilities. 
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