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ABSTRACT 

This paper presents a comprehensive analysis and solution methodology for simultaneous triple series equations 

involving generalized Bateman-k functions. The study extends the classical Bateman-k function, a notable special 

function in mathematical physics, to a more generalized form, enabling the exploration of its applications in solving 

complex simultaneous series equations. We derive explicit solutions by employing advanced mathematical 

techniques, including the method of integral transforms and series expansion. The results not only contribute to the 

theoretical understanding of Bateman-k functions but also offer practical computational tools for problems in 

mathematical physics, engineering, and applied mathematics where such functions naturally arise. The paper also 

discusses the convergence conditions and uniqueness of the solutions, providing a robust framework for future 

research in this area. In this paper an exact solution is obtained for the simultaneous triple series equations 

involving generalized Bateman k-Functions by multiplying factor method. 
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1 INTRODUCTION 

This paper is concerned with the simultaneous triple series equations of the form: 

   ∑   ∑ aij
s
j=1

∞
n=0

Anj

(2β+σ+ni+1)
k2(ni+α)

2(α+σ)
(x) = fi (x); O ≤ x < y , i = 1, 2, 3, . . , s;              [1]  

∑   ∑ bij 

s

j=1

∞

n=0

Anj

(2β + σ + ni + 1)
k2(ni+)

2(+σ) (x) =  
i
(x);  y < x <  z, i = 1, 2, . . … , s;       [2] 

 

∑ ∑ cij 

s

j=1

∞

n=0

Anj

(2 + σ + ni + 1)
k2(ni+)

2(+σ) (x) =  gi (x); z < 𝑥 < ∞, i = 1, 2, … . . , s;         [3] 

 

Where, α +  σ + 1 > 0, β >  >  −  
1

2
 m, 2  +  + 1 > o,  is a negative and m is a non negative integer, k

α (x) 

is the generalized Bateman k – function defined by  
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k
α (x) =  

2


 ∫    (2 cos )α Cos ( x tan  −  )d , α > −1,                                           [4]


2

O

 

 

aij,  bij  are known constants. fi  (x) and gi  (x) are prescribed functions and Anj  is unknown coefficient, to be 

determined. 

The exact solution presented in this section employs multiplying factor method of Lowndes [4 ]. 

2  SOME USEFUL RESULTS 

The following results will be required in our investigation. First of all, we recall the following relationship [ [5], 

[1]] for the particular case α =  σ = o 

exk2(n+α)
2(α+σ)

 (x) =
(−1)n−σ−1

(2α+2σ+2)
(2x)2α+2σ+1  1F1[  2x 2α+2σ+2;

σ−n+1; ]                                              [5]                  

 

Which exhibits the fact that the generalized Bateman k-functions are the well-known confluent hyper geometric 

functions of Whittaker [6]. Throughout this section σ will be understood to take on negative integral values. In 

mathematics the Discrete Wavelet Transform (DWT) is broadly considered as an efficient approach to replace FFT 

in the conventional OFDM systems due to its better time-frequency localization, bit error rate improvement, 

interference minimization, improvement in bandwidth efficiency and many more advantages [3, 6]. 

∫  x−2∝−2σ−1
∞

O

k2
2  (x(m+σ)

(α+σ)
) k2

2  (x)dx(n+σ)
(α+σ)

=
22α+2σ (n − σ)

(2α + σ + n + 1)
mn,                              [6] 

 

Where α +  σ + 1 > 0, and m,n is the Kronecker delta, 

Also
dm

dxm { exk2
2 (x(n+σ)

(α+σ)
) } =  2m  ex k2

2  (x(n+σ)
(α+σ)

),                                                                    [7] 

 

Where, m is a non- negative integer.                                                           

With the help of the relationship [4.1.5], one may readily obtain the following forms of the known integrals [ 3 ]. 

∫  ex


O

( − x)
β−1

 k2
2  (x)dx(n+α)

(α+σ)
=
(β)

 2β
  e  k2

2  (),                                                [8](n+α)+β
(α+σ)+β

 

 

Where   α +  σ > −1, β > 𝑂, and  

 

∫ e−x 
∞



x−2α−2σ−1  (x − )β−1  k2
2  (x(n+σ)

(α+σ)
) dx = 
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(β)(2α − β + σ + n + 1)


2α−β+2σ+1  (2α + σ + n + 1)

   e−  k2
2  (),                                            [9](n+α)−β

(α+σ)−β
 

Where,   2α +  σ + n + 1 > β > 𝑂    

 

3 SOLUTION OF THE EQUATIONS 

If we multiply equation [1] by ex (-x)2-2α+m-1,  

Where m is a non- negative integer, equation [3] 

by   e−x   x−2β−2σ−1  (x − )2β−2−1 , 

and integrate the resulting equations with respect to x over (O, ) and  (, ) respectively, we find, on using 

formulas [8] and [9] that 

∑   ∑ aij

S

j=1

∞

n=O

 
Anj

(2β + σ + ni + 1)
  k2

2  () =                        (ni+)+m
(+σ)+m

 

 

                
22−2α+m 

(2 − 2α + m)
   e−  ∫ ex 



O

 ( − x)2−2α+m−1 fi(x) dx,                                  [10] 

 

Where, o <  < y , α +  > - 1 , 2  - 2 α + m > o,  

i = 1, 2, 3, …………., s. and 

 

∑   ∑ bij

S

j=1

∞

n=O

 
Anj

(2β + σ + ni + 1)
  k2

2  ()  =    (ni+)
(+σ)

 

 

             ∑  dij

S

i=1

 [  


2+2+1 

(2 − 2)
 e  ∫ e−x 

∞



x−2−2σ−1  (x − )2β−2−1gi (x) dx]            [11] 

Where, y <  < ,  >  ,2+  + 1 > O, I = 1 , 2, 3, .., S; 

And [  dij  ] = [  bij ] [ Cij ]-1 
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Now multiply equation [10] by e and differentiate both sides m times with respect to  and use the result [7], we 

thus obtain an equivalent form of [10] given by 

∑   ∑ bij

S

j=1

∞

n=o

 
Anj

(2β + σ + ni + 1)
  k2

2  ()  =        (ni+)
(+σ)

 

 

∑  eij

22−2α− 

(2 − 2α + m)
 

dm 

dm ∫ ex ( − x)2−2α+m−1 


O

fi(x) dx,                                       [12]

S

j=1

 

 

Where, eij are the elements of the matrix [bij] [aij]
−1 and O <  < y, 

α +  > - 1, 2 - 2α + m > o, m = o, 1, 2, … ;  

i = 1, 2, .., s. 

The left hand sides of [2], [11] and [12] are now identical. Therefore, using the orthogonality relation [6], we obtain 

the solution of the equations [1, 2] and [3] in the form: 

Anj =  ∑ dij   
(2β + σ + ni + 1) (2 + σ + ni + 1)

22+2σ   (ni −  σ)
 

S

j=1

 

[∑ eij   
22+2α 

 (2 − 2α + m)
∫ 

−2−2σ−1 
y

o

 k2(ni+)
2(+σ)

S

j=1

() Fi() d 

+   
22−2α 

(2 − 2α + m)
 ∫ 

−2−2σ−1 
z

y

  k2
2  ()(ni+)

(+σ)


i
() d                                 

+  
dij

(2 − 2)
∫ e 


z

  k2
2  () Gi() d ,(ni+)

(+σ)
]                                               [13] 

 

Where, n = o, 1, 2, … - ; j = 1, 2, …., s and  

 

Fi() = e− 
dm 

dm ∫ ex 


O

 ( − x)2−2α+m−1 fi(x) dx,                                                           [14] 

 

Gi() = ∫ e−x 




 x−2−2−1 (x − )−2−2−1  gi(x) dx,                                                      [15]   
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Provides α +  + 1 > o,  >  > α - m , 2  +  + 1 > o, + 1 o and m is a non- negative integer. 

 

4CONCLUSION 

In this paper, we obtain the exact solution is obtained for the simultaneous triple series equations involving 

generalized Bateman k-Functions by multiplying factor method. We obtain the solution of the equations 1, 2 and 3 

in the form equations 13, 14 and 15. 
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