Volume: 04 Issue: 10 | Oct - 2025

International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05096

aﬁ»‘:""@z An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

Onehanded Coder:An Accessible Codind Environment for Single Handed

1% Ms.M.Jelcy M.Sc.,
Department of Computer Science
Sri Krishna Arts and Science College
Coimbatore,India
jelcym(@skasc.ac.in

ABSTRACT

The advancement of digital technologies and the
growing dependence on coding platforms have
made programming skills a necessity for students
and professionals. The majority of available
programming environments are, however, aimed at
users with complete twohanded capabilities, and
they pose severe restrictions for people with motor
impairments or one-handed users. This paper
presents Onehanded Coder, a web-based coding
system of minimal weight specifically designed to
increase software development accessibility and
inclusivity. The system offers crucial features like
syntax highlighting, autocompletion, inline error
checking, shortcutbased workflows, and on-the-fly
program execution while maintaining low mouse
navigation dependency. Built on a current
technology stack of HTML, CSS, JavaScript,
React.js, Node.js, and MongoDB, the system
balances functionality and usability. Systemic
testing has validated its efficiency in safe
authentication, file handling, program compiling,
and running. The findings reveal Onehanded Coder
minimizes physical exertion, eases coding
activities, and provides a seamless user experience
on devices. By merging accessibility with
effectiveness, the system supports equal

opportunities for students and developers and lays

2"V Srimuki
Department of Computer
Sri Krishna Arts and Science College
Coimbatore,India

srimukivelmurugan02 10@gmail.com

374 K.Lathika Sarani
Department of Computer
Sri Krishna Arts and Science College
Coimbatore,India

lathikakumar667@gmail.com

the groundwork for more inclusive technology

tools in the future.

Keywords-Accessibility, Code Editor,
Inclusivity, Web Application, Onehanded Coder.

INTRODUCTION

Programming has emerged as one of the most
critical skills in the current digital economy, with
thousands of tools to assist developers in writing,
testing, and deploying code. Despite this plethora
of platforms, most environments for coding assume
that the user is completely in control of input
devices using both hands. Integrated Development
Environments (IDEs) and text editors tend to
involve frequent interhands switching, complex
multi-key shortcuts, and extensive coordination
between the two hands. Although these design
assumptions may not be problematic for the typical
user, they pose obstacles for differently-abled
learners, users with motor impairments, and the

one-handed workflow only users.

This exclusion not only restricts the possibility of
such users fully engaging in programming but also
enhances educational and work-based inequalities
in the domains of technology. The Onehanded
Coder project overcomes these constraints by

designing an accessible, webbased code editor

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Pagel

mailto:jelcym@skasc.ac.in
mailto:srimukivelmurugan0210@gmail.com
mailto:lathikakumar667@gmail.com

Volume: 04 Issue: 10 | Oct - 2025

32004

oL

International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05096

.ﬁa&:‘""'f@r An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

tailored for single-hand use. The system minimizes
the unnecessary dependency on two-handed usage
and minimizes fatigue by providing shortcut-based
operations, autocompletion, inline error indication,
and a consistent, lightweight interface. By
emphasizing accessibility, personalization, and
inclusivity, this project hopes to play a part in
closing the gap between differently-abled people

and general software development practices.

PROBLEM STATEMENT

Most current IDEs are not single-hand optimized
and hence demand complicated two-handed tasks.
It makes coding a laborious activity for motor-
impaired users. Challenges are the reliance on
constant hand switching between the mouse and the
keyboard, difficulties with multikey shortcuts, and
the absence of personalization. While there are
accessibility tools like on-screen keyboards and
voice-based environments, they only offer partial
support and do not ease the entire workflow. Hence,
a coding system that is specially intended to
provide single-handed interaction has to be

developed.

OBJECTIVES

In typical coding settings, developers are supposed
to be navigating with both hands simultaneously,
frequently executing pairs of keyboard shortcuts
while at the same time using the mouse for
navigation. For people who may not comfortably
use both hands, this is a considerable impediment.
The frequent handswitching doubles the amount of
physical strain, makes typing and debugging more

timeconsuming, and decreases productivity.

Accessibility features like on-screen input and
voice-input systems have been added as
workarounds; however, these are merely surface
fixes and do not address optimization of coding
workflows. For instance, inputting lines of code
with a voice command can be slow and errorprone,
and on-screen keyboards don't have the speed and
comfort necessary for extended programming

sessions.

The lack of specialized tools developed for
onehanded programming causes coding to become
unnecessarily hard for differently-abled students.
This restriction not only causes the rate of errors to
go up but also makes learners less interested in
embracing programming activities in a full-fledged
way. Hence, there exists an urgent need for an
inclusive approach with minimal effort and all the
key features of a contemporary programming

environment.

SYSTEM ANALYSIS

A. EXISTING SYSTEM

The programming environment today is dependent
on full-fledged IDEs and editors like Eclipse,
Visual Studio, or Sublime Text. These are powerful
and full-featured but are assumed to be used two-
handed. Users must remember hardto-remember
multi-key shortcuts and constantly use the mouse.
The process not only raises the cognitive burden but
also results in tiredness and diminished
performance when performed by single-handed
users. Accessibility features like speech-to-text or
virtual keyboards try to make up for it, but they do

not organize workflows in such a manner as to

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page2

Volume: 04 Issue: 10 | Oct - 2025

32004

oL

International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05096

.ﬁa&:‘""'f@r An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

facilitate continuous coding. It leads to reduced
productivity, frustration, and overall poor learning
experience due to this nonoptimization for

differently-abled learners.

B. PROPOSED SYSTEM

Onehanded Coder system has a novel solution by
adopting single-handed interaction as its exclusive
focus. It supports keyboard-controlled shortcuts
eliminating the hassles of multiple mouse clicks,
inline error messages to cut down on debugging
time, and auto-completion to reduce typing effort.
The system offers a uniform and customized
environment by saving user choices like themes and
frequently used shortcuts. Unlike current solutions
to accessibility, this system is tailored for coding,
which makes workflows easier and lessens the
physical burden of programming activities. Its
lightweight nature allows it to provide performance
on devices without necessarily demanding high-
end specs, thus finding applicability in learning for

a variety of learners.

SYSTEM DESIGN

A. MODULES

Authentication & User Management Module:

It manages secure login and registration of users. It
checks credentials on login and maintains that only
authenticated users can use the platform. It also
takes care of password encryption, fetching, and
user accounts to ensure a safe and trustworthy

coding environment.

Code Editor Module:

The code editor is the main workspace where users
write and edit their programs. It is enhanced with
features such as syntax highlighting, auto-
completion, template snippets, and inline error
prompts. The editor is optimized for one-hand
usage, allowing shortcut-driven commands that

reduce dependence on mouse operations.

Compiler & Execution Module:

This module takes up the task of compiling and
running the code entered by the user. It executes the
program, detects errors, and shows the output in
real-time. Errors are ~ marked with

straightforward messages so that users have no
problem finding and correcting them easily without

changing to external compilers.

File Management Module:

The file management system enables users to save,
read, and delete coding files. This provides session
continuity, making it possible for users to pick up
their saved work at any point. Streamlined file
storage avoids data loss and allows for flexibility in

dealing with multiple projects.

User Preferences & Settings Module:

This module individualizes the coding space for
every user. It stores preferences like editor
schemes, font types, and personalized hotkeys. By
storing these preferences between logins, the
system provides a unified and familiar experience

for the user.

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page3

Volume: 04 Issue: 10 | Oct - 2025

32004

oL

International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05096

.ﬁa&:‘""'f@r An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

Administration Module

The admin module is meant for system
administrators to track user accounts, logs, and the
overall system stability. Administrators can
authorize modifications, resolve problems, and
make sure that the coding platform is secure as well

as scalable.

Help & Support Module:

This module helps users understand and operate the
system. It gives users access to FAQs, usage
instructions, and troubleshooting assistance.
Through provision of instant assistance, it

minimizes confusion, particularly for novice users.

B. INPUT DESIGN

The input design is effort-minimal while being
accurate and secure. All inputs from the user,
including login information, registration
information, and program code, are collected via
easy-to-use forms and a responsive editor interface.
Validation tests are applied to stop improper or
incomplete submissions, like crosschecking for
correct email formats and checking for password
strength. In the code editor, syntax checking and
auto-indentation make errors during program entry
less likely. Through keyboard-first models and
shortcutbased commands, the system minimizes
mouse interactions, thereby making the system

accessible and efficient for one-handed use.

C. OUTPUT DESIGN

Output design guarantees that results are

meaningfully and clearly presented to users. The

system's primary output is the result of program
execution, which is displayed directly in the editor
interface. Error outputs, including syntax or
runtime errors, are clearly indicated with highlight
and line numbers, which lead users to correct errors
easily. Successful outputs are presented in a
structured display area to differentiate them from
error messages. Also, non-interactive operations
like registration, login, and saving files give
feedback outputs to ensure users that their
operations have been successfully executed. The
outputs are presented using readable fonts, proper
spacing, and accessible color coding, which

facilitates singlehanded interaction.

C. DATABASE DESIGN

Database structure is crucial in storing user data,
coding files, and system logs in an efficient manner.
Onehanded Coder relies on MongoDB as its native
database, organized into collections that map to
various entities in the system. The Users collection
has one-off user credentials, hashed passwords, and
profile settings. The Files collection holds saved
code files by users, with timestamps for versioning.
The Tickets and Messages collections hold user
support requests and respective communications
threads. The Audit Logs collection tracks
administrative activity and system-level events to
maintain accountability. Through a normalized and
secure design, the database removes redundancy,
provides data integrity, and facilitates quick
information retrieval for an uneventful user

experience.

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Paged4

Volume: 04 Issue: 10 | Oct - 2025

32004

oL

International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05096

.ﬁa&:‘""'f@r An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

SYSTEM IMPLEMENTATION

The system is developed with a modern technology
stack. The front-end is created with HTML, CSS,
and JavaScript, and React.js handles dynamic user
interfaces using its component-based design. The
backend is created with Node.js and Express.js,
which handles routing and API handling for
functionalities like login, file saving, and code
execution. MongoDB is the main database, holding
user credentials, code files, preferences, and

execution history.

During deployment, every module was initially
unit-tested for functionality. For instance, the login
module was tested for secure authentication and
input validation. Integration testing was done next,
checking communication between modules like the
compiler and editor. Validation testing was done to
ensure that there were error messages for incorrect
input. Last but not least, acceptance testing was
carried out with emulation of real-world
environments, ensuring that the platform behaved
correctly under actual use. To aid new users,
training was offered through guides, help screens,
and live demonstrations that acquainted them with

major features such as coding, saving, and running.

PHASES OF IMPLEMENTATION

The deployment of Onehanded Coder was done in
a series of properly defined phases so that every
part was written, tested, and installed in a verifiable
and controlled manner. The first phase,
Requirement Analysis & Planning, consisted of
completing functional and nonfunctional

requirements according to user demands for single-

handed use. At this phase, indepth specifications
were created for the editor features (auto-
completion, inline error detection, keyboard-first
shortcuts), backend services (execution API,
authentication), and database schema (users, files,
tickets, logs). Project scope, module
responsibilities, and success criteria were recorded
so that ongoing development stayed true to

accessibility and performance objectives.

The Design Phase built requirements into tangible
system blueprints. UI/UX wireframes and the
editor interaction model were built with keyboard-
first flows and reduced mouse dependency.
Architectural diagrams established the way the
React frontend, Express/Node.js API,
execution/compile service, and MongoDB
collections would communicate. Data models, API
contracts, and security procedures (password
hashing, role-based access) were established. This
phase also generated the input/output formats, DFD

and ER diagrams that would inform

implementation and testing.

In the Development Phase, the modules were
developed iteratively following a componentbased
development. The frontend team developed
reusable React components for the editor,
preferences, file manager, and support pages with
accessibility features (tab order, ARIA attributes,
large target areas for shortcut mappings). The
backend team implemented RESTful endpoints for
authentication, file operations, execution requests,
and admin functions. The execution module was
developed as a sandboxed service (or an API
mocked wup for initial development) to

compile/interpret provided code and send back

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page5s

Volume: 04 Issue: 10 | Oct - 2025

32004

oL

International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05096

.ﬁa&:‘""'f@r An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

results. Database collections and indexes in
MongoDB were established to keep user profiles,
code files, tickets, and audit logs. Each of the
features was committed piecemeal to support

constant review and integration.

Unit Testing was done in parallel with
development. Individual elements—Ilike the login
API, editor auto-completion engine, file
save/retrieve handlers, and execution endpoint—
were tested with positive and negative examples to
check for correctness and input validation.
Automated tests were written by developers for key
logic (e.g., password hashing, token validation,
save/delete file flows) and manual test scripts for
Ul behavior individual to onehand usability
(shortcut activation, focus management, and

keyboard navigation).

After unit tests, Integration Testing ensured
interactions between modules. Integration tests
ensured that code typed in the editor could be sent
to the execution service and outputs reflected back
in the Ul Integration also ensured end-to-end
flows: registration — login — create file — run
code — save execution history. API responses were
verified for proper status codes, right error
messages, and security (JWT token management,

secure admin routes).

Performance tests were involved to identify delays

in the execution pipeline and database queries.

System Testing & Validation tested the entire
application in the target environment and on
supported browsers. Tests comprised functional

testing (all user cases function as expected),

compatibility tests (Chrome, Firefox, Edge), and
accessibility tests (keyboard navigation,
screenreader naming). Usability tests emphasized
single-hand usage: quantifying keystrokes to
perform typical tasks, ensuring shortcuts were
within one-hand reach, and verifying minimal
mouse usage. Security validation comprised
ensuring encrypted password storage, role-based
access controls, and defense against typical web

threats (e.g., injection, XSS).

Acceptance Testing was done with key end users,
such as those who depended on singlehand use, to
ensure that the system met actual user
requirements. The feedback gathered during
acceptance testing informed final tweaks: tuning
default shortcuts, enhancing inline error messages,
and adjusting Ul contrast for readability. All
defects or usability problems found in this phase

were fixed prior to deployment.

The Deployment Phase staged the application for
production. Server configuration, environment
variables, database provisioning, and secure access
policies were set. Continuous
integration/continuous deployment (CI/CD)
pipelines were set up to build and deploy
automatically. The deployment involved
configuring logging and monitoring to monitor
application health and usage metrics, and setting up

backup routines for the MongoDB instance to

protect user data.

User Documentation and Training were done to
facilitate easy adoption. This involved a user guide
explaining how to register, alter preferences, utilize

keyboard shortcuts, save files, and execute code.

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Pageb6

‘4
J

Volume: 04 Issue: 10 | Oct - 2025

oL

] Jrafij International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05096

. 4
o | |~
aﬂr/vm*uiz An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

In-app help screens and brief tutorial walkthroughs
were implemented to quickly onboard new users.
Administrators had unique documentation detailing
user management, logs monitoring, and

maintenance processes.

Lastly, Maintenance & Iterative Improvement
started post-deployment. This process encompasses
regular preventive maintenance (security patches,
performance tuning, database backup) as well as
perfective maintenance (adding features like multi-
language support, collaborative editing, or Al-
enhanced suggestions). A feedback loop was
created to gather user reports and analytics, rank
enhancements, and plan periodic updates, keeping
the platform stable, secure, and increasingly more

usable for one-handed developers.

MAINTENANCE OF THE SYSTEM

System maintenance is perhaps the most important
phase of the software life cycle because it
guarantees that the application remains effective
after it is deployed. For Onehanded Coder,
maintenance is essential to deal with user
comments, correct defects, optimize performance,
and change the system according to new needs. As
actual use tends to reveal situations not completely
envisioned during development, the developers and
administrators need to closely monitor and improve

the system constantly.

Maintenance operations in Onehanded Coder can
be divided into two categories: Perfective

Maintenance and Preventive Maintenance.

Perfective Maintenance entails developing and
enhancing the system by adding new functionality
or enhancing current functions. For instance, in
subsequent releases, the platform could
accommodate more programming languages, have
collaborative coding functionalities, or provide
cloud storage for files.

User experience improvements, including

additional themes, shortcut mapping
customizations, and better debugging
recommendations, fall under perfective

maintenance. These enhancements make the
system improve in step with user demands and

advancements in technology.

Preventive Maintenance is concerned with
reducing potential future issues and ensuring long-
term stability. This involves applying routine
security patches, ensuring logs for abnormal
activity, ensuring database queries are optimized,
and ensuring server environments are upgraded.
Preventative action also ensures regular data
backups are scheduled to safeguard user code and
settings from unintentional loss. Furthermore, load
testing and system monitoring are performed to
ensure the application will still function efficiently

even when users increase.

In combination, perfective and preventive
maintenance ensure that Onehanded Coder is
stable, secure, and scalable. Through proactive
maintenance, the system will remain an inclusive
and efficient coding space, able to evolve according

to both existing and new requirements.

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page?7

§ A -\

YISIEMY
Yo Volume: 04 Issue: 10 | Oct - 2025

oL

3 Jraf;j International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05096

5&,’.,573«2,_51 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

RESULTS AND DISCUSSION

Testing and analysis of the Onehanded Coder
system indicated that it achieves its goals of
accessibility, usability, and performance. It was
tested and found to be secure for authentication.
The code editor was smooth and responsive. Auto-
completion and error messages saved considerable
typing effort and debugging time. Saving and
loading files were tested successfully, maintaining
continuity from session to session. The system was
also stable under the use of multiple users at the
same time, responding well to load. In general, the
findings indicate that Onehanded Coder reduces the
difficulties of single-handed users effectively and
provides a sustainable and accessible solution for

coding exercises.

CONCLUSION

The Onehanded Coder project proves that
technology can be used effectively in overcoming
accessibility issues when it comes to programming.
Through the delivery of a light, accessible, and
extensible environment, the platform minimizes
physical work and allows differently-abled
programmers to code more effectively. The system
achieves its goals of usability and inclusivity while
preserving critical aspects of contemporary IDEs.
Through constant wupdates and upgrades,
Onehanded Coder can grow to become a globally
used platform that facilitates equal opportunities in

software development.

FUTURE ENHANCEMENT

While the system currently fulfills its purpose, there
is still room for expansion. Subsequent releases can
add more programming languages to offer users
more choice. Features for collaborative coding can
enable multiple users to code in unison in real time.
Integration of cloudbased storage can enhance
access by allowing users to access their projects on
any device. The integration of artificial intelligence
can offer adaptive suggestion of code and
individualized learning pathways. Lastly, creating
mobile apps for Android and iOS would make the
platform's use available everywhere and allow

coding anywhere, anytime.

REFERENCES

1. Pressman, R. S. (2014). Software
Engineering: A Practitioner’s Approach.
McGraw-Hill Education.

2. Sommerville,I.(2015).Software
Engineering(10th ed.).Pearson Education.

2. Balagurusamy, E. (2019). Programming in
ANSI C. McGraw-Hill Education.

3. Fowler, M. (2004). UML Distilled: A Brief
Guide to the Standard Object Modeling
Language. Addison Wesley.

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | PageS8

