
 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05096

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Onehanded Coder:An Accessible Codind Environment for Single Handed

Users

1st Ms.M.Jelcy M.Sc., 2nd V.Srimuki 3rd K.Lathika Sarani

Department of Computer Science Department of Computer Department of Computer

Sri Krishna Arts and Science College Sri Krishna Arts and Science College Sri Krishna Arts and Science College

Coimbatore,India Coimbatore,India Coimbatore,India

jelcym@skasc.ac.in srimukivelmurugan0210@gmail.com lathikakumar667@gmail.com

ABSTRACT

The advancement of digital technologies and the

growing dependence on coding platforms have

made programming skills a necessity for students

and professionals. The majority of available

programming environments are, however, aimed at

users with complete twohanded capabilities, and

they pose severe restrictions for people with motor

impairments or one-handed users. This paper

presents Onehanded Coder, a web-based coding

system of minimal weight specifically designed to

increase software development accessibility and

inclusivity. The system offers crucial features like

syntax highlighting, autocompletion, inline error

checking, shortcutbased workflows, and on-the-fly

program execution while maintaining low mouse

navigation dependency. Built on a current

technology stack of HTML, CSS, JavaScript,

React.js, Node.js, and MongoDB, the system

balances functionality and usability. Systemic

testing has validated its efficiency in safe

authentication, file handling, program compiling,

and running. The findings reveal Onehanded Coder

minimizes physical exertion, eases coding

activities, and provides a seamless user experience

on devices. By merging accessibility with

effectiveness, the system supports equal

opportunities for students and developers and lays

the groundwork for more inclusive technology

tools in the future.

Keywords-Accessibility, Code Editor,

Inclusivity, Web Application, Onehanded Coder.

INTRODUCTION

Programming has emerged as one of the most

critical skills in the current digital economy, with

thousands of tools to assist developers in writing,

testing, and deploying code. Despite this plethora

of platforms, most environments for coding assume

that the user is completely in control of input

devices using both hands. Integrated Development

Environments (IDEs) and text editors tend to

involve frequent interhands switching, complex

multi-key shortcuts, and extensive coordination

between the two hands. Although these design

assumptions may not be problematic for the typical

user, they pose obstacles for differently-abled

learners, users with motor impairments, and the

one-handed workflow only users.

This exclusion not only restricts the possibility of

such users fully engaging in programming but also

enhances educational and work-based inequalities

in the domains of technology. The Onehanded

Coder project overcomes these constraints by

designing an accessible, webbased code editor

mailto:jelcym@skasc.ac.in
mailto:srimukivelmurugan0210@gmail.com
mailto:lathikakumar667@gmail.com

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05096

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

tailored for single-hand use. The system minimizes

the unnecessary dependency on two-handed usage

and minimizes fatigue by providing shortcut-based

operations, autocompletion, inline error indication,

and a consistent, lightweight interface. By

emphasizing accessibility, personalization, and

inclusivity, this project hopes to play a part in

closing the gap between differently-abled people

and general software development practices.

PROBLEM STATEMENT

Most current IDEs are not single-hand optimized

and hence demand complicated two-handed tasks.

It makes coding a laborious activity for motor-

impaired users. Challenges are the reliance on

constant hand switching between the mouse and the

keyboard, difficulties with multikey shortcuts, and

the absence of personalization. While there are

accessibility tools like on-screen keyboards and

voice-based environments, they only offer partial

support and do not ease the entire workflow. Hence,

a coding system that is specially intended to

provide single-handed interaction has to be

developed.

OBJECTIVES

In typical coding settings, developers are supposed

to be navigating with both hands simultaneously,

frequently executing pairs of keyboard shortcuts

while at the same time using the mouse for

navigation. For people who may not comfortably

use both hands, this is a considerable impediment.

The frequent handswitching doubles the amount of

physical strain, makes typing and debugging more

timeconsuming, and decreases productivity.

Accessibility features like on-screen input and

voice-input systems have been added as

workarounds; however, these are merely surface

fixes and do not address optimization of coding

workflows. For instance, inputting lines of code

with a voice command can be slow and errorprone,

and on-screen keyboards don't have the speed and

comfort necessary for extended programming

sessions.

The lack of specialized tools developed for

onehanded programming causes coding to become

unnecessarily hard for differently-abled students.

This restriction not only causes the rate of errors to

go up but also makes learners less interested in

embracing programming activities in a full-fledged

way. Hence, there exists an urgent need for an

inclusive approach with minimal effort and all the

key features of a contemporary programming

environment.

SYSTEM ANALYSIS

A. EXISTING SYSTEM

The programming environment today is dependent

on full-fledged IDEs and editors like Eclipse,

Visual Studio, or Sublime Text. These are powerful

and full-featured but are assumed to be used two-

handed. Users must remember hardto-remember

multi-key shortcuts and constantly use the mouse.

The process not only raises the cognitive burden but

also results in tiredness and diminished

performance when performed by single-handed

users. Accessibility features like speech-to-text or

virtual keyboards try to make up for it, but they do

not organize workflows in such a manner as to

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05096

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

facilitate continuous coding. It leads to reduced

productivity, frustration, and overall poor learning

experience due to this nonoptimization for

differently-abled learners.

B. PROPOSED SYSTEM

Onehanded Coder system has a novel solution by

adopting single-handed interaction as its exclusive

focus. It supports keyboard-controlled shortcuts

eliminating the hassles of multiple mouse clicks,

inline error messages to cut down on debugging

time, and auto-completion to reduce typing effort.

The system offers a uniform and customized

environment by saving user choices like themes and

frequently used shortcuts. Unlike current solutions

to accessibility, this system is tailored for coding,

which makes workflows easier and lessens the

physical burden of programming activities. Its

lightweight nature allows it to provide performance

on devices without necessarily demanding high-

end specs, thus finding applicability in learning for

a variety of learners.

SYSTEM DESIGN

A. MODULES

Authentication & User Management Module:

It manages secure login and registration of users. It

checks credentials on login and maintains that only

authenticated users can use the platform. It also

takes care of password encryption, fetching, and

user accounts to ensure a safe and trustworthy

coding environment.

Code Editor Module:

The code editor is the main workspace where users

write and edit their programs. It is enhanced with

features such as syntax highlighting, auto-

completion, template snippets, and inline error

prompts. The editor is optimized for one-hand

usage, allowing shortcut-driven commands that

reduce dependence on mouse operations.

Compiler & Execution Module:

This module takes up the task of compiling and

running the code entered by the user. It executes the

program, detects errors, and shows the output in

 real-time. Errors are marked with

straightforward messages so that users have no

problem finding and correcting them easily without

changing to external compilers.

File Management Module:

The file management system enables users to save,

read, and delete coding files. This provides session

continuity, making it possible for users to pick up

their saved work at any point. Streamlined file

storage avoids data loss and allows for flexibility in

dealing with multiple projects.

User Preferences & Settings Module:

This module individualizes the coding space for

every user. It stores preferences like editor

schemes, font types, and personalized hotkeys. By

storing these preferences between logins, the

system provides a unified and familiar experience

for the user.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05096

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

Administration Module

The admin module is meant for system

administrators to track user accounts, logs, and the

overall system stability. Administrators can

authorize modifications, resolve problems, and

make sure that the coding platform is secure as well

as scalable.

Help & Support Module:

This module helps users understand and operate the

system. It gives users access to FAQs, usage

instructions, and troubleshooting assistance.

Through provision of instant assistance, it

minimizes confusion, particularly for novice users.

B. INPUT DESIGN

The input design is effort-minimal while being

accurate and secure. All inputs from the user,

including login information, registration

information, and program code, are collected via

easy-to-use forms and a responsive editor interface.

Validation tests are applied to stop improper or

incomplete submissions, like crosschecking for

correct email formats and checking for password

strength. In the code editor, syntax checking and

auto-indentation make errors during program entry

less likely. Through keyboard-first models and

shortcutbased commands, the system minimizes

mouse interactions, thereby making the system

accessible and efficient for one-handed use.

C. OUTPUT DESIGN

Output design guarantees that results are

meaningfully and clearly presented to users. The

system's primary output is the result of program

execution, which is displayed directly in the editor

interface. Error outputs, including syntax or

runtime errors, are clearly indicated with highlight

and line numbers, which lead users to correct errors

easily. Successful outputs are presented in a

structured display area to differentiate them from

error messages. Also, non-interactive operations

like registration, login, and saving files give

feedback outputs to ensure users that their

operations have been successfully executed. The

outputs are presented using readable fonts, proper

spacing, and accessible color coding, which

facilitates singlehanded interaction.

C. DATABASE DESIGN

Database structure is crucial in storing user data,

coding files, and system logs in an efficient manner.

Onehanded Coder relies on MongoDB as its native

database, organized into collections that map to

various entities in the system. The Users collection

has one-off user credentials, hashed passwords, and

profile settings. The Files collection holds saved

code files by users, with timestamps for versioning.

The Tickets and Messages collections hold user

support requests and respective communications

threads. The Audit Logs collection tracks

administrative activity and system-level events to

maintain accountability. Through a normalized and

secure design, the database removes redundancy,

provides data integrity, and facilitates quick

information retrieval for an uneventful user

experience.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05096

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

SYSTEM IMPLEMENTATION

The system is developed with a modern technology

stack. The front-end is created with HTML, CSS,

and JavaScript, and React.js handles dynamic user

interfaces using its component-based design. The

backend is created with Node.js and Express.js,

which handles routing and API handling for

functionalities like login, file saving, and code

execution. MongoDB is the main database, holding

user credentials, code files, preferences, and

execution history.

During deployment, every module was initially

unit-tested for functionality. For instance, the login

module was tested for secure authentication and

input validation. Integration testing was done next,

checking communication between modules like the

compiler and editor. Validation testing was done to

ensure that there were error messages for incorrect

input. Last but not least, acceptance testing was

carried out with emulation of real-world

environments, ensuring that the platform behaved

correctly under actual use. To aid new users,

training was offered through guides, help screens,

and live demonstrations that acquainted them with

major features such as coding, saving, and running.

PHASES OF IMPLEMENTATION

The deployment of Onehanded Coder was done in

a series of properly defined phases so that every

part was written, tested, and installed in a verifiable

and controlled manner. The first phase,

Requirement Analysis & Planning, consisted of

completing functional and nonfunctional

requirements according to user demands for single-

handed use. At this phase, indepth specifications

were created for the editor features (auto-

completion, inline error detection, keyboard-first

shortcuts), backend services (execution API,

authentication), and database schema (users, files,

tickets, logs). Project scope, module

responsibilities, and success criteria were recorded

so that ongoing development stayed true to

accessibility and performance objectives.

The Design Phase built requirements into tangible

system blueprints. UI/UX wireframes and the

editor interaction model were built with keyboard-

first flows and reduced mouse dependency.

Architectural diagrams established the way the

React frontend, Express/Node.js API,

execution/compile service, and MongoDB

collections would communicate. Data models, API

contracts, and security procedures (password

hashing, role-based access) were established. This

phase also generated the input/output formats, DFD

and ER diagrams that would inform

implementation and testing.

In the Development Phase, the modules were

developed iteratively following a componentbased

development. The frontend team developed

reusable React components for the editor,

preferences, file manager, and support pages with

accessibility features (tab order, ARIA attributes,

large target areas for shortcut mappings). The

backend team implemented RESTful endpoints for

authentication, file operations, execution requests,

and admin functions. The execution module was

developed as a sandboxed service (or an API

mocked up for initial development) to

compile/interpret provided code and send back

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05096

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

results. Database collections and indexes in

MongoDB were established to keep user profiles,

code files, tickets, and audit logs. Each of the

features was committed piecemeal to support

constant review and integration.

Unit Testing was done in parallel with

development. Individual elements—like the login

API, editor auto-completion engine, file

save/retrieve handlers, and execution endpoint—

were tested with positive and negative examples to

check for correctness and input validation.

Automated tests were written by developers for key

logic (e.g., password hashing, token validation,

save/delete file flows) and manual test scripts for

UI behavior individual to onehand usability

(shortcut activation, focus management, and

keyboard navigation).

After unit tests, Integration Testing ensured

interactions between modules. Integration tests

ensured that code typed in the editor could be sent

to the execution service and outputs reflected back

in the UI. Integration also ensured end-to-end

flows: registration → login → create file → run

code → save execution history. API responses were

verified for proper status codes, right error

messages, and security (JWT token management,

secure admin routes).

Performance tests were involved to identify delays

in the execution pipeline and database queries.

System Testing & Validation tested the entire

application in the target environment and on

supported browsers. Tests comprised functional

testing (all user cases function as expected),

compatibility tests (Chrome, Firefox, Edge), and

accessibility tests (keyboard navigation,

screenreader naming). Usability tests emphasized

single-hand usage: quantifying keystrokes to

perform typical tasks, ensuring shortcuts were

within one-hand reach, and verifying minimal

mouse usage. Security validation comprised

ensuring encrypted password storage, role-based

access controls, and defense against typical web

threats (e.g., injection, XSS).

Acceptance Testing was done with key end users,

such as those who depended on singlehand use, to

ensure that the system met actual user

requirements. The feedback gathered during

acceptance testing informed final tweaks: tuning

default shortcuts, enhancing inline error messages,

and adjusting UI contrast for readability. All

defects or usability problems found in this phase

were fixed prior to deployment.

The Deployment Phase staged the application for

production. Server configuration, environment

variables, database provisioning, and secure access

policies were set. Continuous

integration/continuous deployment (CI/CD)

pipelines were set up to build and deploy

automatically. The deployment involved

configuring logging and monitoring to monitor

application health and usage metrics, and setting up

backup routines for the MongoDB instance to

protect user data.

User Documentation and Training were done to

facilitate easy adoption. This involved a user guide

explaining how to register, alter preferences, utilize

keyboard shortcuts, save files, and execute code.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05096

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 7

In-app help screens and brief tutorial walkthroughs

were implemented to quickly onboard new users.

Administrators had unique documentation detailing

user management, logs monitoring, and

maintenance processes.

Lastly, Maintenance & Iterative Improvement

started post-deployment. This process encompasses

regular preventive maintenance (security patches,

performance tuning, database backup) as well as

perfective maintenance (adding features like multi-

language support, collaborative editing, or AI-

enhanced suggestions). A feedback loop was

created to gather user reports and analytics, rank

enhancements, and plan periodic updates, keeping

the platform stable, secure, and increasingly more

usable for one-handed developers.

MAINTENANCE OF THE SYSTEM

System maintenance is perhaps the most important

phase of the software life cycle because it

guarantees that the application remains effective

after it is deployed. For Onehanded Coder,

maintenance is essential to deal with user

comments, correct defects, optimize performance,

and change the system according to new needs. As

actual use tends to reveal situations not completely

envisioned during development, the developers and

administrators need to closely monitor and improve

the system constantly.

Maintenance operations in Onehanded Coder can

be divided into two categories: Perfective

Maintenance and Preventive Maintenance.

Perfective Maintenance entails developing and

enhancing the system by adding new functionality

or enhancing current functions. For instance, in

subsequent releases, the platform could

accommodate more programming languages, have

collaborative coding functionalities, or provide

cloud storage for files.

User experience improvements, including

additional themes, shortcut mapping

customizations, and better debugging

recommendations, fall under perfective

maintenance. These enhancements make the

system improve in step with user demands and

advancements in technology.

Preventive Maintenance is concerned with

reducing potential future issues and ensuring long-

term stability. This involves applying routine

security patches, ensuring logs for abnormal

activity, ensuring database queries are optimized,

and ensuring server environments are upgraded.

Preventative action also ensures regular data

backups are scheduled to safeguard user code and

settings from unintentional loss. Furthermore, load

testing and system monitoring are performed to

ensure the application will still function efficiently

even when users increase.

In combination, perfective and preventive

maintenance ensure that Onehanded Coder is

stable, secure, and scalable. Through proactive

maintenance, the system will remain an inclusive

and efficient coding space, able to evolve according

to both existing and new requirements.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05096

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 8

RESULTS AND DISCUSSION

Testing and analysis of the Onehanded Coder

system indicated that it achieves its goals of

accessibility, usability, and performance. It was

tested and found to be secure for authentication.

The code editor was smooth and responsive. Auto-

completion and error messages saved considerable

typing effort and debugging time. Saving and

loading files were tested successfully, maintaining

continuity from session to session. The system was

also stable under the use of multiple users at the

same time, responding well to load. In general, the

findings indicate that Onehanded Coder reduces the

difficulties of single-handed users effectively and

provides a sustainable and accessible solution for

coding exercises.

CONCLUSION

The Onehanded Coder project proves that

technology can be used effectively in overcoming

accessibility issues when it comes to programming.

Through the delivery of a light, accessible, and

extensible environment, the platform minimizes

physical work and allows differently-abled

programmers to code more effectively. The system

achieves its goals of usability and inclusivity while

preserving critical aspects of contemporary IDEs.

Through constant updates and upgrades,

Onehanded Coder can grow to become a globally

used platform that facilitates equal opportunities in

software development.

FUTURE ENHANCEMENT

While the system currently fulfills its purpose, there

is still room for expansion. Subsequent releases can

add more programming languages to offer users

more choice. Features for collaborative coding can

enable multiple users to code in unison in real time.

Integration of cloudbased storage can enhance

access by allowing users to access their projects on

any device. The integration of artificial intelligence

can offer adaptive suggestion of code and

individualized learning pathways. Lastly, creating

mobile apps for Android and iOS would make the

platform's use available everywhere and allow

coding anywhere, anytime.

REFERENCES

1. Pressman, R. S. (2014). Software

Engineering: A Practitioner’s Approach.

McGraw-Hill Education.

2. Sommerville,I.(2015).Software

 Engineering(10th ed.).Pearson Education.

2. Balagurusamy, E. (2019). Programming in

ANSI C. McGraw-Hill Education.

3. Fowler, M. (2004). UML Distilled: A Brief

Guide to the Standard Object Modeling

Language. Addison Wesley.

