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Introduction 

Product carbon footprinting (PCF) is a method used to quantify the greenhouse gas (GHG) emissions associated 

with the life cycle of a product. This includes emissions from raw material extraction, production, distribution, 

use, and disposal. PCFs increasingly important for industries aiming to reduce their environmental impact and 

comply with regulatory requirements. It serves as a critical business indicator, influenced by life cycle 

assessment (LCA) methodologies, and is essential for making informed decisions about sustainability practices. 

PCFs are crucial for meeting regulatory requirements, such as the EU’s Battery Passport Initiative, which 

mandates transparency in carbon footprint documentation for electric vehicle batteries starting in 2026 (Gutwald 

et al., 2024). Companies use PCFs to identify emission hotspots and implement reduction strategies, which 

can lead to significant reductions in emissions and provide a competitive edge in markets where sustainability 

is a purchasing criterion (Rüdele & Wolf, 2023)(Rüdele & Wolf, 2023). Organizations like BASF have 

developed ISO-conformant methodologies to calculate PCFs, aiming to provide maximum transparency to 

consumers and stakeholders (Paliwal, 2022). 

This goal of this paper is to present key issues with scaling of PCFs in the industry and identify opportunities 

where Large Language Models (LLMs) can help in order to scale PCFs to millions of products. 

 

Methodology for PCFs 

PCFs play a pivotal role in decarbonizing supply chain emissions by providing a systematic measure of 

greenhouse gas emissions associated with the production and lifecycle of products.. By breaking down 

emissions across the supply chain, companies can identify key areas for emission reduction, such as upstream 

suppliers or manufacturing processes (Meinrenken et al., 2020)(Chen et al., 2017). Companies can also 

optimize their product portfolios by eliminating high-emission products and introducing low-carbon 

alternatives, thus achieving full decarbonization across the supply chain (Bai et al., 2024). Product carbon 

footprint assessments guide manufacturers in implementing green supply chain measures, such as improving 

energy efficiency and selecting low-carbon suppliers (Chen et al., 2017). 

LCA is a comprehensive method used to evaluate the PCF, though it requires significant effort and 

interdisciplinary knowledge (Lang et al., 2024). It helps companies achieve carbon reductions by improving 

processes throughout a product's value chain (Meinrenken et al., 2022). Accurate PCF calculation requires 

complex data collection and accounting for GHG emissions, which is often lacking, especially for indirect 

emissions (Scope 3) that can constitute a significant portion of a product's carbon footprint (Boukherroub et al., 

2024) 
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(Jaeger et al., 2022). There is no single mandatory standard for PCF accounting, leading to challenges in 

comparing results across different products and industries (Shams et al., 2023). The calculation of PCF 

involves numerous assumptions and uncertainties about the supply chain, which can introduce uncertainties 

and affect the reliability of the PCF as a standalone value (Quernheim et al., 2023). 

Traditional process for creating a PCF 

Estimating the PCF generally involves three main steps: defining system boundaries, performing a life cycle 

inventory analysis, and assessing environmental impacts. LCA practitioners create a life cycle inventory (LCI) 

based on their expertise and the established system boundaries related to the carbon footprint of a product. 

Practitioners typically break down the processes associated with each stage of the product's life cycle to identify 

the necessary inputs and outputs for constructing a comprehensive life cycle model (Muthu, 2014). 

Subsequently, they assess the environmental impacts, particularly greenhouse gas emissions, associated with all 

identified inputs and outputs throughout the product's life cycle. The input components usually encompass raw 

materials and energy, while the GHG linked to the production of these raw materials, consumables, and 

secondary energy sources, such as electricity, are incorporated into the product's carbon footprint, specifically 

within Scope 2 and Scope 3 upstream categories. The output components generally consist of waste gases, 

wastewater, and solid waste materials, including greenhouse gas emissions generated from the combustion of 

fossil fuels, classified under Scope 1 (Sfez et al., 2019). Ultimately, these greenhouse gas emissions are 

converted into carbon dioxide equivalents (CO2-eq) and aggregated to calculate the overall carbon footprint of 

the product. 

This assessment process can be lengthy, as it necessitates a detailed examination of each life cycle stage based 

on industry production knowledge or relevant scholarly literature to ascertain the inputs and outputs for each 

process. Values for the input-output inventory are determined using actual production conditions, leading to the 

final calculations. While there are various life cycle modeling tools and databases available that may enhance 

the efficiency of these calculations, completing a carbon footprint assessment for a product can still require 

several days or even months. 

 

Challenges to scale PCFs 

The task of scaling PCFs involves various challenges that encompass technical, methodological, and 

organizational aspects. Accurately measuring and reporting the carbon emissions linked to products throughout 

their entire lifecycle is a complex endeavor that necessitates a thorough and systematic approach. This 

complexity is further intensified by the requirement for standardized methods, dependable data, and effective 

communication within supply chains. 

There are significant gaps in PCF data within companies and life cycle assessment (LCA) databases, which 

hinder the accurate calculation of carbon footprints (Jaeger et al., 2022). Ensuring high-quality and consistent 

data is a major challenge, as data must be reliable and comparable across different products and supply chains 

(Jaeger et al., 2022) (Smith, 2012). Sharing detailed carbon footprint data can raise confidentiality issues, 

making companies hesitant to disclose sensitive information (Shams et al., 2023). 

Conducting a life cycle assessment requires detailed knowledge and expertise, which can be a bottleneck in 

scaling PCF efforts (Balaji et al., 2024). The lack of standardized methods for calculating and reporting PCFs 

leads to inconsistencies and difficulties in comparing results across different products and industries (Pedersen 

& Remmen, 2022) 
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(Klockenhoff, 2009). Inadequate functional units and evolving impact categories, such as those for biodiversity 

and land use change, complicate the fair comparison of products (Pedersen & Remmen, 2022). 

The process of measuring and reporting PCFs can be resource-intensive, although costs may decrease with 

increased familiarity and scale (Smith, 2012). The dynamic and complex nature of supply chains requires 

continuous updates and adjustments to PCF calculations, which can be difficult to manage (Shams et al., 

2023). Engaging suppliers and ensuring their cooperation in providing necessary data is crucial but often 

challenging (Smith, 2012). Effectively communicating PCF results to stakeholders and ensuring transparency 

in the process is essential for credibility and trust (Shams et al., 2023). 

Although these challenges are considerable, they also offer avenues for innovation and enhancement. 

Developments in AI and LLMs can assist in automating and refining the life cycle assessment process, thereby 

increasing its accessibility and efficiency. 

 

Leveraging LLMs 

One promising avenue for leveraging LLMs in the realm of PCF is their ability to enhance data integration and 

analysis. By employing natural language processing capabilities, these models can sift through vast amounts of 

unstructured data—from supplier reports to regulatory documents—enabling organizations to extract relevant 

emissions information more efficiently. This capability not only streamlines the life cycle inventory process but 

also mitigates some of the challenges associated with data gaps and inconsistencies that currently hinder accurate 

PCF calculations (Waddell et al., 2011). 

Introduction to Large Language Models 

LLMs represent a significant leap in artificial intelligence (AI), particularly in the field of natural language 

processing (NLP). These models are designed to understand and generate human-like text by capturing complex 

linguistic patterns and contextual subtleties. LLMs have revolutionized various domains, from conversational 

systems and machine translation to complex system modeling and software engineering. LLMs are built on deep 

neural networks with billions of parameters, enabling them to capture intricate language patterns. Models like 

GPT-3 and GPT-4 exemplify this capability, using massive datasets to train and understand language 

comprehensively (Sreerakuvandana et al., 2024) 

(Haque, 2024). The architecture of LLMs often involves attention mechanisms, which allow the models to 

focus on relevant parts of the input text, enhancing their ability to generate coherent and contextually 

appropriate responses (Atkinson, 2024). 

In complex systems research, LLMs are integrated into Generative Agent-Based Models (GABMs) to simulate 

human behavior and model complex interactions, such as social dynamics and epidemic modeling (Lu et al., 

2024). In education, LLMs are used to enhance reading, writing, and speaking skills, as well as to develop 

intelligent tutoring systems, offering new opportunities for personalized learning experiences (Alhafni et al., 

2024). In software engineering, LLMs assist in code generation and interpretation, streamlining workflows 

and fostering innovation in software development (Haque, 2024). Similar to the use of LLMs in other 

domains, this study aims to explore the use of LLMs in assisting LCAs and PCFs. 
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Life cycle inventory creation 

Life cycle practitioners build a life cycle inventory (LCI) by systematically collecting and compiling data on 

the elementary flows of materials and energy within a product system. This process is integral to LCA and 

involves several methodical steps to ensure accuracy and comprehensiveness. Practitioners rely on a 

combination of data sources, including public databases, proprietary software, and hybrid methods, to construct 

a robust LCI. There are portions of the process that can be sped up by the use of LLMs. 

Practitioners begin by identifying the processes that constitute the product system under study. This involves 

defining the system boundaries and functional units, which guide the scope of the inventory (Bjørn et al., 2018) 

(Arvidsson & Ciroth, 2021). Planning for data collection is crucial, as it involves determining the types of data 

needed and the sources from which they will be obtained. This step may include consulting existing LCI 

databases, such as those maintained by US federal agencies, which provide a wealth of data but may present 

interoperability challenges (Ingwersen, 2015). Data collection involves gathering information on the inputs 

and outputs of each process within the system. This can include raw materials, energy consumption, 

emissions, and waste products (Bjørn et al., 2018). Practitioners often use a combination of process-based and 

input-output methods to compile data. Hybrid LCI methods can address limitations of traditional approaches 

by integrating different data types and sources (Crawford et al., 2018). 

Once data is collected, practitioners construct unit processes, which are the building blocks of the LCI model. 

Each unit process represents a specific activity or operation within the product system (Bjørn et al., 2018). 

Quality checking is essential to verify the accuracy and consistency of the data. This may involve cross- 

referencing with other databases or conducting sensitivity analyses to assess the impact of data variability on 

the LCI results (Bjørn et al., 2018) 

(Wu & Su, 2020). The LCI model is constructed by linking unit processes according to the flow of materials 

and energy. This model is then used to calculate the overall inventory of elementary flows for the product 

system (Bjørn et al., 2018). Practitioners may use software like SimaPro to perform these calculations, 

although limitations in data exchange and documentation features may necessitate additional tools or methods 

(Coste et al., 2021). The final step involves reporting the LCI results, which includes documenting the data 

sources, assumptions, and methodologies used. This transparency is crucial for the credibility and 

reproducibility of the LCA study (Bjørn et al., 2018). Managing uncertainty is also important, as it allows 

practitioners to understand the potential variability in the results and make informed decisions based on the 

LCI data (Bjørn et al., 2018). 

Opportunity to utilize LLMs 

While the process of building a life cycle inventory is methodical and data-driven, it is not without challenges. 

Practitioners must navigate issues such as data availability, quality, and interoperability, particularly when using 

diverse data sources. LLMs can significantly enhance the data collection and curation process for creating an 

LCI by addressing key challenges such as missing data and inconsistency in data matching. LLMs can automate 

the extraction and organization of data from various sources, reducing the manual effort required in traditional 

LCI data collection methods. This automation is particularly useful in handling large datasets and ensuring that 

all relevant data is captured efficiently (Tu, 2024). By leveraging retrieval augmented generation (RAG) 

techniques, LLMs can improve the accuracy of data retrieval, ensuring that the most relevant and up-to-date 

information is used in the LCI process (Li et al., 2024 
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. LLMs can help standardize data formats and terminologies across different datasets, addressing the issue of 

inconsistency in background data matching. This standardization is crucial for ensuring that the data used in 

LCI is comparable and reliable. The integration of LLMs with knowledge graphs can further enhance data 

consistency by providing a structured framework for organizing and linking data from various sources. LLMs 

can process and analyze data from multiple modalities, such as text, numerical data, and images, providing a 

comprehensive view of the data landscape. This capability is essential for capturing the full scope of 

environmental impacts in LCI (Tu, 2024). The use of LLMs in semantic parsing and text-to-SQL 

methodologies can facilitate the querying and analysis of complex datasets, making it easier to extract 

meaningful insights from the data (Zhu et al., 2023). 

LLMs can be used to track data provenance, ensuring transparency in how data is collected, processed, and used 

in LCI. This tracking is vital for maintaining trust in the data and the conclusions drawn from it (Lauro et al., 

2024). By automatically rewriting user-defined pipelines and storing detailed descriptions of data processing 

activities, LLMs can provide a clear audit trail of data transformations, supporting the explanation and validation 

of LCI results (Lauro et al., 2024). 

Conclusion 

In conclusion, the integration of Large Language Models (LLMs) into the process of Product Carbon 

Footprinting (PCF) presents a transformative opportunity to address the significant challenges associated with 

scaling PCFs across various industries. The current landscape of PCF is characterized by complexities in data 

collection, inconsistencies in methodologies, and the need for accurate and standardized reporting. By 

leveraging the advanced capabilities of LLMs, organizations can enhance data integration and analysis, 

streamline the life cycle inventory process, and improve the overall efficiency of carbon footprint assessments. 

The potential for LLMs to automate data extraction, standardize terminologies, and enhance data provenance 

tracking will not only facilitate more accurate PCF calculations but also foster greater transparency and trust 

among stakeholders. As industries increasingly prioritize sustainability and regulatory compliance, the adoption 

of LLMs in PCF processes could significantly contribute to the decarbonization of supply chains and the broader 

goal of reducing greenhouse gas emissions on a global scale. Therefore, this paper underscores the importance 

of exploring and implementing LLM-driven solutions as a means to enhance the scalability and effectiveness of 

product carbon footprinting initiatives. 
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