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ABSTRACT - Agriculture remains a fundamental pillar of
many national economies, making the protection of crops
from disease a top priority. Pathogens such as bacteria,
fungi, and viruses can significantly reduce crop productivity,
underscoring the need for timely and accurate disease
detection. Recent innovations in computer vision and
artificial intelligence have introduced powerful tools for
recognizing plant diseases through image analysis,
particularly using leaf imagery. This paper investigates the
application of machine learning, deep learning, and few-shot
learning models in automating disease identification to assist
farmers in making informed, prompt decisions. By
examining the wuse of advanced models—including
convolutional networks and vision transformers—alongside
imaging technologies like hyperspectral cameras, this study
highlights both the technological advancements and their
potential impact in the field. Furthermore, it touches on
molecular-level diagnostic techniques aimed at minimizing
the threat of pathogens. The review offers a thorough
overview of current progress and identifies key opportunities
for future research, with the goal of translating laboratory
breakthroughs into practical solutions for sustainable
agriculture.

INDEX TERMS : Plant disease, deep learning, machine
learning, shot learning, computer vision, folding networks
(CNNS), vision trans, hyperspectral imaging, molecular
diagnostics, sustainable agriculture detection..

l. INTRODUCTION

For centuries, agriculture has been fundamental to the growth
of civilizations and remains a vital industry that supports the
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livelihood of millions across the globe. Today, nearly one
billion people work in agriculture, contributing significantly to
national economies and ensuring food availability. Yet, plant
diseases pose a serious challenge, leading to annual losses of
more than 10% in crop yields. This issue adds to the growing
concern of global hunger, which currently affects around 680
million people and continues to rise. [1]

Plant disease emergence is generally caused by a disease-
causing organism, including fungi, viruses and bacteria. Some
disease symptoms which are transmitted to plants appear on
the surface of a plant, especially leaves. While many diseases
will develop inside a plant or will not show signs of infection
until significant damage has occurred. Traditional diagnosis
methods can take place through visual inspection, or laboratory
based molecular methods such as ELISA and PCR. While
traditional methods of disease diagnosis are highly accurate,
they are often limited in scope, expensive, complicated and
still require an expert to conduct the work. [2] All of these
things make them an inefficient choice for occasion use in
fields larger than backyard gardens or for farmers with limited
resources. [3]

As an alternative to these traditional methods, Al has emerged
as a potential solution to self automate plant disease
identification. Of the many types of Al methodologies, deep
learning and computer vision have shown early success in
identifying patterns of disease in leaf images. [4] These
methods are fast, reliable and non-invasive and may facilitate
farmers recognizing potential diseases at an earlier stage and
ensure the expenditures that follow as a result of undetected or
misdiagnosed damage from a plant disease are mitigated. [5]

Deep learning models are generally very effective for image-
based classification problems, particularly in the case of
convolutional neural networks (CNNs) as well as more recent
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models such as vision transformers and few-shot learning Phytopathology combines insights from a wide range of
(FSL) models. [6] These models reduce the need for manual sciences including  microbiology, botany, virology,
feature extraction, as they can learn features from raw data, and meteorology, climatology, genetic engineering, and molecular
they reduce reliance on extensive amounts of labeled data biology. By merging these fields, it helps in understanding and
through synthetic data generation and data augmentation that developing strategies to combat plant diseases, ultimately
can enable models to learn how to better generalize in real- ensuring better crop yields and contributing to global food
world situations. [7] security. Fig.2

However, significant challenges remain when deploying new
technologies across a wide diversity of landscapes. For
example, the models that are created in laboratory
environments tend to perform poorly in the real world because Pathogenesis
of different lighting, background noise, and variability in the
environment. [8] Deep learning models, in general, require
large training set size and require high computational power,
which are barriers for low-resource settings. Few-shot learning
provides a relatively low-cost alternative by enabling the
model to learn from a limited number of labeled samples,
enabling a more scalable solution to disease detection. [9]

Phytopathology
Objectives

Etiology

Epidemiology

This paper reviews the applications of deep learning and
computer vision in the detection of plant diseases. [7], [8] As
it compares the most recent and advanced models of Al, and
techniques and applications in deep learning and computer
vision, it also highlights recent advancements in FSL that are
helping mitigate logistical issues. This paper seeks to
document the current use of Al in agriculture to facilitate the
cultivation of digital, efficient, and inclusive systems for the
management of diseased crops. [9], [10] peesnesclogy

FIGURE 1: PHYTOPATHOLOGY OBJECTIVES.

Plant
Physiology

Ultimately, this study will provide an understanding of the

advancements in this area of research and elaborate on the Mycology
ability of Al to improve food security in an inclusive and

impactful way for farmers and sustainable agriculture. [11],

[12]

Micro-

Virology o
1. PHYTOPATHOLOGY

Phytopathology is the branch of science dedicated to studying .
plant diseases, their underlying causes, how they spread, and B { Molecular
methods for managing their impact on crops. Derived from the Anatommy p '

Greek words for plant (phyto), disease (patho), and study Bacteriology

(logos), this field focuses on protecting plant health throughout

their life span. [13]

The discipline aims to determine whether plant diseases are FIGURE 2: SUBDOMAINS OF PHYTOPATHOLOGY [13]

triggered by living organisms such as fungi, bacteria, or viruses
(biotic causes), or by environmental stressors like poor soil or
extreme weather (abiotic causes). It also examines how
diseases progress (pathogenesis), how they interact with host
plants (epidemiology), and how to effectively manage or
minimize crop loss. Fig.1
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. PLANT DISEASE/TYPES AND SYMPTOMS

When a plant's natural functions or development are disrupted,
it often indicates the presence of disease. These abnormalities
can be triggered by two main types of factors: biotic (living
organisms) or abiotic (non-living environmental conditions),
as shown in Figure 3 [13]. While abiotic causes—such as
drought, nutrient deficiency, or pollution—are usually not
contagious and can often be avoided, this paper focuses
primarily on biotic diseases, which are caused by infectious
agents.

1) Bacterial Infections

Bacterial diseases in plants usually begin with small, wet-
looking spots that eventually turn into dry, discolored patches
(see Figure 4a). These may appear as dark or brown spots, or
as black blemishes surrounded by a yellowish halo. In dry
weather, they can develop a speckled look. A common
example is bacterial wilt in brinjal (eggplant), where the entire
plant may suddenly collapse due to infection. [14]

© @ @

FIGURE 4: (A) BACTERIAL BLEMISH (B) VIRAL MOSAIC (C) LATE BLIGHT (D) EARLY BLIGHT (E) RUST

2) Viral Infections

Viral plant diseases are particularly challenging to diagnose
because they often show no clear symptoms or mimic signs of
chemical damage or nutrient loss. Common carriers of these
viruses include beetles, aphids, whiteflies, and leafhoppers
[14]. One well-known example is the mosaic virus, which
causes yellow or green streaks on leaves (see Figure 4b).
Because the symptoms are so subtle, viral diseases often go
unnoticed until serious damage has occurred.

3) Fungal Infections

Mushroom pathogens affect a wide range of plant parts,
including stems, leaves, seeds and roots. Examples are stem
rack, silk, wilt, ergot and blackpoint. A critical disease, delayed
failure caused by plant spheres, usually begins with grey green
spots in the lower lobe (Fig. 4C). These stains can be soaked
in water and darkened over time, with white mushroom spots
that can eventually grow on the surface, especially in wet
weather conditions. [15]

ﬁ[ Plant Disease ]

Biotic (Infectious)

{1

Abiotic (Non-Infectious)

Temp. Rainfal | Humidit ] Nutrient

Deficiency

Bacteria Viral ﬁ
Spot Wilting
Mosai Albication ][ Leaf Curl ]

FIGURE 3 : CLASSIFICATION OF PLANT DISEASE IN DISTINCT CATEGORIES [13]
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Another example, early blight, caused by the Alternaria
fungus, shows up as small brown spots with circular ring
patterns, resembling a bull’s eye (Figure 4d). Rust fungus, on
the other hand, appears on mature leaves, starting as yellow or
greenish patches that later turn dark brown or black (Figure
4e).

Limitations of Symptom-Based Plant Disease Diagnosis

The symptoms mentioned above are just a small sample of
those described for plant diseases. Often the same or very
similar symptoms can be caused by both infectious (biotic)

can differentiate between various plant diseases with increased
precision.

The features selected for analysis serve as indicators of specific
diseases. Table 2 presents several common plant diseases
along with their corresponding symptoms, offering a reference
point for researchers. Leveraging these features can
significantly enhance classification accuracy, making the
overall disease detection process more reliable and effective.

V. SELECTION PROCESS

TABLE 1 : DISTINCT PLANTS THEIR DISEASE AND RESPONSIBLE PATHOGEN [13]

Fathogon

Symptoms

Plant Disease
Apple Scab
Rot
Rust
Cherry Mildew
Corn Gray Spot
Rust
Light blight
Grape Rot
Measles
Isariopsis blight
Pcach Spot
Potato Early blight
Late blight
Tomato Septoria spot
Mosaic
Orange Green Citrus
Strawberry Scorch Fungus

Squash

Mildew

Pomi Spilocaca
Malorum Sphacropsis
Sporangium
Clandestina
Cercospora
Sorghi puccinia
Tutcica setosphacria
Bidwellii guignardia
Aleophilum
Angulata brachypus

Arboricola Xanthomonas

Solani Alternaria
Infestans phytophthora

Lycopersici
Mosaic virus

Bacteria Motile
Diplocarpon

Xanthii podosphaers

Brown-Gray on lcaf
Dark Brown on leaf
Yellow pale on leaf

Gray powder on leaf
Rectangle lesions
Red pustules on leaf
Elliptical lesions
Red borders on leaf
Necrotic stripping
Coalesce lesions

Cluasterced lesions

Brown lesion
Dark greeb spot

Foliage
Mottle green leaf

Precipitate Demolition
Brown edgcs

White powder

and non-infectious (abiotic) pathogens that, many times, it
becomes difficult to distinguish them from one another.
Because of this overlap, identifying the particular disease or
pathogen who such symptoms belong to, is often inaccurate
when only utilizing symptoms. Table 1 lists some identifiable
plant diseases that may assist for identifying these patterns.

Diagnosis of plant diseases accurately can be very challenging,
especially when the symptoms are either non-specific or
vague. Visual assessments alone may not be sufficient to
determine the underlying cause and causal agent.

To overcome these challenges, artificial intelligence (Al)
techniques have gained traction in plant disease detection. [16],
[17], [18].These systems largely depend on two fundamental
processes: extracting relevant features from input data and
classifying diseases based on those features.

By identifying and analyzing key characteristics—such as
color shifts, shape anomalies, or texture changes—AIl models

1) Creating Search Queries

These keywords were then combined to form strategic search
queries designed to retrieve a broad yet relevant range of
studies. For instance, search strings such as “plant disease
detection AND deep learning” or “plant disease detection OR
computer vision” were used to capture publications across
multiple intersecting fields. [19]

2) Searching Databases

Comprehensive searches were performed across a number of
respected academic databases. These included PubMed,
Semantic Scholar, Scopus, Google Scholar, IEEE Explore,
Science Direct, and Web of Science. These platforms were
chosen for their relevance to domains like computer science,
agricultural engineering, and Al research, and for their
extensive collections of peer-reviewed articles. [19]

3) Preliminary Screening
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In the initial screening phase, titles and abstracts were
reviewed to quickly assess the relevance of each article.
Studies that did not meet the predefined inclusion criteria were
filtered out at this stage, helping reduce the volume of results
to a more focused and manageable set for deeper analysis. [19]

4) In-Depth Assessment

The remaining studies were subjected to a detailed full-text

analysis. Each paper was assessed for its research objectives,

methodology, overall quality, key findings, and its specific

contributions to the field. This step ensured that only studies

with substantial relevance and academic rigor were retained
5) Final Inclusion

image processing tools that utilize both RGB and hyperspectral
imaging. Additionally, it highlights molecular-based methods
developed to identify and manage the threat posed by plant
pathogens. [20]

A. Machine Learning with Image-Based Analysis

The process of detecting plant diseases using machine learning
is typically divided into several key steps: Image

Covering, preprocessing, image segmentation, distinctive
extraction and selection, and classification. Each stage plays
an important role in the performance of the discrimination
model, and various methods have been proposed in the

TABLE 2: DISTINCT DISEASE IN DIFFERENT PLANTS

Author’s Plant Name Bacterial Disease Viral Disease Fungal Disease
Zhang et al. 2019 [19] Cucumber Brown blemish, Angular  Mosaic, Yellow Black blemish,
Kianat et al. 2021 [20] Blemish, Target blemish ~ blemish Gray mold
Agarwal et al. 2021 [21]

Shrivastava et al. 2019 [22] Rice Streak, Blight Black Dwarf Smut False

Chen et al. 2021 [23] Streaked

Sun et al. 2021 [24] Maize Streak, Stalk Crimson, Dwarf Rust

Ferentinos 2018 [25] Tomato Canker Curl leaf yellow Late/ Early Blight

Abbas et al. 2021 [26]

After all screening criteria were used, a final list of 278
research articles was created. This structured, systematic
approach has formed a solid foundation for understanding
modern development and potential future directions when
using deep learning and computer vision to identify plant
diseases in precision agriculture.

V. PLANT DISEASE DETECTION SYSTEM

Artificial Intelligence (Al) technologies are increasingly being
used to support agricultural productivity by enabling accurate
monitoring of plant health. Although numerous review studies
have been conducted—some targeting specific methodologies
and others focusing on particular plant diseases—there
remains a lack of comprehensive reviews that combine
detection, classification, and diagnostic strategies into a single
framework. [20]

This review aims to bridge that gap by examining diverse
methodologies employed by researchers. These include the use
of machine learning (ML), deep learning (DL), few-shot
learning (FSL), and soft computing techniques, integrated with

literature to optimize these phases.. [21]
1) Image Acquisition

The initial stage in developing a machine learning system for
disease detection involves gathering images of plant
components such as leaves, stems, roots, or branches. The
accuracy of detection largely depends on the quality of these
images, which is influenced by the type of camera and
environmental settings. [22]

Images captured in natural, uncontrolled environments may
contain unwanted elements like shadows, cluttered
backgrounds, or noise. Therefore, removing these
distortions—particularly background elements and visual
noise—is crucial in improving detection accuracy. In addition
to standard RGB cameras, researchers also employ specialized
imaging tools that capture hyperspectral, thermal, and
fluorescence data for enhanced analysis.

Various plant disease datasets used in research are summarized
in Table 3. The inconsistency in lighting and background
complexity found in field conditions often contrasts with the
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ideal settings of laboratory environments, which directly
affects the efficiency of the detection process. Hence, robust
image acquisition plays a pivotal role in system accuracy.

2) Image Preprocessing

Image preprocessing is a foundational step in the machine
learning workflow. It is responsible for enhancing the visual
quality of images degraded by environmental factors like poor
lighting or motion blur. Since many datasets are collected in
real-time agricultural settings, preprocessing helps prepare the
images for accurate feature extraction and minimizes the
computational load. [22]

Common pre-processing steps include cropping, resizing, and
contrast adjustment, as well as the removal of unwanted
backgrounds. The choice of techniques varies depending on
the image quality. An overview of pre-processing strategies
applied by different studies can be found in Table 4.

Additionally, image augmentation techniques are employed to
expand existing datasets—an important practice in training
deep learning models that require large quantities of labelled
data. Techniques used include random flipping, noise addition,
rotation, scaling, gamma correction, zooming, shifting, and
other image transformations such as brightness and contrast
enhancements.

3) Image Segmentation

Segmentation is the method used to isolate affected areas of a
plant image, enabling focused analysis of diseased regions.
This helps separate healthy tissue from infected areas,
simplifying the classification process and improving model
performance.

The segmentation process, however, faces challenges such as
unclear boundaries, lighting inconsistencies, and complex
backgrounds. Approaches to segmentation can be broadly
categorized into two types: traditional methods like
thresholding, region-growing, and edge detection; and
computational methods such as fuzzy logic, neural networks,
and genetic algorithms. In most cases, computational
techniques offer more robust and accurate results than
conventional ones. [23]

Effective segmentation is critical for accurate feature
extraction, which directly impacts classification accuracy. A
variety of segmentation approaches used in recent studies are
presented in Table 5.

TABLE 3 : DETAILS OF THE DATASET AVAILABLE USED BY
VARIOUS RESEARCHERS

Dataset Namp

Authors

Open  accessible

dataset

Self-created
dataser

Multiple
dataset

Crop

University
Agriculture

Dataset
spectral devices

using

Hyperapecrral

imaging

Charge  Couple
davice camara

APS image dalaset

Plont Village Imago
dataset

Compulers and
Optice  in  Food
Inspection  (Cofi)
leboratory  image
dsstaget

Digipathos images
(PDDB)

IRRI Datasct
INIBAP leaf
Datasst

RoColLec

Citrus datssct
Grapofruit Grove

Mohanty et al. 2016 [33]
Mohanty ot al. 2016 [33]

Armal Barbedo et nl. 2019
[34]

Amal Barbedo et al 2019
[34]
Bashir ct al. 2019 [35]

Camargo & Smith 2009
[36]

Karadag ot al. 2018 [37]

Coulibaly ot nl. 2019 [38]
Pantazi ct al. 2019 [39]
Fucntes ct al. 2017 [40]

Shrivastava and Hooda
2014 [41]

J. Parraga Alava. ot al
2019 [42]

K_ Tian, ct al. 2019 [43]
Zhang and Mecag 2011
[44]

Pydipati et al. 2006 [45]

Masazhar and Kamal
2018 [46)

Deshopondo ot al. 2019
[47]

Pujari ot al. 2016 [48]
Abcd and Bamaccl 2018
[49]

Azadbskht et al 2019
[50]

Rothc and Kshimsagar
2015 [51)

Abdulridha et al 2019
[52]

Zhang ct al 2018 [53]

Huong 2007 [54]

Yao ot al 2009 [55)

TABLE 4 : DETAILS OF PRE-PROCESSING TECHNIQUE USED
BY VARIOUS RESEARCHERS
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Technigees Used Authar's TABLE 5: DETAILS OF SEGMENTATION TECHNIQUE USED BY
Telor  Space  Fmbascement R et al, 2018 [96] VARIOUS RESEARCHERS.
Comversion Filiering, Do e ., 2020 [57) T Teed YT
n E:m ec 1ques uthor s
RGE, HEY, H51, YHD), Ehotetal 2016 [SE],. Edge-based Canny edge  Pydipati et al. 2006 [45],
i segmentation detection, Anthonys and
L*a™, graysale Chingra o al. 2007 Sobel Operator, ~ Wickramarachchi 2009
|59, Prewitt Operator 751,
Cruz &1 l, 2008 [84] Bankar et al, 2014 [76],
Shinde et al. 2015 [77]
i Thresholding Otsu Khirade and Patil 2015
La® ke, Roehe and kahirsagss Techniques Thresholding, [70],
HEV 25 [37], Adaptative Pujari et al. 2016 [48],
Vidyaraj and Priya Thresholding, Cruz et al. 2018 [60],
2016[61] Entropy Das ct al. 2020 [57]
d Thresholding
Elawr et al. 2018 [37], Region Growing Local Threshold Pang et al. 2011 [78],
Pantari et 2l 2010 [Jg] Singh et al. 20135a [79]
Clustering k-means Rastogi et al. 2015 [80],
YChir, K o &l 2011 [62], Jadhav and Patil 2016 [81],
CIE Cheaydbary ¢f al, 2012 Zhang ct al. 2017b [82],
[63] Kaur et al. 2018b [56],
: Bashir et al. 2019 [35]
Joski and Jedhav 2017 Harakamanavar et al. 2022
[44] [83]
Zhang et al. 2018 [84]
1L I3a, [3b Camargo end Samith Fuzzy c-means Jagtap and Hambarde 2014
200%a [36] [85],
Bai et al. 2017 [86]
Sahu & Pandey 2023 [87]
CIELav Ganeghan & & 2017
(5] Grab Cut - Pantazi et al. 2019 [39]
. Genetic Algorithm - Singh et al. 2015b [88],
].ﬂ.‘b-., ].U\', YCRCr HI!'I.I'I'IEIE'I:[II'II’.H ot al Singh and Misra 2017 [89]
200 [ 6]
fmage Dhenoising using Mean — Yao of al. 2008 [41],
Enfancemen and median fillerd Ran & Kulkema 2030 .
Techniquer * 167] 4) Feature Extraction
Sharpeming  using  Asfarin et al 2013 Feature extraction is a critical step in computer vision and
Gaussiem md  [6K], machine learning systems, particularly when differentiating
Laplacian filbering Abed and Esmaeel between different regions in an image prior to classification.

Ilimsation visatkm
wing hisingram
equalizntion

Auggimentation

2015 [4%]

Dinge and Sayyed
201 [89)],

Khirede and Pasl 2015
[74,

Muliks and Vosanthi
MT[TI]

Sladajevie e al, 2006
[72],
Cioncharov et al. 2009
(73]

The features that are extracted are also a critical step when
identifying and analyzing objects and determining the correct
class or category.

In the plant disease detection literature, features like shape,
color, and texture are frequently used to recognize the
symptoms or pattern. The overall efficacy of disease
classification systems is predicated on efficient and effective
feature extraction methods. Review and analysis of the
literature found that the shape, texture, and color traits present
in the visibly diseased areas of the leaf are the most critical and
should be extracted to ensure reliable outcomes [23].

That said, ultimately identifying an appropriate set of features
is not always easy. For example, many diseases in plants
exhibit similar visual characteristics which makes it difficult to
distinguish between one disease and another and thus the
process of determining the most meaningful and relevant
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features is an important task in developing disease diagnostic
systems. [22]

In addition to extraction, feature selection is also useful in
improving model performance. When selecting features for
machine learning applications, the aim is to use the features
that are most useful and that help avoid overfitting but also can
limit the computational overhead of the system. To select the
features that are relevant from a larger set of extracted features
using advanced algorithms like Principal Component Analysis
(PCA) and genetic algorithms or particle swarm optimization
techniques.

In Table 6 we compiled the various feature extraction methods
used by researchers. These methods have different benefits
depending on the crop and the modality of the image used. The
last 12 years of research shows the various trends in the use of
different feature extraction methods on a variety of crops,
demonstrated in Figure 5.

Although research into plant disease detection has come a long
way, there are many unexplored feature extraction methods
that need to be investigated. When selecting crops for the
purpose of study, researchers often have to consider the
datasets that they have and the expert validation that is
available. It is important to keep testing and developing feature
extraction methods, whilst improving the accuracy and
adaptability of the disease detection models. [22]

5) Classifications

Classification is one of the most important and consequential
stages of any computer vision or machine learning pipeline—
particularly for plant disease identification. The success of this
step depends on the adherence to and quality of the previous
steps, such as collecting images, preprocessing, and
identifying features. During this stage, a dataset has been
prepared, and a model has been trained, and it involves
predicting on new images if a visual indicator of whether a
plant is healthy or infected. Machine learning (ML), one aspect
of artificial intelligence (Al), allows computer programs to
learn independently from data and improve continually over
time, without having to program the instructions for every task.
Because it can learn and adapt to new scenarios, ML is an
appropriate fit for complex environments, such as agriculture.
[22]

ML techniques fall into three primary categories:

o Supervised learning, where the system is trained on labeled
data.

e Unsupervised learning, which finds patterns in unlabeled
datasets.

o Semi-supervised learning, which blends both approaches for
better adaptability in scenarios with limited labeled data.

TABLE 6: DETAILS OF FEATURE EXTRACTION TECHNIQUE
USED BY VARIOUS RESEARCHERS

Techniques sed Author's
Femure GLCM, Mokhdar et al. 2005 [91],
Descriptor - Wavelet Transfoam,
Haralick festure,
Gabor Transforem,
Local Binary Patierna
SURF Bhagnt & Famar 2023 [92]
Texture GLCM Featires Bashish et al, 2011 [93],
Feature Tian et al. 2014 [94],
PMainkar et al. 2015 [95],
Islam et al. 2017 [96]
Abed and Esmaeel HHA [49],
Sharif et al. 2018 [97],
Iroshapands ot al. 2019 [47],
Scale-invariant feafure Dandewate and Kokare 2015
tramsform [%8],
Mchan =t al, 16 [99],
Ramesh et al. 2008 [100]
Local Binary Patiern ‘Waghmare f al, 2016 [101],
Simgh et al. 2015 [102]
Gabor Filter (ulhane & Churjar 2011 [103]
Transform Prasad et al. 2012 [104]
Kulkarmd & RK. 2002 [105]
Jolly & Raman 2006 [106]
Kaur et al. 2018h [56]
Roo & Kualkami 2020 [67]
‘Wavelet Transfosm Sabral & Kumer 20162 [107]
Gawall et al. 2017 [108]
Histogram of Oriented  Dhalal et al, 2005 [109]
Gradient Bai etal, 2009 [110)
Sanmakii el al. 2013 [111]
Pires et al. 2016 [112]
Ramesh ct al. 2018 [100]
Kusuma et al, 2018 [113]
Famani ot al. 2022 [114]
Calor Color  co-occarrence  Pydipati etal. 2006 [45)
Fenture mirix Kai et al. 2011 [62]
Revathi and Hemalatha 2014b
[115]
Ramakrishnan & Saksya 2015
[116)
Chowhan et al, 2019 [%]
Color histogram Caglayan et al. 2013 [117]
Famesh et al. 2018 [118]
Shape Anthonys & Wickramarachchi
Femture 09 [T5]

Camargoe & Semith 2005 [11%]
Wang et al. 2012 [120]
Phadikar et al 2003 [121]
Joshi & Jadhav 2017 [122]
Sengar et al. 2018 [123]

Sabu & Pandey 2023 [§7)

As outlined in Figure 6, a variety of classification models have
been utilized in plant disease detection. Among the most
common are:

e  Support Vector Machines (SVM)
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o Artificial Neural Networks (ANN)
o  k-Nearest Neighbors (k-NN)

In some cases, researchers also incorporate additional logic-
based or vegetation index approaches to refine predictions.
ANN models, in particular, are implemented in numerous
forms, such as:

R

Pomegranate
1%

Mixed
Cultures,
14%

~ &
Feedforward Neural Networks ‘
Multilayer Perceptrons
Backpropagation Networks .
Probabilistic Neural Networks

Self-Organizing Maps

6%

Each of these models brings its own strengths and is chosen
based on the nature of the crop, disease complexity, and
available data. A comparative overview of the classification
techniques and their effectiveness across different studies is
detailed in Table 7, offering insights

Tomato| | potato
1%

FIGURE 4: DIFFERENT CROP EXTRACTIONS

TABLE 7 : DETAILS OF CLASSIFICATION TECHNIQUE USED BY VARIOUS RESEARCHERS.

Auwthors [ratasct Fearure Extraction Classifier Accuracy
Rice Joshi & Tednaw 2017 [122] MEricEiture Rosearch | Color & Shape Pl B kDY BH.1 5%
(115)
Moban et &l 2006 [99] L) Elasr & SIFT AudaFaost, k- & 23 33%
BvmM
Zhang et al. 201 5a (53] Color Wegetation Index [CERT
Bachir et al_ 2019 [35] APS (440) SIFT SR Gl 1 6%
Shrivastave & FPradhen Z02 1 Real Ficld Imsgoes - SV B GFTe
[1zs] Real Ficld Images - Fadial Basis NN RN
Rath & Micher 2019 [1Z26])
Wheat & Comn Lo ot al. 2015 [127] Chi Avcmd i Histogram 244406
(Ta4)
Azndbakhbt ot al, 2019 [S0] Hyperspeciral data Index based Fogression S5 HrE
Kassumo et al. 2009 [113] Plans Village (3E523) SIFT, SURF SWhA, DT, BF, Maive  S7.00%%
Baves
Deshapande ot al. 2019 [£7] Agriculture First Order BT, S EH e
University [dharwad Tistograns S
et b ] LR
Scorabean Gharge & Singh 2016 [128] IFBA Drasabasc {300} GLCM EBPNM &3 30
Pires ct al. 2006 [L12] Federal (1204} SIFT, SUIRF, FIOG SWM EE-T i
awr ct al. 20186 [S6] Plant Willage (4775) Colar, Textars, SV &4 00
Shape
Bfillet Canlibaly et al. 2019 [129] SBelf (124) Tranefer Learming WOHGS O N
Cotion Rothe & Kshirsagar 20135 [51] Self A4S0 Camera Hus E RS 536
Hivasangar & Indira 20015 [130] Sell Color, Shape SR 1.0
Sugar beest Hallam et al. 2017 [131] Self (1400 Textune SV &2 00
G < R o Salky s SBelf T feabares EBPMNT Ll by
[1is]
Canc Puajari ot al. 20146 [45] Sclf (3212} ROGE Colar SV & EBPTNMN SR 00
Belix Sladojewic etal. 2015 [72]) Intermet (334697 - O Q5 B
Ferentines 2018 [25] Flans Village & Self Tramsfer Learming Alexmet, WG SO S3e
(ETEAE)
Arral Barbedo 2009 [32] Self (A573) Transfer Learming GooglcehNer O, O
Pamtari et al. 2019 [39] - LEP S S5 00
Bao & Kulkammi 2020 [57] Plant Willage Gabor, Carveles Fazzy Logic SO MG
Abkmmed & Yadsw 2022 [132] Self-Creaced LA Fandom Fosest
© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 9
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TABLE 8 : DETAILS OF CLASSIFICATION TECHNIQUE USED BY VARIOUS RESEARCHERS.
Sahu & Pandey 2023 [B7] Plant Vilaage Fuzzy ¢ means HREF 5WM -
Apple Samajpati & Degadwrala 2016 Sclf (30) Color, Histogram, Random foresst 95.00%
[133] LBP, Gabor
Jolly & Raman 20016 [106] Self (320) Haarlick & LBF 5VM 96.00%
Citrus Sharif et al. 2018 [97] Imape gallery dataset  Color, Texture, Mfulticlass SWVA 95 80%
{1000 Geometrical
Cheery Sengar ot al. 2018 [123] Plant Village Lesion Arca - 99.00%
Grape ‘Waghmare ot al. 2006 [101] Self (450) HSV, LBP Multiclass 5VM B9.30%
Cruz etal. 2018 [80] Self (272) - AlexMet, Inception- 98.00%
vi
Gotcharoy et al, 2019 [73] Plant Village (2986) - Slarmese 92.00%
Javidam et al. 2023 [134) Self GLCM SV 98.97%
Shantkurmari et al. 2023 [135] PFlant Village - Improved k-NMN -
Pomegranate Khot et al. 2006 [58] - HSI Minimum distance -
classifier
Palm il Masazhar & Kamal 20158 [4a] GLCM Multiclass SWVM 95.00%
Lentil Singh et al 2019 [102] 00 LEP Visual Examination -
Potate Islarm ot al. 2007 [94] Plant Willage (300} Color, Texture Multiclass SWVM 95.00%
Patil et al. 2017 [136] Plant Village (89200  Texturs EVM. ANM, RF 92.00%
Verma et al 2000 [137) Plant Village - Capsule Network 91.83%
Bean Abed & Esmaeel 2015 [49] 100 GLCM VM 106n.00%
Cucumber Zhang et al. 2017h [82] Self (3000 FHOG VM 91.48%
Krigshna Kumar & Narayan 2019 Real Field Images - k-means VM BH.005%%
[138]
Tomaio Raza et al, 2005 [139] Self (71) Pixel Value SV Q0.00%%
Sabrol & Kumar 2016a [107] Self (180) Color moments, ANFIS, FF-BPNN 27.20%
Histogram
Fuentes et al. 2007 [40] Self (5000) D'WT, Haar ReaMet-50, VGGG B3.06%%
Wavelet
Ashgar & AbuMaser 2008 [140]  Plant Willage (%000}  Transfer Learning ~ CNN 99 84%
Karadag ct al. (2018) [37] ARL (80 Wavelet ANN, NB, k-NN B4.00%
Dhas et al. 2020 [57] Self-Created Mean, Entropy VM, k-NM B7.60%
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TABLE 9 : DETAILS OF CLASSIFICATION TECHNIQUE USED BY VARIOUS RESEARCHERS

Panigrahi et al. 2020 [141] Self-Created - RF T9.23%
Sujatha et al. 2021 [142] Self-Created . SVM 87.00%
Zamain et al. 2022 [114) Plant Village PCA SVM -
Harakamanavar f al. 2022 [83] - k- means 5VM HEOD%
Rahman et al. 2023 [143] Self-Created GLCM SVM BB.00%
Bhatia et al. 2020 [144] Mildew dataset - Extreme Learning 20.19%
Bhatia ct al. 202] [145] Melildew dataset - SVM Logistic 2. T3%
Regression
VI. RESULTS AND ANALYSIS
The first stage of this study depended on a small dataset of the various patterns of each class better and make accurate

1,532 RGB images, divided into three classes. This predictions.
allowed for some early experimentation, but a small
quantity of data limited the model's ability to generalize.
The model achieved around 82% accuracy, but this low
accuracy was mainly due to the lack of variety in features

and representation so the model was learning from limited 1) Image Preprocessing Strategy

reasonable cases for predicting new items. Hence, the

learning capability suffered, and the model experienced Image preprocessing played a significant role in the
frequent errors in classification. performance of the model. Initially, the images were

resized to 225x225 pixels, but this preprocessing step lost

Epoch 1/5
@s 3s/step - accuracy: ©.3930 - loss: 4.2992
shah\AppData\Local \Programs\Python\Python312\Lib\site-packages\keras\src\trainers\data adapters\py d{
rn_if_super_not_called()
118s 3s/step - accuracy: ©.3959 - loss: 4.2456 - val accuracy: ©.6833 - val loss: 0.7686

1e3s 2s/step - accuracy: 0.6736 - loss: ©.7109 - val_accuracy: ©.6167 - val_loss: ©.7342
1eis 2s/step - accuracy: ©.7575 - loss: ©.5644 - val accuracy: ©.8167 - val loss: 0.5145

99s 2s/step - accuracy: ©.7973 - loss: ©.4980 - val_accuracy: ©.7500 - val loss: ©.5388

1e@s 2s/step - accuracy: ©.8127 - loss: 0.4346 - val _accuracy: ©.8000 - val loss: 9.47165

FIGURE 5: EPOCH OVERVIEW WITHOUT PARAMETER CHANGE

] important detail and did not allow the model to extract
To resolve this, a much larger dataset of about 87,000 RGB useful features.

images was used. This dataset was divided into training
(80%) and validation (20%). This larger dataset had 38
classes, which gave the model a larger and more
represented dataset to learn from. As a result, accuracy
improved significantly to 98% due to the increased variety
and size of training data allowed the model to understand

Later, the image size was adjusted to 128x128 pixels which
represented a balanced trade off between the details being
lost and compute overrun. Cropping was also improved to
ensure important portions of the images were retained.

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 11
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for the capacity of the ability of the machine used.

e Layer 4: 256 filters, 3x3 kernel
e Layer5: 512 filters, 3x3 kernel

model accuracy

train
val

0.80

0.75

070

accuracy

0.65

0.60

0.55

0.50
0.0 0.5 1.0 1.5

o

epoch

FIGURE 6: MODEL ACCURACY DURING TRAING AND VALIDATION

2)

The initial experiments employed five epochs of training.
Due to the small dataset and low detailed input images, the
five epochs produced acceptable but less-than-desired
results. The limitation of epochs didn't allow for enough
training depth to make more accurate future predictions.

By using a bigger and more extensive dataset and training
it across 10 epochs, the final model was able to learn
more complicated characteristics and perform better
overall.

The present study's convolutional neural network (CNN)
architecture has five convolutional layers in total,
configured as follows:

e layer 1: 32 filters, 3x3 kernel, input size of
[128,128,3]

e Layer 2: 64 filters, 3x3 kernel

e layer 3: 128 filters, 3x3 kernel

To prevent overfitting, dropout layers were integrated.
Initially set at 0.25, the dropout rate was later increased to
0.4 in the final version, which helped the model generalize
better across unseen data

3)

The new model showed improved performance across
many different key metrics. The precision, recall, and F1
score values were all greater, so it had better predictive
ability on all of the 38 categories. Just by glancing at the
confusion matrix, you could see all the data spots were
accurate around the diagonal (very few errors).

The example of accuracy increasing increases from 82%
to 98% clearly illustrations the impact of (1)a larger and
broader dataset, (2) improved preprocessing techniques,
and (3) a deeper CNN architecture. The bottom line is this
process demonstrate the advantages of continual
assessment and upgrading of predictive models when
developing structured deep learning models that have
high accuracy.
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4)  Website visual features for consideration. Also prior to this test, in

The site was purposefully designed with a smooth,
interactive, and easy-to-use way for users to navigate and
find information. This means that individuals can identify
plant diseases and learn about potential solutions, all in one
space. The content of the site is responsive and includes a
clear path to navigate through the portals, making the
information accessible and pertinent to our initial project
objectives.

Dashboard

consideration of the data each categorised images focus
and theme to ensure discovery of intensive detail. The
adjustments rated the performance considerably higher up
to a more accurate rate from 82 % to 98%.

Within this progression from initial trial and error to
polished success highlights the importance of balancing the
efforts of both data-focused and architecture-focused
vetted and proven improvements. Thoughtful expansion of

PLANT LEAF DISEASE DETECTION SYSTEM

Select Page

Home

Home

Disease Detection

Solutions

About

& °
Plant Leaf
Disace

side site

Welcome to the Plant Leaf Disease Detection System! v= ®

Our mission is to help in identifying plant diseases efficiently. Upload an image of a plant, and our system

will analyze it to detect any signs of diseases. Together, let's protect our crops and ensure a healthier

harvest!

FIGURE 12: WEBSITE HOMEPAGE

The site combines functionality and a slick design with its
python and streamlit backend. There are Al-generated
images placed throughout the site for additional visual
interest, and to give the site a refined, professional look.

viil.  CONCLUSION

This accounts for a clear example of how data quality,
consideration in analyzing data preprocessing, and
appropriate model changes can be important in the success
of convolutional neural networks in image classification.
At first, we trained the model on a small amount of images
(1,532 RGB images), and with the short cycle of training
sessions, this as expected provided 82% accuracy with no
clear value due to the lack of image detail, narrow range of
classes demonstrated and the number of training sessions
were limited. With the change to a larger number of images
to 87-000 images in total from 38 classes, and focusing on
characteristic resolution of images reaching an expectable
resolution of 128x128 pixels still was adequate for key
visual components and belief a larger number of sessions
i.e. 10 sessions was required for a change of images to input

training data, careful preprocessing methods, and sound
model structure are key in developing high-performing and
generalizable systems. The results of this research support
the impactful use of deep learning models within practice,
especially in agriculture where early and accurate detection
of disease can protect crops and strengthen food systems
through the world.
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