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Abstract— Plant leaf diseases significantly impact agricultural 

productivity, leading to substantial crop losses if not detected 

early. This paper introduces a deep learning approach for 

automatically identifying and classifying potato leaf diseases 

using image data. By utilizing transfer learning with 

MobileNetV2, a lightweight yet efficient CNN, the system 

accurately distinguishes between Early Blight, Late Blight, and 

Healthy leaves. The process includes dataset collection, 

preprocessing, model training, and real-time web application 

deployment for user interaction. Experimental results highlight 

high prediction accuracy and practical feasibility, making this 

system a valuable asset for precision agriculture and crop 

protection. 
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I. INTRODUCTION  

Agriculture remains fundamental to global food security and 

economic stability. However, plant diseases pose a 

significant challenge to crop productivity, often leading to 

substantial yield losses and financial setbacks. Traditional 

disease diagnosis relies on expert visual inspection, which 

can be subjective, time-consuming, and impractical for 

large-scale farming. Additionally, delayed identification 

allows diseases to spread, exacerbating crop damage and 

reducing the effectiveness of intervention strategies [1]. 

Recent progress in image processing and machine learning 

has enabled more efficient solutions for precision 

agriculture. Deep learning models, particularly 

Convolutional Neural Networks (CNNs), have demonstrated 

exceptional accuracy in visual recognition tasks. CNNs 

autonomously learn hierarchical features from images, 

making them highly effective in identifying and classifying 

plant diseases with minimal manual input [2]. 

This study utilizes transfer learning with MobileNetV2 to 

detect and classify potato plant leaf diseases. The approach 

follows a structured pipeline consisting of dataset collection, 

image preprocessing model training, evaluation, and real-

time deployment. MobileNetV2 is fine-tuned to extract 

features and classify leaf samples into categories: Early 

Blight, Late Blight, and Healthy. The model’s performance  

is assessed using key metrics such as accuracy, precision, 

recall, and F1-score, ensuring practical applicability in 

agricultural settings [3]. 

II. LITERATURE SURVEY 

Recent developments in plant disease identification have 

been significantly influenced by deep learning techniques, 

particularly Convolutional Neural Networks (CNNs). These 

models have revolutionized the automation and precision of 

disease recognition through image data, enhancing 

reliability and scalability. Traditional methods, such as 

visual inspection by agricultural specialists, are labor-

intensive and subject to inconsistency due to human error. 

Moreover, manual approaches do not provide a feasible 

solution for large-scale monitoring, where swift 

identification and timely intervention are crucial for 

mitigating crop losses. Deep learning, in contrast, offers an 

efficient solution by automating feature extraction and 

classification, eliminating dependency on manually designed 

features while improving detection accuracy. 

Zhang et al. [4] proposed an advanced CNN-based system 

specifically designed for detecting potato leaf diseases. 

Their research demonstrated that deep learning models 

surpass conventional image classification techniques by 

achieving superior accuracy and robustness. Their model 

successfully categorized different disease types, including 

Early Blight, Late Blight, and healthy leaves, providing a 

scalable and reliable solution for automated crop disease 

diagnosis. By utilizing CNNs, the system minimized human 

intervention, making disease identification both rapid and 

efficient. 

Tiwari et al. [5] examined the impact of transfer learning in 

plant disease classification, leveraging pre-trained models 

such as ResNet, InceptionV3, and MobileNetV2. Their 

findings indicated that transfer learning significantly 

enhances recognition performance while reducing 

computational demands. Instead of training models from 

scratch, transfer learning allows knowledge transfer from 

large-scale datasets, enabling improved classification even 

with limited labeled data. Their study also highlighted the 

importance of lightweight architectures like MobileNetV2, 

which are particularly useful in environments where 
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computational resources are constrained, such as remote 

agricultural regions. 

Mittal et al. [6] explored various image preprocessing 

techniques—including contrast enhancement, noise 

reduction, and normalization—to improve CNN model 

efficiency for plant disease detection. Their experiments 

revealed that preprocessing plays a vital role in enhancing 

model generalization and robustness. Techniques such as 

histogram equalization for contrast adjustment, Gaussian 

blurring for noise reduction, and adaptive thresholding for 

improved segmentation help mitigate inconsistencies caused 

by variations in lighting conditions, camera resolution, and 

leaf textures. These preprocessing steps contribute to better 

feature extraction, ultimately leading to higher classification 

accuracy. 

Building upon previous research, this study refines the 

MobileNetV2 architecture for detecting potato plant 

diseases. MobileNetV2 is a lightweight CNN optimized for 

mobile and real-time applications, making it ideal for 

deployment in field conditions. Rather than building a 

model from scratch, this approach employs transfer learning 

to enhance accuracy while keeping computational 

requirements minimal. The depthwise separable 

convolutions in MobileNetV2 significantly reduce 

complexity, enabling efficient deployment on low-powered 

devices such as smartphones and IoT sensors. This makes 

real-time disease monitoring accessible even in resource-

limited settings, facilitating timely intervention for farmers. 

Mohanty et al. [7] demonstrated that CNNs can be 

effectively used for multi-crop disease classification, 

showcasing their adaptability across various plant species. 

Their findings validated the decision to implement 

MobileNetV2, given its ability to identify subtle disease 

features across different crops. By illustrating the model’s 

scalability, their research emphasized the broader 

applicability of deep learning in agricultural disease 

monitoring, proving that AI-driven solutions could extend 

beyond single-crop applications to widespread precision 

agriculture. 

Too et al. [8] conducted an extensive comparative study 

evaluating different CNN architectures for plant disease 

detection. Their research highlighted the advantages of fine-

tuning pre-trained models over training new architectures 

from scratch. Their findings supported the choice of 

MobileNetV2, which demonstrated optimal performance 

even with limited datasets, making it suitable for scenarios 

where large-scale annotated data is unavailable. The study 

reinforced the effectiveness of transfer learning in 

improving classification accuracy without excessive 

computational burden. 

Zhang et al. [9] explored modifications to standard CNN 

layers by integrating attention mechanisms, skip 

connections, and batch normalization to refine feature 

extraction. Additionally, they examined augmentation 

techniques such as rotation, flipping, cropping, and color 

transformations, all of which align with the implementation 

strategies used in this study. Their work reinforced the 

importance of architectural improvements and data 

preprocessing for achieving higher classification precision, 

ensuring robustness in real-world agricultural applications. 

Singh and Misra [10] compared deep learning models with 

traditional machine learning approaches, including Support 

Vector Machines (SVMs), Random Forests, and K-Nearest 

Neighbors. Their findings confirmed that while classical 

models provide reasonable performance in select cases, 

CNNs consistently outperform them when sufficient labeled 

training data is available. Deep learning’s ability to 

automatically learn complex patterns makes it superior for 

plant disease detection, reinforcing the decision to employ 

CNNs over conventional feature-based techniques. 

Kamilaris and Prenafeta-Boldú [11] conducted a 

comprehensive survey highlighting CNNs as dominant tools 

in agricultural artificial intelligence. Their study validated 

CNNs for diverse applications, including crop health 

monitoring, disease classification, and yield estimation. 

They also addressed key challenges such as data scarcity, 

model interpretability, and generalization. In this research, 

these challenges are mitigated through transfer learning, 

model fine-tuning, and augmentation strategies to improve 

practical usability and scalability. 

Ferentinos [12] and Fuentes et al. [13] explored the 

feasibility of real-time disease recognition using CNNs and 

object detection models. Drawing inspiration from their 

work, this study integrates a browser-based web application 

using Flask, enabling farmers to upload leaf images for 

immediate disease classification and remedial 

recommendations. This interface bridges AI research with 

real-world agricultural applications, ensuring accessibility 

and usability in disease monitoring. By providing instant 

feedback, the system empowers farmers with actionable 

insights, promoting effective disease management and crop 

protection. 

III. METHADOLOGY 

The methodology employed in this research for automated 

detection and classification of potato leaf diseases using 

deep learning comprises a well-structured pipeline, 

encompassing six key phases: data acquisition, image 

preprocessing, feature extraction using transfer learning, 

model training, evaluation based on performance metrics, 

and deployment in a real-time web application. This pipeline 

has been designed to ensure efficient classification of leaf 

diseases such as Early Blight, Late Blight, and identification 

of Healthy leaves.  
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Figure 1: Block diagram of the proposed potato leaf 

disease recognition system using deep learning 

A. Data Collection 

Ensuring high-quality and diverse data is essential for 

training effective deep learning models. This project utilizes 

the publicly available Potato Leaf Disease Dataset from 

Kaggle, which includes high-resolution images categorized 

into three groups: Early Blight, Late Blight, and Healthy 

leaves. These images are representative of real-world 

agricultural conditions, having been captured in 

uncontrolled environments. This dataset was uploaded and 

processed in Google Colab, where images were structured 

into distinct directories (train, validation, and test) to 

streamline data management and facilitate efficient model 

training. This segmentation allows a robust learning process 

while preserving a portion of the data for evaluating the 

model's ability to generalize effectively. 

B. Image Preprocessing 

Preprocessing is crucial for improving model performance 

and stability. The following techniques were applied: 

• Resizing: All images were resized to 224×224 pixels, 

aligning with MobileNetV2's input requirements to 

ensure consistency. 

• Normalization: Pixel values were scaled between 0 and 

1 (dividing by 255), allowing efficient network 

processing and accelerating convergence during 

training. 

• Data Augmentation: To improve generalization and 

handle class imbalance, real-time augmentation 

techniques were used through Keras' Image Data 

Generator. Transformations included random rotations, 

flips, zooming, and shifting, expanding dataset          

variability without additional manual collection. 

• Folder Structuring: Images were stored in class-

specific subdirectories within the train, validation, and 

test folders, enabling seamless automated labeling using 

Keras’ directory iterator, thereby simplifying model 

training. 

C. Feature Extraction 

Feature extraction was performed using MobileNetV2, a 

lightweight CNN architecture optimized for mobile and 

edge computing. Transfer learning enabled efficient feature 

extraction without requiring training from scratch. 

• Convolutional Layers: These layers identify essential 

spatial patterns, such as disease spots, color changes, 

and vein distortions. 

• Pooling Layers: These layers reduce computational 

complexity by downsampling feature maps while 

retaining key patterns. 

• Transfer Learning: The pre-trained MobileNetV2 

convolutional base was used as a feature extractor, 

while the top layers were customized for three-class 

disease classification. 

D. Model Training 

The model was trained in Google Colab, leveraging GPU 

acceleration to optimize processing speed. The key training 

parameters were: 

• Train-Validation-Test Split: The dataset was divided 

into 70% training, 15% validation, and 15% test data to 

ensure a balanced training process. 

• Loss Function: Since this is a multi-class classification 

problem, categorical cross-entropy was selected. 

• Epochs and Batch Size: Training was performed for 20 

epochs, using a batch size of 32 to optimize learning 

efficiency. 

• Callbacks: Early stopping was used to halt training 

when validation loss stopped improving, preventing 

overfitting. Model checkpoints ensured that the best-

performing model was saved based on validation 

accuracy. 

E. Model Evaluation 

The trained model was evaluated using multiple 

performance metrics on the test dataset: 

• Accuracy: The final MobileNetV2 model achieved an 

impressive 83% accuracy on unseen test images. 

• Precision: Measures how often predicted disease cases 

were correct, minimizing false positives. 

• Recall (Sensitivity): Evaluates how effectively the 

model identifies actual disease cases, minimizing false 

negatives. 

• F1-Score: Balances precision and recall, ensuring 

reliable classification performance, particularly for 

imbalanced datasets. 
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F. Real-Time Web Deployment 

To bridge the gap between AI-based disease prediction and 

end-user accessibility, the trained model was deployed 

through a Flask-based web application. This allows users—

such as farmers and agricultural consultants—to: 

• Upload potato leaf images using a simple browser 

interface. 

• Receive real-time predictions, including disease 

classification and confidence scores. 

• View suggested treatments for identified diseases, 

aiding informed decision-making in agricultural 

settings. 

 

IV. RESULT & DISCUSSION 

A. Model Performance Over Training Epochs 

The performance of the trained MobileNetV2 model was 

comprehensively evaluated using accuracy metrics, 

confusion matrix, precision, recall, and F1-score on the test 

dataset. The results confirmed the model's strong 

classification capabilities and its effectiveness for 

deployment in real-time scenarios. 

1. Model Performance 

The performance evaluation of the proposed deep learning-

based potato leaf disease detection model was conducted 

using an unseen test set composed of images categorized as 

Healthy, Early Blight, and Late Blight. The model achieved 

a test accuracy of approximately 83%, indicating a robust 

generalization capability when applied to new, real-world 

leaf images. 

2. Learning Curve Analysis 

The model’s learning behavior over training epochs was 

visualized through the accuracy and loss curves (as shown in 

Figure 2). The training and validation accuracy curves 

showed steady improvement and convergence, signifying 

that the model was learning useful patterns from the data 

without overfitting. The validation loss curve declined 

gradually across epochs, suggesting that the model retained 

its ability to generalize well beyond the training samples. 

 

Figure 2: Model accuracy and validation accuracy per 

epoch 

Moreover, the training process demonstrated the model’s 

ability to adapt quickly to the features of the potato leaf 

dataset, largely attributed to the fine-tuned MobileNetV2 

architecture with pretrained weights from ImageNet. 

B. Confusion Matrix and model evaluation metrics 

Figure 3: Confusion matrix for three-class classification 

(Healthy, Early Blight, Late Blight) 

To gain insights into class-specific performance, a 

confusion matrix (Figure 3) was plotted for the three-class 

classification task: Healthy, Early Blight, and Late Blight. 

The matrix illustrates the true positive and false positive 

predictions per class. The results indicate strong 

classification capability with limited misclassifications, 

especially between Early Blight and Late Blight, which are 

visually similar in disease manifestation. 
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Table 1: Model evaluation matrics on different 

parameters 

The model performs well overall with an accuracy of 83%, 

indicating it correctly predicts most samples. The precision 

(84%) shows it makes few false positive errors, while the 

recall (82%) suggests it successfully identifies most actual 

cases. The balanced F1-score (83%) confirms the model 

maintains a good trade-off between precision and recall, 

making it reliable for classifying potato leaf diseases. 

C. Visualizations and Real-Time Results 

 

Figure 4: Real-time prediction interface output for a 

Healthy leaf 

 

Figure 5: Real-time prediction interface output for an 

Early Blight infected leaf 

To validate the practical usability of the model, it was 

integrated into a real-time web application using Flask. 

Figure 4 and Figure 5 show the results when a user uploads 

a leaf image via a browser. Upon submission, the model 

outputs the disease class, a confidence score (representing 

the model's certainty in prediction), and a treatment 

suggestion. In both cases, the web interface correctly 

predicted the class, provided appropriate treatment guidance, 

and displayed the uploaded image alongside its diagnosis. 

The system achieved confidence scores of over 90% for 

Healthy and 87% for Early Blight, reinforcing the 

deployment-readiness of the model for field applications. 

D. Algorithm Comparison and Model Suitability 

While MobileNetV2 was the primary model used due to its 

efficiency and accuracy, comparative evaluation was 

conducted using other popular CNN architectures such as 

VGG16 and ResNet50 during preliminary testing. 

MobileNetV2 offered: Faster training time, Lower memory 

consumption, Comparable or better accuracy with fewer 

parameters. Hence, it was deemed most suitable for real-

time applications on resource-constrained devices such as 

mobile phones. 

V.CONCLUSION 

This research presents a deep learning-based solution for 

detecting potato leaf diseases using MobileNetV2, coupled 

with real-time deployment through a Flask web application. 
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The workflow—from data acquisition to model training and 

web deployment—was successfully executed and tested. 

The trained model achieved 83% accuracy on test data, 

demonstrating strong precision and reliability. Designed for 

practical use by farmers, the Flask-based web interface 

provides disease classification, confidence scores, and 

recommended treatments, making AI-powered crop 

protection more accessible. 

The study highlights the potential of CNN-based models in 

precision agriculture, improving early disease detection and 

enabling timely intervention to reduce crop losses. 

Several enhancements can be explored to refine and expand 

the system: 

• Expanding disease coverage: Including a broader 

range of plant diseases and extending applicability to 

other crops. 

• Enhancing robustness: Improving model performance 

under diverse lighting conditions and complex 

backgrounds to ensure reliability in real-world settings. 

• Integrating real-time monitoring: Deploying the 

system on mobile applications and drones for 

continuous surveillance and early disease detection. 

• Exploring hybrid models: Combining CNN 

architectures with traditional machine learning 

techniques for improved prediction accuracy. 

• Optimizing scalability: Making the system more cost-

effective for widespread adoption, supporting global 

food security and increasing farmer productivity.  

This project lays the foundation for smart agriculture, 

showcasing the feasibility of deploying AI-driven solutions 

to enhance crop health monitoring and disease prevention. 
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