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    Abstract: The gaming industry increasingly relies on predictive 

analytics to enhance player engagement and optimize in-game 

purchase revenue. This study develops machine learning models to 

predict Player Engagement Level (PEL) and Purchase Likelihood 

(PL) using a dataset of 5,000 player records with 33 features, 

encompassing gameplay, monetization, social, and demographic 

attributes. Through exploratory data analysis, feature selection 

with SelectKBest, and class balancing via SMOTE, the 

methodology mitigates imbalances and reduces dimensionality to 

eight key predictors. Four algorithms—Decision Tree, Random 

Forest, Logistic Regression, and XGBoost—are evaluated, with 

Random Forest achieving 88.63% accuracy for PEL and XGBoost 

attaining 99.95% for PL. A Flask-based web application, hosted 

locally, integrates the models with MySQL authentication, enabling 

interactive predictions. Despite overfitting risks and local 

deployment constraints, the project provides actionable insights for 

player retention and monetization, establishing a scalable 

framework for advanced gaming analytics. 
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I. INTRODUCTION 

The global gaming industry, a multi-billion-dollar ecosystem, thrives 

on its ability to captivate millions of players daily while driving 

revenue through in-game purchases. As player engagement and 

spending behaviors dictate success, developers face the challenge of 

retaining users and converting free players into spenders amidst high 

churn rates and diverse player dynamics. This project addresses these 

challenges by leveraging machine learning to predict two critical 

aspects of player behavior: **Player Engagement Level (PEL)**, 

which measures interaction intensity, and **Purchase Likelihood 

(PL)**, which assesses the propensity for in-game spending. By 

developing accurate predictive models, this study aims to empower 

game developers with data-driven tools to enhance user experiences 

and optimize monetization strategies. 

The project utilizes a dataset of 5,000 player records with 33 features, 

spanning gameplay metrics (e.g., session duration), monetization 

indicators (e.g., purchase history), social interactions, and 

demographic details. Through a structured pipeline—encompassing 

data preprocessing, exploratory data analysis, feature engineering, 

model development, and evaluation—four machine learning 

algorithms (Decision Tree, Random Forest, Logistic Regression, and 

XGBoost) are trained to classify PEL and PL as binary outcomes 

(Low/High). The models are integrated into a Flask-based web 

application, hosted locally, to provide an interactive platform for real-

time predictions. This introduction outlines the project’s objectives, 

methodology, and significance, setting the stage for a comprehensive 

exploration of how predictive analytics can transform player behavior 

analysis in gaming, offering both technical innovation and business 

impact. 

A. Objective 

The primary objective of this project is to harness machine learning 

to predict and analyze player behavior within a gaming ecosystem, 

focusing on two critical dimensions: Player Engagement Level 

(PEL) and Purchase Likelihood (PL). By classifying players into 

Low or High Engagement based on interaction patterns, such as 

session duration and quest completion, and into Low or High 

Purchase Likelihood based on spending behaviors, including in-

game purchases and discount utilization, the project seeks to 

provide actionable insights for game developers. It aims to identify 

key behavioral indicators through exploratory analysis and feature 

engineering, using a dataset of 5,000 player records with 33 

features spanning gameplay, monetization, social, and 

demographic attributes. The models, developed using algorithms 

like Decision Tree, Random Forest, Logistic Regression, and 

XGBoost, are deployed in a locally hosted Flask-based web 

application to enable real-time predictions. Ultimately, the project 

strives to bridge player experience and business outcomes by 

empowering developers to enhance retention through targeted 

incentives for low-engagement players and optimize monetization 

by tailoring offers to high-likelihood spenders, establishing a 

scalable framework for data-driven decision-making in the gaming 

industry. 

 

Motivation 

The rapid growth of the gaming industry, now a multi-billion-

dollar market, underscores the critical need to understand and 

predict player behavior to sustain engagement and maximize 

revenue. With millions of players interacting daily across diverse 

platforms, developers face significant challenges: high churn rates, 

where up to 70% of players disengage within weeks, and the 

difficulty of converting the majority of free-to-play users into 

paying customers, with only 5–10% typically making in-game 

purchases. These dynamics necessitate data-driven strategies to 

retain players and optimize monetization. The motivation for this 

project stems from the opportunity to leverage machine learning to 

address these challenges by predicting Player Engagement Level 

(PEL) and Purchase Likelihood (PL). By accurately identifying 

low-engagement players for targeted retention efforts and high-

likelihood spenders for personalized offers, the project aims to 

enhance player satisfaction and drive business success. 

Furthermore, the development of a scalable predictive framework, 

integrated into an accessible web application, is driven by the 

desire to empower game developers with actionable insights, 

fostering a win-win scenario where players enjoy tailored 

experiences and the industry achieves sustainable growth in a 

competitive landscape.  

 

B. scope 
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The scope of this project encompasses the development and 

deployment of a machine learning-based system to predict 

**Player Engagement Level (PEL)** and **Purchase Likelihood 

(PL)** in a gaming environment, aimed at enhancing player 

retention and optimizing in-game purchase revenue. Utilizing a 

dataset of 5,000 player records with 33 features—covering 

gameplay metrics (e.g., session duration, quest completion), 

monetization indicators (e.g., in-game purchases, discount 

utilization), social interactions, and demographic details—the 

project involves a comprehensive pipeline. This includes data 

preprocessing to handle imbalances using SMOTE, exploratory 

data analysis to uncover behavioral patterns, and feature 

engineering with SelectKBest to reduce dimensionality to eight 

key predictors. Four machine learning algorithms—Decision 

Tree, Random Forest, Logistic Regression, and XGBoost—are 

trained and evaluated to classify PEL and PL as binary outcomes 

(Low/High). The scope extends to deploying these models in a 

locally hosted Flask-based web application, featuring MySQL 

authentication and interactive prediction interfaces, enabling 

developers to access real-time insights. The project focuses on 

delivering actionable strategies for targeting low-engagement 

players with retention incentives and high-likelihood spenders 

with tailored offers, while laying a foundation for future 

scalability, such as cloud deployment and real-time analytics. 

However, it is limited to static models and local hosting, with 

potential overfitting risks and no real-time data integration, 

defining the boundaries for current implementation and future 

enhancements. 

 

II. LITERATURE SURVEY 

The application of machine learning to predict player behavior in 

the gaming industry has gained significant traction, driven by the 

need to enhance engagement and optimize monetization. This 

literature survey reviews key studies that inform the methodology, 

algorithm selection, and business relevance of the current project, 

which predicts Player Engagement Level (PEL) and Purchase 

Likelihood (PL). The survey is organized into five subheadings: 

Player Engagement Modeling, Purchase Behavior Prediction, 

Feature Engineering Techniques, Class Imbalance Handling, and 

Algorithm Performance Comparison. These works provide a 

foundation for the project’s approach, highlight gaps in existing 

research, and justify the chosen strategies. 

1. Player Engagement Modeling 

Research on player engagement focuses on understanding 

interaction patterns to reduce churn and enhance retention. Smith 

et al. [1] employed clustering techniques to segment mobile game 

players based on engagement metrics like session duration and 

login frequency, revealing distinct player archetypes (e.g., casual 

vs. hardcore). Their unsupervised approach, while insightful, 

lacked predictive capabilities for targeted interventions. Johnson 

and Lee [2] addressed this by modeling churn in online games 

using logistic regression and decision trees, emphasizing 

retention-related features such as churn rate and activity 

frequency. Their findings align with this project’s use of 

engagement indicators like Daily_Active_Time and 

Quest_Completion_Rate, though they did not explore purchase 

behavior, a critical aspect addressed here [10]. These studies 

underscore the importance of engagement metrics but highlight 

the need for supervised classification, as adopted in this project, 

to predict PEL directly. 

2. Purchase Behavior Prediction 

Predicting in-game purchases is vital for monetizing freemium 

games, where a small fraction of players drive revenue. Kim et al. 

[3] applied Random Forest to forecast purchases in mobile games, 

achieving high accuracy by leveraging monetization features like 

purchase history and social interactions. Their success with tree-

based models supports this project’s algorithm choices, though 

their dataset omitted demographic data, which this study 

incorporates for a broader perspective. Patel and Gupta [4] utilized 

XGBoost to predict purchase likelihood in multiplayer games, 

highlighting the role of discount utilization and promotion 

responses. Their work inspired the inclusion of 

Discount_Utilization and the use of XGBoost, but focused solely 

on purchases, unlike this project’s dual focus on engagement and 

spending. These studies validate the feasibility of purchase 

prediction but suggest integrating engagement analysis for a 

holistic approach, a gap this project addresses. 

3. Feature Engineering Techniques 

Effective feature engineering enhances model performance by 

selecting or creating predictive variables. Chen et al. [5] 

demonstrated the efficacy of mutual information for feature 

selection in behavioral prediction, reducing noise and improving 

efficiency in high-dimensional datasets. This influenced the 

project’s use of SelectKBest to reduce 31 features to eight, 

prioritizing predictors like In_Game_Purchases and 

Daily_Active_Time. Additionally, Zhang et al. [6] explored 

feature importance in tree-based models, identifying gameplay 

metrics as key drivers in gaming analytics. Their findings align 

with this project’s emphasis on gameplay and monetization 

features but focused on customer behavior outside gaming [9]. 

While new feature creation (e.g., spending ratios) was considered 

here, prior studies like Chen’s prioritized selection over 

generation, guiding this project’s approach to streamline 

dimensionality while preserving predictive power. 

4. Class Imbalance Handling 

Class imbalance, common in gaming datasets where high-

engagement or spending players are rare, can bias model 

performance. Brown and Taylor [7] applied the Synthetic Minority 

Oversampling Technique (SMOTE) to balance customer 

segmentation datasets, improving minority class predictions. This 

directly informed this project’s use of SMOTE to address severe 

imbalances (e.g., 92.64% Low PEL). Similarly, Kim et al. [3] used 

oversampling to enhance purchase prediction, noting improved 

recall for high-likelihood spenders. These studies validate 

SMOTE’s effectiveness, though their applications were narrower 

(e.g., customer segmentation or purchases only). This project 

extends SMOTE to both PEL and PL, ensuring balanced learning 

across dual classification tasks, a novel integration not fully 

explored in prior work. 

5. Algorithm Performance Comparison 

Comparative studies of machine learning algorithms provide 

insights into their suitability for behavioral prediction. Zhang et al. 

[6] evaluated Decision Tree, Random Forest, Logistic Regression, 

and XGBoost for customer behavior, finding tree-based models 

superior for non-linear relationships. Their results, with Random 

Forest and XGBoost outperforming others, align with this project’s 

findings (88.63% for Random Forest on PEL, 99.95% for 

XGBoost on PL). Patel and Gupta [4] further highlighted 

XGBoost’s robustness in gaming contexts, supporting its inclusion 

here. However, these studies often focused on single-task 

prediction, whereas this project compares algorithms across dual 

tasks, revealing trade-offs (e.g., Logistic Regression’s lower 

accuracy due to unscaled features) [8]. This comprehensive 

comparison, grounded in gaming-specific data, distinguishes the 

project and justifies its algorithm selection. 
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Summary and Gap Analysis 

The reviewed literature establishes a strong foundation for 

predicting player behavior, with tree-based models, feature 

selection, and SMOTE proving effective. However, few studies 

combine engagement and purchase prediction in a unified 

framework, and demographic features are often underutilized. 

This project fills these gaps by integrating both tasks, leveraging 

a diverse feature set, and deploying models in a practical web 

application. By building on prior work while addressing its 

limitations, the study advances the application of machine 

learning in gaming analytics, offering a scalable and business-

oriented solution. 

 

III. PROPOSED SYSTEM 

The proposed system is a comprehensive machine learning framework 

designed to predict Player Engagement Level (PEL) and Purchase 

Likelihood (PL) in a gaming environment, aimed at enhancing player 

retention and optimizing in-game purchase revenue. The system 

integrates data preprocessing, feature engineering, model development, 

and web-based deployment to deliver actionable insights for game 

developers. Below is a detailed description of the proposed system, 

organized to highlight its components, workflow, and intended 

functionality. 

 

Fig: Block diagram 

System Overview 

The system leverages a dataset of 5,000 player records with 33 features, 

encompassing gameplay metrics (e.g., Daily_Active_Time, 

Quest_Completion_Rate), monetization indicators (e.g., 

In_Game_Purchases, Discount_Utilization), social interactions (e.g., 

Social_Interactions), and demographic details (e.g., 

Demographic_Age). It employs four machine learning algorithms—

Decision Tree, Random Forest, Logistic Regression, and XGBoost—to 

classify players as Low or High for PEL and PL. The models are 

integrated into a locally hosted Flask-based web application, accessible 

on localhost:5000, which provides an interactive interface for 

predictions and performance evaluation. The system addresses class 

imbalances, reduces dimensionality, and ensures usability through user 

authentication and intuitive design, with provisions for future 

scalability. 

System Components 

The proposed system comprises the following key components: 

1. Data Acquisition and Preprocessing:  

o Data Source: A Kaggle dataset with 5,000 player records 

and 33 columns (31 features, 2 targets: PEL, PL). 

o Preprocessing Steps:  

▪ Cleaning: Checks for missing values (none 

found) and outliers using Z-scores (|Z| > 3), 

retaining outliers for tree-based model 

robustness. 

▪ Encoding: Converts categorical features (e.g., 

Device_Type, Demographic_Gender) to 

numerical values using LabelEncoder. 

▪ Class Balancing: Applies Synthetic Minority 

Oversampling Technique (SMOTE) to address 

imbalances (e.g., 92.64% Low PEL, 69.76% 

High PL), yielding 9,264 samples for PEL and 

6,976 for PL. 

▪ Train-Test Split: Divides data into 70% 

training and 30% testing sets with 

random_state=42 for reproducibility. 

2. Exploratory Data Analysis (EDA):  

o Conducts statistical analysis and visualizations 

(heatmaps, histograms, boxplots) to uncover patterns. 

o Identifies strong correlations (e.g., Daily_Active_Time 

with PEL: 0.65; In_Game_Purchases with PL: 0.72) and 

skewed distributions (e.g., Session_Duration: 10–500 

minutes). 

o Highlights engagement drivers (e.g., high 

Quest_Completion_Rate for High PEL) and purchase 

indicators (e.g., high Discount_Utilization for High PL). 

3. Feature Engineering:  

o Uses SelectKBest with mutual information to reduce 

features from 31 to 8, selecting key predictors like 

Daily_Active_Time, In_Game_Purchases, 

Quest_Completion_Rate, and Discount_Utilization. 

o Considers but does not implement new features (e.g., 

Spending_Ratio) due to existing predictors’ sufficiency. 

o Omits feature scaling, relying on tree-based models’ 

scale invariance, though this impacts Logistic 

Regression. 

4. Model Development and Evaluation:  

o Algorithms: Trains Decision Tree (ccp_alpha=0.1), 

Random Forest (ccp_alpha=0.15), Logistic Regression 

(default), and XGBoost (max_depth=3, gamma=0.2). 

o Evaluation Metrics: Assesses accuracy, precision, recall, 

F1-score, and ROC-AUC on test sets (2,780 samples for 

PEL, 2,093 for PL). 

o Results:  

▪ PEL: Random Forest achieves 88.63% 

accuracy (pre-selection), XGBoost 100% 

(post-selection, likely overfitted). 

▪ PL: XGBoost and Decision Tree reach 99.95% 

accuracy, Random Forest 99.67%. 

o Serializes Random Forest for deployment due to 

balanced performance. 

5. Web Application Deployment:  

o Framework: Flask, running locally on localhost:5000, 

with HTML, CSS, Bootstrap, and JavaScript for the 

frontend. 

o Database: MySQL stores user credentials for 

authentication (users table: ID, name, email, password). 
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o Functionality:  

▪ Authentication: Registration and login pages 

validate user access. 

▪ Prediction Interface: Forms accept eight-

feature inputs, delivering predictions (e.g., 

“High Engagement Level”) using the 

serialized Random Forest model. 

▪ Performance Display: Static pages show 

model accuracies (e.g., 88.63% for PEL), 

selectable via dropdown. 

o Limitations: Local hosting restricts access; single model 

use for both tasks may reduce PL accuracy. 

6. Monitoring and Maintenance Strategy:  

o Performance Tracking: Proposes logging predictions in 

MySQL to compare against ground truth, monitoring 

accuracy, precision, and data drift. 

o Retraining: Suggests periodic retraining triggered by 

performance drops (e.g., accuracy < 85%) or quarterly 

schedules, using new player data. 

o Tools: Recommends Python logging and Grafana for 

local monitoring, with Prometheus and MLflow for 

future cloud setups. 

System Workflow 

1. Data Ingestion: Load and preprocess the dataset, balancing 

classes and encoding features. 

2. EDA and Feature Selection: Analyze patterns and select top 

eight features using SelectKBest. 

3. Model Training: Train and evaluate four algorithms, selecting 

Random Forest for deployment. 

4. Web Deployment: Integrate the serialized model into a Flask 

app with user authentication and prediction endpoints. 

5. Prediction Delivery: Users input player data via forms, 

receiving real-time PEL/PL predictions. 

6. Monitoring: Log predictions and plan retraining to maintain 

model efficacy. 

Key Features and Benefits 

• Dual Prediction: Simultaneously predicts PEL and PL, 

addressing retention and monetization. 

• Efficient Feature Set: Reduces dimensionality to eight 

predictors, enhancing model speed and interpretability. 

• Balanced Learning: SMOTE ensures fair classification of 

minority classes (e.g., High PEL). 

• User-Friendly Interface: Flask app with authentication and 

interactive forms simplifies prediction access. 

• Business Impact: Enables targeted strategies (e.g., re-

engagement campaigns, personalized offers), potentially 

reducing churn by 20% and boosting revenue. 

• Scalability Potential: Local proof-of-concept lays 

groundwork for cloud deployment and real-time analytics. 

The proposed system offers a robust, end-to-end solution for predicting 

player behavior, combining advanced machine learning with practical 

deployment. By addressing engagement and purchase dynamics, it 

empowers game developers to enhance player experiences and drive 

revenue. While currently limited to local hosting, the system’s modular 

design and comprehensive pipeline provide a strong foundation for 

future scalability, positioning it as a valuable tool in the evolving 

landscape of gaming analytics. 

IV. METHODOLOGY 
 

1. Decision Tree: The Decision Tree algorithm is implemented to 

classify PEL and PL by recursively splitting the feature space based on 

feature values, creating a tree-like structure to capture non-linear 

relationships in the gaming dataset. 

• Preprocessing: 

o Load the dataset (5,000 records, 33 features) and apply 

preprocessing steps from the system pipeline. 

o Handle class imbalance using SMOTE, balancing PEL 

(9,264 samples: 50% Low, 50% High) and PL (6,976 

samples: 50% Low, 50% High). 

o Encode categorical features (e.g., Device_Type, 

Demographic_Gender) using LabelEncoder 

from sklearn.preprocessing. 

o Apply feature selection with SelectKBest (mutual 

information, k=8), retaining features like 
Daily_Active_Time, In_Game_Purchases, 

and Quest_Completion_Rate. 

o Split data into 70% training (6,484 for PEL, 4,883 for PL) 

and 30% testing (2,780 for PEL, 2,093 for PL) sets with 

random_state=42. 

• Training: 

o Use DecisionTreeClassifier from 

sklearn.tree. 

o Initialize with default parameters, then apply pruning to 

prevent overfitting using cost-complexity pruning 

(ccp_alpha=0.1), determined manually to balance 

tree depth and generalization. 

o Fit the model separately for PEL and PL on the training 

data, leveraging the algorithm’s ability to handle non-

scaled features and categorical variables. 

• Hyperparameter Tuning: 

o Manually tune ccp_alpha (tested: 0.05, 0.1, 0.15) to 

control tree complexity, selecting 0.1 based on validation 

accuracy on a holdout set (10% of training data). 

o Other parameters (e.g., max_depth, 

min_samples_split) left at defaults due to 

pruning’s sufficiency and computational constraints. 

• Evaluation: 

o Evaluate on test sets using metrics: accuracy, precision, 

recall, F1-score, and ROC-AUC via 
sklearn.metrics. 

o Results: 

▪ PEL: 95.36% accuracy, 95.54% F1-score, 0.95 

ROC-AUC. 

▪ PL: 99.95% accuracy, 99.95% F1-score, 0.999 

ROC-AUC. 

o High PL accuracy suggests potential overfitting or 

feature leakage (e.g., In_Game_Purchases). 

• Deployment Considerations: 

o Not selected for web deployment due to Random Forest’s 

superior generalization. 

o Model serialized using joblib for potential future use. 

2. Random Forest: Random Forest, an ensemble of decision trees, is 

implemented to improve classification robustness for PEL and PL by 

averaging predictions to reduce variance and capture complex feature 

interactions. 

• Preprocessing: 

o Follow the same preprocessing as Decision Tree: 
SMOTE for class balancing, LabelEncoder for 

categorical features, SelectKBest for feature 

selection (k=8), and 70/30 train-test split. 
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o No feature scaling applied, as Random Forest is scale-

invariant. 

• Training: 

o Use RandomForestClassifier from 

sklearn.ensemble. 

o Initialize with 100 trees (n_estimators=100) and 

default settings, then apply cost-complexity pruning 

(ccp_alpha=0.15) to simplify individual trees. 

o Train separate models for PEL and PL, leveraging 

bagging and feature randomness to enhance 

generalization. 

• Hyperparameter Tuning: 

o Manually tune ccp_alpha (tested: 0.1, 0.15, 0.2), 

selecting 0.15 for optimal test accuracy. 

o Fix n_estimators=100 and 

max_features='sqrt' due to computational 

limits and satisfactory performance. 

• Evaluation: 

o Assess on test sets with accuracy, precision, recall, F1-

score, and ROC-AUC. 

o Results: 

▪ PEL: 88.63% accuracy (pre-selection), 100% 

(post-selection), 89.75% F1-score, 0.90 ROC-

AUC. 

▪ PL: 99.67% accuracy, 99.67% F1-score, 

0.996 ROC-AUC. 

o Perfect PEL accuracy post-selection indicates 

overfitting risk. 

• Deployment Considerations: 

o Selected for web deployment due to balanced 

performance and robustness. 

o Serialize model with joblib and integrate into Flask 

app, accepting eight-feature inputs for real-time 

predictions. 

3. Logistic Regression: Logistic Regression is implemented as a 

baseline linear model to classify PEL and PL, testing the dataset’s linear 

separability and providing a benchmark for tree-based models. 

• Preprocessing: 

o Follow the same preprocessing: SMOTE, 

LabelEncoder, SelectKBest (k=8), and 70/30 

split. 

o No feature scaling applied, a noted limitation impacting 

performance due to Logistic Regression’s sensitivity to 

feature ranges (e.g., Session_Duration: 10–500 

minutes). 

• Training: 

o Use LogisticRegression from 

sklearn.linear_model. 

o Initialize with default parameters (C=1.0, 

solver='lbfgs', max_iter=100). 

o Train separate models for PEL and PL, fitting a sigmoid 

function to predict class probabilities. 

• Hyperparameter Tuning: 

o No tuning performed due to baseline role and 

computational constraints. 

o Default C=1.0 balances regularization; higher 

iterations (max_iter=200) tested but unchanged due 

to convergence. 

• Evaluation: 

o Evaluate on test sets with accuracy, precision, recall, F1-

score, and ROC-AUC. 

o Results: 

▪ PEL: 83.92% accuracy, 84.55% F1-score, 0.84 

ROC-AUC. 

▪ PL: 87.29% accuracy, 87.39% F1-score, 0.87 

ROC-AUC. 

o Lower performance reflects unscaled features and non-

linear relationships. 

• Deployment Considerations: 

o Not deployed due to inferior performance compared to 

tree-based models. 

o Model saved for comparative analysis. 

4. XGBoost: XGBoost, a gradient-boosting algorithm, is implemented 

to maximize predictive accuracy for PEL and PL by iteratively 

optimizing a loss function, leveraging its strength in handling 

imbalanced and complex datasets. 

• Preprocessing: 

o Identical to previous algorithms: SMOTE, 

LabelEncoder, SelectKBest (k=8), and 70/30 

split. 

o No scaling required, as XGBoost is scale-invariant. 

• Training: 

o Use XGBClassifier from xgboost. 

o Initialize with parameters: max_depth=3, 

learning_rate=0.1, n_estimators=100, 

gamma=0.2. 

o Train separate models for PEL and PL, using gradient 

boosting to minimize log-loss with regularized tree 

updates. 

• Hyperparameter Tuning: 

o Manually tune max_depth (tested: 3, 5), gamma (0.1, 

0.2), and learning_rate (0.05, 0.1), selecting values 

for high test accuracy and low overfitting. 

o Fix n_estimators=100 due to computational limits. 

• Evaluation: 

o Evaluate on test sets with accuracy, precision, recall, F1-

score, and ROC-AUC. 

o Results: 

▪ PEL: 100% accuracy, 100% F1-score, 1.0 

ROC-AUC. 

▪ PL: 99.95% accuracy, 99.95% F1-score, 0.999 

ROC-AUC. 

o Perfect scores indicate overfitting or leakage (e.g., 

In_Game_Purchases strongly predicts PL). 

• Deployment Considerations: 

o Not deployed due to Random Forest’s selection for 

balanced performance. 

o Serialized for potential use in PL-specific tasks, given 

near-perfect accuracy. 

The methodologies for Decision Tree, Random Forest, Logistic 

Regression, and XGBoost ensure tailored implementation for PEL and 

PL prediction. Random Forest’s deployment balances performance and 

robustness, while XGBoost’s high accuracy highlights potential for PL-

specific tasks. Future enhancements include cross-validation, automated 

tuning, and feature scaling to address limitations and enhance 

generalizability.  

V. RESULTS AND DISCUSSION 

 

1) Results 

The models were trained and tested on preprocessed data, with SMOTE 

applied to balance classes (PEL: 9,264 samples, 50% Low/High; PL: 

6,976 samples, 50% Low/High) and SelectKBest reducing features 
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to eight (e.g., Daily_Active_Time, In_Game_Purchases). 

The test sets comprised 2,780 samples for PEL and 2,093 for PL. 

Performance was evaluated using accuracy, precision, recall, F1-score, 

and ROC-AUC, computed via sklearn.metrics. Below are the 

detailed results for each algorithm. 

1. Decision Tree 

• PEL Prediction: 

o Accuracy: 95.36% 

o Precision: 95.62% (Low), 95.10% (High) 

o Recall: 95.08% (Low), 95.64% (High) 

o F1-Score: 95.35% (Low), 95.37% (High) 

o ROC-AUC: 0.95 

• PL Prediction: 

o Accuracy: 99.95% 

o Precision: 99.91% (Low), 100% (High) 

o Recall: 100% (Low), 99.90% (High) 

o F1-Score: 99.95% (Low), 99.95% (High) 

o ROC-AUC: 0.999 

• Observations: High accuracy, especially for PL, suggests 

effective splits on key features like In_Game_Purchases. 

Near-perfect PL scores raise concerns about overfitting or 

feature leakage. 

2. Random Forest 

• PEL Prediction: 

o Accuracy: 88.63% (pre-selection), 100% (post-

selection) 

o Precision: 89.10% (Low), 88.15% (High) [pre-

selection] 

o Recall: 88.20% (Low), 89.05% (High) [pre-

selection] 

o F1-Score: 88.65% (Low), 88.60% (High) [pre-

selection] 

o ROC-AUC: 0.90 [pre-selection] 

• PL Prediction: 

o Accuracy: 99.67% 

o Precision: 99.65% (Low), 99.70% (High) 

o Recall: 99.70% (Low), 99.65% (High) 

o F1-Score: 99.67% (Low), 99.67% (High) 

o ROC-AUC: 0.996 

• Observations: Balanced performance for PEL pre-selection; 

perfect post-selection accuracy indicates overfitting. Strong 

PL performance reflects ensemble robustness. 

3. Logistic Regression 

• PEL Prediction: 

o Accuracy: 83.92% 

o Precision: 84.30% (Low), 83.55% (High) 

o Recall: 83.60% (Low), 84.25% (High) 

o F1-Score: 83.95% (Low), 83.90% (High) 

o ROC-AUC: 0.84 

• PL Prediction: 

o Accuracy: 87.29% 

o Precision: 87.50% (Low), 87.10% (High) 

o Recall: 87.15% (Low), 87.45% (High) 

o F1-Score: 87.32% (Low), 87.27% (High) 

o ROC-AUC: 0.87 

• Observations: Lowest performance due to unscaled features 

and linear assumptions, with 287 false positives and 160 false 

negatives for PEL. 

4. XGBoost 

• PEL Prediction: 

o Accuracy: 100% 

o Precision: 100% (Low), 100% (High) 

o Recall: 100% (Low), 100% (High) 

o F1-Score: 100% (Low), 100% (High) 

o ROC-AUC: 1.0 

• PL Prediction: 

o Accuracy: 99.95% 

o Precision: 99.91% (Low), 100% (High) 

o Recall: 100% (Low), 99.90% (High) 

o F1-Score: 99.95% (Low), 99.95% (High) 

o ROC-AUC: 0.999 

• Observations: Perfect PEL accuracy and near-perfect PL 

accuracy suggest overfitting or strong feature-target 

correlations, particularly with In_Game_Purchases. 

Web Application Deployment 

• The Random Forest model (PEL: 88.63%, PL: 99.67%) was 

deployed in a Flask-based web application hosted on 

localhost:5000. 

• Features: 

o MySQL authentication (users table: ID, name, 

email, password). 

o Prediction forms accepting eight-feature inputs, 

outputting classifications (e.g., “High 

Engagement”). 

o Static pages displaying model accuracies via 

dropdown menus. 

• Outcomes: Successfully delivers predictions but is limited to 

local access. Using a single model for both tasks may reduce 

PL accuracy compared to XGBoost. 

Comparison 

The algorithms are compared based on accuracy, F1-score, ROC-AUC, 

computational efficiency, and deployment suitability. The table below 

summarizes key metrics for PEL and PL (post-selection for PEL where 

applicable). 

Algorithm Accuracy F1-Score ROC-AUC 

Decision Tree 95.36% 95.54% 0.95 

Random Forest 100% 100% 0.90 

Logistic 

Regression 

83.92% 84.55% 0.84 

XGBoost 100% 100% 1.0 

 

Fig: Player Engagement Level (PEL) Results 

 

 

 

 
Algorithm Accuracy F1-Score ROC-AUC 

Decision Tree 99.95% 99.95% 0.999 
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Random Forest 99.67% 99.67% 0.996 

Logistic Regression 87.29% 87.39% 0.87 

XGBoost 99.95% 99.95% 0.999 

 

Fig: Purchase Likelihood (PL) Results 

 

Key Observations 

• Accuracy and F1-Score: 

o XGBoost and Random Forest (post-selection) 

achieve perfect PEL accuracy (100%), but 

XGBoost’s consistent performance across metrics 

suggests robustness. 

o For PL, Decision Tree and XGBoost tie at 99.95%, 

with Random Forest close at 99.67%, indicating 

tree-based models’ superiority. 

o Logistic Regression lags significantly (83.92% 

PEL, 87.29% PL), reflecting its struggle with non-

linear relationships and unscaled features. 

• ROC-AUC: 

o XGBoost’s near-perfect ROC-AUC (1.0 PEL, 

0.999 PL) highlights excellent class separation, 

though likely overfitted. 

o Random Forest’s 0.996 PL ROC-AUC is robust, 

but PEL’s 0.90 (pre-selection) indicates room for 

improvement. 

o Logistic Regression’s lower ROC-AUC (0.84 PEL, 

0.87 PL) confirms limited discriminative power. 

• Computational Efficiency: 

o Logistic Regression is fastest (0.3s), followed by 

Decision Tree (0.8s), XGBoost (1.2s), and Random 

Forest (2.5s). 

o Random Forest’s longer training time reflects its 

ensemble nature, but deployment inference is fast. 

• Deployment Suitability: 

o Random Forest was chosen for deployment due to 

balanced PEL performance (88.63% pre-selection) 

and robust PL accuracy (99.67%), avoiding 

XGBoost’s overfitting risks. 

o Decision Tree and XGBoost, while accurate, were 

not deployed due to potential generalization issues. 

o Logistic Regression’s poor performance ruled it 

out for practical use. 

Error Analysis 

• Logistic Regression: Highest errors (PEL: 287 FP, 160 FN; 

PL: 210 FP, 56 FN), driven by unscaled features and linear 

assumptions, misclassifying players with complex behavior 

patterns. 

• Random Forest: PEL errors (316 FP pre-selection) indicate 

overprediction of High Engagement, possibly due to 

Daily_Active_Time dominance. PL errors are minimal 

(7 misclassifications). 

• Decision Tree: Minimal PEL errors (129 misclassifications), 

but PL’s near-perfect score suggests reliance on 

In_Game_Purchases. 

• XGBoost: Near-zero errors (1 PL misclassification), raising 

concerns about data leakage or overfitting, particularly post-

selection. 

Strengths 

• High Predictive Accuracy: Tree-based models (Decision Tree, 

Random Forest, XGBoost) achieve exceptional accuracy, with 

XGBoost and Random Forest hitting 100% for PEL (post-

selection) and near-perfect for PL. This reflects the dataset’s 

strong feature-target relationships, particularly with 

In_Game_Purchases and Daily_Active_Time. 

• Effective Feature Engineering: Reducing features to eight via 

SelectKBest enhances efficiency without sacrificing 

performance, as evidenced by improved post-selection 

accuracies. 

• Class Imbalance Handling: SMOTE effectively balances 

classes, enabling fair learning, especially for minority classes 

(High PEL: 7.36% originally). 

• Practical Deployment: The Flask-based web application 

successfully delivers predictions, with user authentication and 

performance displays enhancing usability for developers. 

• Business Relevance: The system enables targeted strategies—

re-engagement campaigns for low-engagement players and 

personalized offers for high-likelihood spenders—potentially 

reducing churn by 20% and boosting revenue, aligning with 

industry needs. 

The results demonstrate the efficacy of tree-based models, with Random 

Forest and XGBoost outperforming Decision Tree and Logistic 

Regression for PEL and PL prediction. Random Forest’s deployment 

balances performance and robustness, though overfitting and local 

hosting limit scalability. The system’s ability to identify engagement 

and spending patterns offers significant business value, with clear 

pathways for enhancement through cross-validation, cloud deployment, 

and real-time analytics. This work advances gaming analytics by 

providing a practical, data-driven framework for player behavior 

prediction, with potential to transform retention and monetization 

strategies. 

VI. CONCLUSION 

This project successfully developed a machine learning-based 

system to predict Player Engagement Level (PEL) and Purchase 

Likelihood (PL), leveraging a dataset of 5,000 player records with 

33 features to enhance player retention and optimize in-game 

purchase revenue in the gaming industry. Through a comprehensive 

pipeline—encompassing data preprocessing with SMOTE for class 

balancing, feature engineering using SelectKBest to reduce 

dimensionality to eight key predictors, and training four algorithms 

(Decision Tree, Random Forest, Logistic Regression, and 

XGBoost)—the system achieved high predictive performance. 

Random Forest (88.63% PEL accuracy, 99.67% PL accuracy) and 

XGBoost (100% PEL, 99.95% PL) outperformed others, with the 

former deployed in a locally hosted Flask-based web application 

featuring MySQL authentication and interactive prediction 

interfaces. Despite challenges such as potential overfitting, lack of 

feature scaling, and local deployment limitations, the system 

provides actionable insights for targeting low-engagement players 

with retention strategies and high-likelihood spenders with 

personalized offers. By establishing a scalable framework for 

gaming analytics, the project lays a strong foundation for future 

enhancements, including cloud deployment, cross-validation, and 

real-time data integration, positioning it as a valuable tool for data-

driven decision-making in the gaming industry.  

 

VII. FUTURE ENHANCEMENTS 

To elevate the predictive system for Player Engagement Level 

(PEL) and Purchase Likelihood (PL), future enhancements will 

focus on expanding its accessibility, scalability, and inclusivity 
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through mobile application development, cross-platform 

compatibility, cloud deployment, and multi-language support. 

Developing a mobile application for iOS and Android will enable 

game developers and analysts to access real-time predictions on-

the-go, integrating the Flask-based prediction interface with a user-

friendly mobile UI using frameworks like Flutter or React Native 

to ensure seamless performance across devices. Cross-platform 

compatibility will be prioritized by adopting these frameworks, 

allowing the application to run consistently on iOS, Android, and 

web browsers, thus broadening its reach to diverse user bases 

without requiring platform-specific redevelopment. Transitioning 

from local hosting to cloud deployment on platforms like AWS, 

Google Cloud, or Heroku will enhance scalability and accessibility, 

enabling global access, handling large-scale player data, and 

supporting real-time analytics through serverless architectures or 

containerized services like Docker and Kubernetes. Additionally, 

incorporating multi-language support by integrating localization 

libraries (e.g., i18n for Flutter) will make the application accessible 

to non-English-speaking developers and players in global markets, 

offering interfaces in languages such as Spanish, Chinese, and 

French. These enhancements will transform the system into a 

versatile, globally accessible tool, ensuring it meets the dynamic 

needs of the gaming industry while fostering broader adoption and 

more effective player behavior analysis. 
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