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Abstract—Heterogeneous data integration from electronic 
health records (EHRs) and wearable devices enhances predictive 
modeling in healthcare. This study proposes a hybrid model 
combining XGBoost and Long Short-Term Memory (LSTM) 
networks to predict health risks by leveraging structured EHR 
data (e.g., age, BMI, blood pressure) and time-series wearable 
data (e.g., heart rate, SpO2). The ensemble model averages prob- 
abilistic predictions from both models, achieving an AUC-ROC of 
0.92, surpassing individual model performances (XGBoost: 0.85, 
LSTM: 0.88). Feature importance from XGBoost and temporal 
pattern analysis from LSTM provide interpretable insights, 
supporting clinical decision-making. This approach demonstrates 
the potential of multi-modal learning for personalized medicine 
and real-time risk stratification. 

Index Terms—Electronic Health Records, Wearable Devices, 
XGBoost, LSTM, Health Risk Prediction, Multi-Modal Data 
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• Integrate EHR and wearable data for health risk predic- 

tion. 

• Develop and evaluate XGBoost and LSTM models for 

static and dynamic data, respectively. 

• Create an ensemble model for improved accuracy. 

• Compare model performance using metrics like AUC- 

ROC and F1-score. 

C. Significance 

This research advances precision medicine by combining 

static and dynamic data for comprehensive risk assessment, 

enabling early interventions and supporting clinical decision- 

making [5]. 

II. METHODOLOGY 

I.  INTRODUCTION 

The integration of electronic health records (EHRs) and 

wearable device data offers a transformative approach to 

health risk prediction, enabling personalized and proactive 

healthcare [1]. EHRs provide structured clinical data, such 

as demographics and medical history, while wearables offer 

continuous physiological measurements, like heart rate and 

activity levels [2]. However, challenges such as data het- 

erogeneity, interoperability, and model interpretability hinder 

effective utilization [3]. This study addresses these challenges 

by developing an ensemble model combining XGBoost for 

static EHR data and LSTM for time-series wearable data to 

predict health risks accurately. 

A. Problem Statement 

Current predictive models often rely on single data sources, 

missing critical patterns from complementary data. EHR- 

based models overlook real-time physiological changes, while 

wearable-based models miss static risk factors like comorbidi- 

ties [4]. This study aims to integrate these data sources to 

enhance prediction accuracy and clinical utility. 

B. Objectives 

The objectives are to: 

A. Data Collection 

Data was sourced from de-identified EHRs and wearable 

devices. EHR data included demographics, diagnoses (ICD-10 

codes), lab results, and medications from a longitudinal clini- 

cal database [6]. Wearable data, collected via APIs (e.g., Fitbit, 

Apple HealthKit), included heart rate, steps, sleep quality, and 

activity levels [7]. Patient data was matched using unique 

identifiers, ensuring temporal alignment and compliance with 

HIPAA regulations. 

B. Data Preprocessing 

Preprocessing involved cleaning duplicates, imputing miss- 

ing values (using mean/median or KNN), and normalizing 

data. Temporal alignment synchronized EHR and wearable 

data, addressing sparsity in EHRs and noise in wearable data 

[8]. 

C. Feature Engineering 

Static features from EHRs (e.g., age, BMI, cholesterol) and 

dynamic features from wearables (e.g., heart rate variability, 

sleep patterns) were extracted. Feature selection used cor- 

relation analysis and recursive feature elimination to reduce 

dimensionality [9]. 
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D. Model Design 

The hybrid model comprises: 

• XGBoost: Processes tabular EHR data, leveraging gradi- 

ent boosting for handling missing values and capturing 

nonlinear interactions [10]. 

• LSTM: Analyzes time-series wearable data, modeling 

temporal dependencies for physiological trends [11]. 

• Ensemble: Averages probabilistic predictions from XG- 

Boost and LSTM using late fusion [12]. 

E. Model Training and Validation 

Data was split into 70% training, 15% validation, and 15% 

test sets. Five-fold cross-validation ensured robustness, with 

hyperparameter tuning via grid search. Evaluation metrics 

included accuracy, precision, recall, F1-score, and AUC-ROC 

[13]. 

F. Tools and Technologies 

Python libraries (e.g., scikit-learn, TensorFlow) and GPU- 

based computing were used for model implementation. Data 

processing utilized pandas and NumPy [14]. 

III. RESULTS 

TABLE I 
PERFORMANCE COMPARISON OF MODELS 

 

Model AUC-ROC Precision Recall F1-Score 

XGBoost 0.85 0.82 0.80 0.80 
LSTM 0.88 0.78 0.85 0.81 

Ensemble 0.92 0.83 0.87 0.84 

 

 

 

C. Visualization 

Figure 1 shows ROC curves, with the ensemble model 

achieving the highest AUC. Feature importance analysis (Fig- 

ure 2) highlighted age, blood pressure, and BMI as key 

predictors for XGBoost, while LSTM attention maps identified 

periods of high physical stress and poor sleep quality as 

significant. 

A. Experimental Setup 

The dataset included 10,000 patient records with overlap- 

ping EHR and wearable data. Models were trained on a GPU 

cluster, with performance evaluated on a held-out test set. 

B. Model Performance 

• XGBoost: Achieved AUC-ROC of 0.85, precision of 

0.82, and F1-score of 0.80, excelling in static feature 

analysis but limited in capturing temporal changes. 

• LSTM: Recorded AUC-ROC of 0.88, recall of 0.85, and 

F1-score of 0.81, effective for temporal patterns but less 

precise for static data. 

• Ensemble: Outperformed individual models with AUC- 

ROC of 0.92, precision of 0.83, recall of 0.87, and F1- 

score of 0.84, balancing static and dynamic insights. 

 

 
Fig. 1. ROC Curves for XGBoost, LSTM, and Ensemble Models 

 
 

 

 
 

 

 
 

 

 

 

Fig. 2. XGBoost Feature Importance 

 

 

D. Case Studies 

Four case studies demonstrated clinical applicability: 

• Cardiovascular Risk: The ensemble model (AUC 0.92) 

outperformed XGBoost (0.86) by integrating heart rate 

variability with hypertension history. 

• Diabetes Complications: Combining glucose trends and 

EHR data improved AUC from 0.84 (XGBoost) to 0.90. 

• Mental Health: Wearable data enhanced detection of 

depressive episodes (AUC 0.88 vs. 0.80). 

• Fall Risk: Gait patterns and medical history integration 

yielded AUC 0.90. 

IV. DISCUSSION 

The ensemble model’s superior performance (AUC-ROC 

0.92) validates the hypothesis that integrating EHR and wear- 

able data enhances health risk prediction. XGBoost provided 

interpretable insights via feature importance, while LSTM 

captured temporal patterns, making the hybrid approach robust 

and clinically relevant [15]. Challenges included data quality 

(e.g., missing wearable data) and computational complexity, 

necessitating advanced preprocessing and optimization [16]. 
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The model’s generalizability was tested across demographics, 

showing consistent performance but requiring further valida- 

tion on diverse populations. 

V. CONCLUSION 

This study demonstrates the efficacy of integrating EHR 

and wearable data using a hybrid XGBoost-LSTM model 

for health risk prediction. The ensemble approach achieved 

superior performance (AUC-ROC 0.92) and interpretability, 

supporting real-time clinical decision-making. Future work 

should focus on expanding data diversity, real-time monitor- 

ing, and clinical integration to enhance generalizability and 

practical deployment [17]. 
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