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Abstract—The increasing volume of data in educational in-
stitutions provides a significant opportunity to apply machine
learning for enhancing student outcomes. Early and accurate
identification of students at risk of academic failure is crucial
for providing timely, targeted support and improving overall
retention rates. This paper presents a comprehensive comparative
analysis of several supervised machine learning models for
predicting student performance. We utilize a public dataset com-
posed of demographic, academic, and behavioral features to train
and evaluate multiple classifiers, including Logistic Regression,
Decision Trees, Random Forest, Support Vector Machines, and
K-Nearest Neighbors. The models are assessed based on standard
performance metrics: accuracy, precision, recall, and F1-score.
Our experimental results demonstrate that the Random Forest
classifier achieves the highest accuracy of 89.7%, outperforming
other models. We also identify key predictive features, such as
previous course failures and study time, which are strong indica-
tors of future performance. This study confirms the potential of
machine learning models to be integrated into institutional early
warning systems, enabling educators to intervene effectively and
foster a more supportive learning environment.

Index Terms—Educational Data Mining, Machine Learning,
Student Performance, Predictive Analytics, Early Warning Sys-
tem, Classification

1. INTRODUCTION

The landscape of modern education is undergoing a signif-
icant transformation, driven by the integration of technology
and the vast amounts of data generated by students. Learning
Management Systems (LMS), online portals, and administra-
tive databases log gigabytes of information daily, capturing
everything from quiz scores and forum posts to attendance
records and demographic details. This field, broadly known
as Educational Data Mining (EDM), seeks to use this data to
understand student learning and improve educational outcomes
[1].

One of the most pressing challenges in higher education
is student attrition, or ’dropping out.” High dropout rates not
only represent a significant loss of potential for individuals but
also result in substantial financial losses for institutions [2].
Many students who struggle academically often do so silently
until their problems become irreversible, such as at the end of
a semester when they fail a final exam. The traditional “one-
size-fits-all” educational model often fails to identify these
at-risk students in time for effective intervention [3].
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This challenge presents a clear opportunity for the applica-
tion of predictive analytics. By leveraging machine learning
(ML), we can analyze historical student data to build models
that identify patterns associated with academic success and
failure. These models can then be used to predict the perfor-
mance of current students, flagging those who are at a high
risk of failing or dropping out.

The primary motivation for this research is to develop a
reliable and interpretable model for early student performance
detection. An effective predictive system can serve as an “early
warning system” for educators, counselors, and administrators.
Such a system would allow institutions to move from a reactive
to a proactive support model. Instead of waiting for students
to fail, resources such as tutoring, academic counseling, and
wellness services can be allocated to those who need them
most, precisely when they need them [4].

This paper makes several key contributions to the field.
First, we provide a thorough preprocessing and feature en-
gineering methodology for a common type of educational
dataset. Second, we conduct a rigorous comparative analysis
of five popular machine learning classification algorithms to
determine the most effective model for this prediction task.
Third, we identify and discuss the most significant features that
influence student performance, providing actionable insights
for educators. Finally, we discuss the practical and ethical
implications of deploying such a system within an educational
institution.

The remainder of this paper is organized as follows. Sec-
tion II provides a review of related work in Educational
Data Mining and student performance prediction. Section III
details the methodology, including dataset description, data
preprocessing, feature selection, and the machine learning
models used. Section IV presents the experimental results and
a detailed analysis of each model’s performance. Section V
discusses the broader implications and limitations of the study.
Finally, Section VI concludes the paper and suggests directions
for future research.

II. LITERATURE REVIEW

The application of data mining and machine learning in
education is not a new concept. The field of Educational
Data Mining (EDM) has grown substantially over the last
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two decades, focusing on developing methods to explore the
unique types of data that come from educational settings [1].
This section reviews previous research in three key areas:
common predictors of student performance, machine learn-
ing techniques applied in EDM, and existing early warning
systems.

A. Key Predictors of Student Performance

A significant portion of EDM research has focused on
identifying the factors that most strongly correlate with aca-
demic success. These factors can be broadly grouped into three
categories:

- Demographic Features: These include attributes such as
gender, age, family background (e.g., parental education,
family size, socio-economic status), and daily commute
(e.g., travel time) [5]. While some studies have found
these features to be predictive, they are often contro-
versial and can introduce ethical concerns about bias, as
discussed later in this paper.

- Academic History Features: This is often the most
powerful set of predictors. It includes a student’s past per-
formance, such as grades in previous courses (e.g., first-
and second-period grades), history of course failures, and
admission scores [6]. The simple principle that “past
performance is the best predictor of future performance”
holds true in many educational models.

- Behavioral and Engagement Features: With the rise of
Learning Management Systems (LMS) like Moodle and
Blackboard, researchers can now track student behavior
in real-time. This includes features like the number of
logins, time spent on course materials, participation in
online forums, frequency of quiz attempts, and regularity
of assignment submissions [7], [8]. These features are
particularly valuable because they are “malleable”—that
is, they can be changed through intervention.

Our study draws upon these categories by selecting a dataset
that includes a mix of demographic, academic, and behavioral
attributes to build a holistic model.

B. Machine Learning Models in EDM

Researchers have applied a wide array of machine learning
algorithms to the task of student performance prediction. The
choice of algorithm often depends on the dataset size, the
nature of the features (e.g., categorical vs. numerical), and
the need for model interpretability.

Early studies often relied on traditional statistical methods
like linear regression to predict continuous outcomes (e.g.,
final grade) or logistic regression for classification (e.g.,
pass/fail) [9]. These models are highly interpretable but as-
sume a linear relationship between the features and the target.
Decision Trees (DTs) have been widely used due to their
high interpretability. A DT model creates a flowchart-like
structure that is easy for educators to understand [10]. For
example, a tree might show that if a student has ‘failures ¢ 1°
and ‘studytime j 2 hours/week", they are classified as “at-risk.”
However, single decision trees can be prone to overfitting.

To address this, ensemble methods like Random Forests
(RF) and Gradient Boosting have become popular. Random
Forests, in particular, have shown excellent performance in
many EDM studies. They operate by building a multitude of
decision trees and outputting the class that is the mode of the
classes from individual trees, which generally leads to higher
accuracy and robustness [11].

Other common algorithms include Naive Bayes, which
is simple and computationally efficient, and Support Vector
Machines (SVMs), which are effective in high-dimensional
spaces [12]. In recent years, deep learning models, such as
Artificial Neural Networks (ANNSs), have also been applied,
often showing high accuracy but suffering from a ”black box”
nature, making them difficult to interpret [13].

C. Early Warning Systems

The ultimate goal of predictive modeling in education is
often the creation of an “Early Warning System” (EWS). An
EWS is a practical application that integrates ML models
into the institutional workflow to provide real-time alerts to
advisors, instructors, and students themselves [4].

Purdue University’s “’Signals” project is a well-known ex-
ample. It provided students with real-time, color-coded (red,
yellow, green) feedback on their likelihood of success in
a course based on their effort, performance, and academic
history [14]. Studies on Signals showed that students who
received these alerts and took action (e.g., visited a tutor) had
improved outcomes.

Our research aims to provide a robust methodological foun-
dation for developing such an EWS, focusing on model accu-
racy and feature identification to ensure the alerts generated
are both reliable and actionable. We build upon previous work
by performing a systematic comparison of several of the most
promising and commonly used classifiers on a standardized
dataset.

[II. METHODOLOGY

This section describes the systematic process we followed to
build and evaluate our predictive models. This process includes
a description of the dataset, the data preprocessing steps,
the feature engineering and selection process, the machine
learning models chosen for comparison, and the metrics used
for evaluation.

A. Dataset Description

For this study, we used the publicly available ”Student Per-
formance Data Set” from the UCI Machine Learning Repos-
itory [15]. This dataset was collected from two Portuguese
secondary schools and contains data on 395 students. The
dataset is well-suited for this task as it includes a rich variety
of 33 attributes, which fall into our three main categories:

3 3

- Demographic: ‘school‘, ‘sex‘, ‘age‘, ‘address‘ (ur-
ban/rural), ‘famsize‘ (family size), ‘Pstatus® (parent’s
cohabitation status), ‘Medu‘ (mother’s education), ‘Fedu*
(father’s education), ‘Mjob* (mother’s job), ‘Fjob‘ (fa-
ther’s job).
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- Behavioral: ‘traveltime‘, ‘studytime‘, ‘freetime‘, ‘goout
(going out with friends), ‘Dalc® (workday alcohol
consumption), ‘Walc® (weekend alcohol consumption),
‘health® (current health status), ‘internet® (internet access
at home), ‘romantic‘ (in a romantic relationship).

- Academic: ‘failures’ (number of past class failures),
‘schoolsup‘ (extra educational support), ‘famsup® (family
educational support), ‘paid® (extra paid classes), ‘ac-
tivities* (extra-curricular activities), ‘nursery‘ (attended
nursery school), ‘higher® (wants to take higher education),
‘absences® (number of school absences).

The dataset also includes the first-period grade (‘G1°)

and second-period grade (‘G2°), which are crucial academic
history features. The final grade (‘G3°) is our target variable.

B. Data Preprocessing and Feature Engineering

Raw data is rarely in a format suitable for direct use
with machine learning algorithms. Our preprocessing pipeline
consisted of several key steps:

1. Target Variable Creation: The original target variable,

‘G3°, is a numerical grade from 0 to 20. For a classification goout .

task aimed at identifying at-risk students, this is more useful
as a binary variable. We defined “at-risk” (or ”Fail”) as any
student who did not achieve a passing grade. Assuming a
passing grade is 10 (50%), we transformed ‘G3° into a binary
variable ‘status‘:

- status = 0 (Fail) if G3 < 10

- status = 1 (Pass) if G3 = 10
This transformation resulted in a reasonably balanced dataset,
which is important for training classifiers.

2. Handling Missing Values: The dataset was remarkably
clean and contained no missing values, so no imputation was
necessary.

3. Feature Encoding: Machine learning algorithms require
numerical input. We converted all categorical features into a
numerical format.

- Binary Features: Features with two options (e.g., ‘sex

- ’M’/’F’, “internet’ - ’yes’/’no”) were converted to 0 and
1.

- Ordinal Features: Features with a clear order (e.g.,
‘Medu’ - 0 to 4) were left as integers.

- Nominal Features: Features with no intrinsic order (e.g.,
‘Mjob® - ’teacher’, ’health’, ’services’) were encoded
using One-Hot Encoding. This process creates new binary
columns for each category to avoid implying a false
ordinal relationship.

4. Feature Scaling: Algorithms like SVM and K-NN are
sensitive to the scale of features. For example, the ‘absences*
feature (0-75) would have a much larger influence than ‘study-
time® (1-4). We used ‘StandardScaler® from the Scikit-learn
library to normalize all numerical features, giving them a mean
of 0 and a standard deviation of 1.

3

C. Feature Selection

With a large number of features (especially after one-hot
encoding), there is a risk of including irrelevant or redundant
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failures | [ o -
absences | [Je-1072 3
Medu | a4 102 -
studytime - []s-102 -
M- w02 L
freetime 4 [J2-102 =
age | []2-102 =
health | [J1-102 =

data, which can decrease model performance and increase
training time. We used the Gini impurity-based feature im-
portance mechanism, which is built into the Random Forest
model, to identify the most predictive features. This method
measures how much each feature contributes to reducing
impurity (i.e., making correct classifications) across all the
trees in the forest. The relative importance scores are then
normalized.

Feature Importance Scores (Top 10)

\ \ \ \ \ \ \
0 5-1020.1 015 0.2 0.25 03

Relative Importance (Gini)

Fig. 1. Relative importance of the top 10 features in a trained Random Forest
model. ‘G2 (second-period grade) and ‘G1° (first-period grade) are the most
dominant predictors.

As shown in Fig. 1, the student’s performance in the first
two periods (‘G1° and ‘G2°) and their history of ‘failures® are
overwhelmingly the most important predictors. This strongly
suggests that academic history is the most critical factor in
determining future success.

D. Machine Learning Models

We selected five widely-used and well-understood classifi-
cation algorithms for our comparative analysis.

1. Logistic Regression (LR): A statistical model that is
often used as a strong baseline for binary classification. It
models the probability of the default class (e.g., ”Pass”) using
a logistic function. It is highly interpretable but assumes a
linear relationship between the features and the target. The

probability is given by:
1
P(y=1|x) = (D

1 + e~ (6o+81x1+...+6nxn)

where 8; are the model coefficients.

2. Decision Tree (DT): A non-parametric model that learns
simple decision rules from the data, represented in a tree
structure. It is very easy to visualize and understand, making
it a favorite in domains where interpretability is key. However,
it can easily overfit the training data.
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3. Random Forest (RF): An ensemble model that corrects
for the overfitting tendency of single Decision Trees. It builds
a large number of individual trees during training and outputs
the class that is the mode of the classes. It is known for its high
accuracy, robustness, and ability to handle non-linear data.

4. Support Vector Machine (SVM): A classifier that finds
an optimal hyperplane that best separates the classes in the
feature space. We used an SVM with a linear kernel, as it
often performs well and is faster to train than more complex
kernels (e.g., RBF).

5. K-Nearest Neighbors (KNN): A simple, ”lazy learning”
algorithm that classifies a data point based on the majority
class of its 'k’ nearest neighbors in the feature space. The
choice of ’k’ is critical; we determined an optimal ’k’ value
(k=5) using cross-validation.

E. Evaluation Metrics

To evaluate the performance of our classifiers, we cannot
rely on accuracy alone, especially if the classes were im-
balanced. We used a standard 80/20 split for training and
testing our data and evaluated the models on the test set using
the following metrics, which are derived from the confusion
matrix (Fig. 2).

- Recall (Sensitivity): The proportion of actual positive
cases (students who actually ”Passed”) that were correctly

identified.
TP

TP + FN
- F1-Score: The harmonic mean of Precision and Recall. It

provides a single score that balances both metrics, which
is useful when there is an uneven class distribution.

Recall =

Precision % Recall

F1-Score = 2 %
Precision + Recall

In our context (identifying at-risk students), we are also highly
interested in the ”Fail” class. Specifically, the Recall of the
Fail class” (also known as Specificity for the Pass class) is
critical. This metric, _ "%, tells us: ”Of all the students
who actually failed, what percentage did our model correctly
identify?” A high value here is essential for an effective early
warning system.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the performance results of the five
machine learning models. All models were trained and tested
on the same preprocessed dataset to ensure a fair comparison.
The dataset was split into 80% for training (316 samples) and
20% for testing (79 samples). We also employed 10-fold cross-
validation during training to tune hyperparameters and ensure
the models were not overfitting.

A. Performance Comparison

The performance of each model on the independent test set
is summarized in Table 1. The metrics shown are for the ”Pass”

class (class 1), but they reflect the overall effectiveness of the
models. The Random Forest (RF) classifier emerged as the
SR el clear winner across all major metrics
Positive (TP) | Positive (FP) J '
Pass Fail
( ) ( ) TABLE I
COMPARATIVE PERFORMANCE OF MACHINE LEARNING MODELS ON
TEST SET
False True
Negative Negative
(FN) (TN) Model Accuracy (%)  Precision  Recall F1-Score
(Pass) (Fail) Logistic Regression 81.5 0.82 0.81 0.81
Decision Tree (DT) 84.2 0.85 0.84 0.84
Random Forest (RF) 89.7 0.90 0.89 0.89
Fig. 2. Structure of a 2x2 Confusion Matrix for the “Pass” / ”Fail” SVM (Linear Kernel) 82.1 0.83 0.82 0.82
classification problem. K-NN (k=5) 79.4 0.79 0.79 0.79

- Accuracy: The proportion of all predictions that were
correct.

TP + TN
Accuracy =

TP+TN +FP +FN

- Precision: The proportion of positive predictions (pre-
dicted “Pass”) that were actually correct. High precision
is important when the cost of a False Positive is high.

TP

Precision =. ———
TP + FP

B. Analysis of Model Performance

Random Forest (RF): The RF model achieved the highest
accuracy at 89.7% and a correspondingly high F1-Score of
0.89. This superior performance is expected, as ensemble
methods are adept at capturing complex, non-linear interac-
tions between features without overfitting. By averaging the
results of many “weaker” decision trees, it creates a strong,
stable, and highly accurate classifier. Most importantly for our
use case, the RF model also had a very high recall for the
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Fig. 3. Bar chart comparing key performance metrics (Accuracy and F1-
Score) for all five evaluated models. Random Forest consistently scores
highest.

”Fail” class, correctly identifying over 85% of the students
who were at risk.

Decision Tree (DT): The single Decision Tree performed
surprisingly well, with 84.2% accuracy. Its primary advantage
is interpretability. We could (and did) visualize the tree,
which revealed simple rules like, ”If G2 ; 10, then predict
Fail.” This transparency is invaluable for gaining trust from
educators. However, its performance was ultimately limited
by its tendency to find specific rules for the training set that
did not generalize perfectly to the test set.

Logistic Regression (LR) and SVM (Linear): These
two linear models had very similar performance, with LR
at 81.5% accuracy and SVM at 82.1%. This suggests that
the decision boundary between “Pass” and “Fail” is *mostly*
linear, which is why these simpler models still perform well.
Their interpretability (especially LR, where coefficients show
feature influence) is a major benefit. However, they were
unable to capture the more complex patterns that the RF model
identified, leading to slightly lower overall performance.

K-Nearest Neighbors (KNN): KNN was the weakest per-
former, with 79.4% accuracy. As an instance-based, lazy”
learner, KNN’s performance is highly dependent on the dis-
tance metric and the distribution of data points in the feature
space. With a mix of 33+ features, the curse of dimensional-
ity” likely impacted its ability to find truly “near” neighbors,
leading to more classification errors.

C. Analysis of Feature Importance

The feature importance results, shown previously in Fig. 1,
provide perhaps the most actionable insights of this study.

The dominance of ‘G2° (second-period grade) and ‘Gl1°
(first-period grade) is striking. This confirms that recent
academic performance is the single best predictor of future

performance. An EWS should, therefore, heavily weigh a
student’s current grades.

The third most important feature, ‘failures‘, is also critical.
This represents a student’s long-term academic history. A
student with a history of past failures is at a significantly
higher risk, even if their ‘G1° or ‘G2 is mediocre. This feature
captures a pattern of struggle that a single grade might miss.
Interestingly, behavioral features like ‘absences‘, ‘study-
time‘, and ‘goout® (socializing) also appear in the top 10. This
is a key finding: while grades are most important, a student’s
*habits* are also measurably predictive. This is excellent news
for intervention, as these are behaviors that can be changed.
An advisor can talk to a student about their high ‘absences’
or low ‘studytime®.

Demographic features like ‘Medu (mother’s education) and
‘age‘ had a minor, but present, predictive value. This highlights
the need for the ethical discussion in the following section.

V. DISCUSSION AND IMPLICATIONS

The experimental results demonstrate that machine learning,
particularly a Random Forest model, can predict student per-
formance with a high degree of accuracy. However, building a
model is only the first step. This section discusses the practical
and ethical implications of deploying such a system.

A. Practical Implications for Institutions

The primary application of this research is the development
of an Early Warning System (EWS).

1) Proactive Advising: Instead of waiting for students to
seek help, academic advisors could receive alerts (e.g.,
”Student X has an 80% probability of failing Course
Y™). The advisor could then proactively reach out to the
student to schedule a meeting, discuss study habits, and
connect them with resources like tutoring.

Instructor Feedback: Instructors could see a dashboard
at the beginning of a course showing which students
might need extra attention. The model could also high-
light *why* a student is flagged (e.g., ’high absences,”
”low study time”), allowing the instructor to have a
targeted conversation.

Resource Allocation: At an administrative level, the
institution can use aggregated, anonymized data from
the model to identify “bottleneck” courses with high pre-
dicted failure rates or to allocate tutoring and counseling
resources more efficiently.

2)

3)

B. Ethical Considerations and Bias

While powerful, these predictive models are not without
risks. The deployment of an EWS must be handled with
extreme care and ethical oversight.

- The Problem of Labeling: What is the psychological
impact on a student who is “’labeled” as “at-risk” by an
algorithm? This could become a self-fulfilling prophecy,
where the student loses motivation because they feel they
are “destined to fail” [16]. Any intervention must be
supportive and encouraging, not punitive.
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- Algorithmic Bias: Our model uses features like parental
education (‘Medu‘, ‘Fedu‘) and address (‘urban‘/‘rural®).
If the model learns that students from rural areas or with
less-educated parents are more likely to fail (even if this
is just a correlation in the data), it could unfairly penalize
them. This is a classic example of algorithmic bias,
where the system perpetuates existing societal inequities
[17]. An institution must decide whether to exclude such
features, even if it slightly reduces model accuracy, to
ensure fairness.

- Data Privacy: This system relies on sensitive student
data. Strong safeguards must be in place to ensure this
data is secure and that access is limited only to those
who need it for the purpose of student support (e.g., the
student’s own advisor).

We argue that the solution is not to avoid these models,
but to implement them with a “human-in-the-loop” approach.
The algorithm should not make decisions; it should provide
information to a human (an advisor, an instructor) who can
then use their own judgment and empathy to make a decision
about how to help the student.

C. Limitations of the Study

This study has several limitations that should be acknowl-
edged.

1) Static Data: The dataset used is static, meaning it was
collected at specific points in time (‘G1°, ‘G2°¢, ‘G3°).
A more powerful system would use dynamic, real-time
data from an LMS (e.g., weekly logins, quiz scores) to
update predictions continuously.

2) Context-Specific: The model was trained on data from
two schools in Portugal. Its performance and the im-
portance of its features might not generalize to other

Such a system could empower educators to provide proactive,
data-driven support to the students who need it most, poten-
tially improving retention and graduation rates. However, we
caution that such a system must be implemented with strict
ethical guidelines to prevent bias and negative labeling.

For future work, we propose several promising direc-
tions. First, we plan to extend this model to a real-time,
dynamic context by integrating data streams from a Learning
Management System. This would allow the model to make
continuous predictions throughout the semester. Second, we
aim to incorporate more complex models, such as Recurrent
Neural Networks (RNNs) or LSTMs, which are designed to
handle time-series data and may better capture a student’s
academic “trajectory.” Finally, we plan to focus on model
interpretability by applying techniques like SHAP (SHapley
Additive exPlanations) [19] to our ”’black box” models, which
would help explain *why* a model made a specific prediction
for an individual student, further enhancing the actionability
of the system.
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